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Dynamika kolektywna centralnych zderzeń jąder przy niskich energiach

Коллективные динамики в низкоэнергетических центральных 
столкновениях ядер

1 Introduction
For finite collective velocities where the adiabatic approximation for the single­

particle motion is no longer valid, a qualitatively new feature of collective nuclear 
motion has been predicted : elastoplasticity [1,2,3,4]. This dynamical behaviour re­
sults from a coherent coupling between collective and intrinsic degrees of freedom and 
subsequent equilibration by residual two-body collisions. Whithin a non-Markovian 
transport-theoretical approach [3] , the elastic response is described by scaling of di­
abatic single-particle wave functions [5] according to the collective deformation, while 
two-body dissipation is accounted for by a relaxation ansatz. This dissipative diabatic 
dynamics (DDD) ascribes elastoplasticity to nuclei and establishes a link between time­
dependent Hartree-Fock and Markovian transport theories of nucleus-nucleus collisions 
[6]. Isoscalar giant quadrupole vibrations of nuclei and mass diffusion in nucleus-nucleus 
collisions can be considered as well-established examples for the elastic and plastic lim­
its of elastoplasticity. The first numerical results obtained within dissipative diabatic 
dynamics show the applicability of the theory to relatively light systems (40Ca + ,0Ca)
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as well as to medium (S0Zr + 90Zr) [7] and heavy systems (208Pb + 124Sn) [8]. In ail cases 
the elastoplastic features of nuclei are easy seen. Within the framework of adiabatic 
single-particle motion the equation of motion for a single collective variable q reads:

at 2 dq dq

where the mass parameter B(q), the friction coefficient £(q) and the adiabatic poten­
tial are defined within the shell model. However, the adiabatic approximation for the 
single particle motion is restricted to very small collective velocities [9,10]. A diabatic 
approximation which is defined by scaling the wave functions according to an irrota- 
tional flow imposed by the time dependence of the nuclear surface [1,5,11| has been 
find more realistic already for kinetic energies larger than 0.05-0.1 MeV per nucleon. 
This diabatic approximation to the single-particle motion in the time-dependent mean 
field is supported by time-dependent Hartree-Fock calculations [12]. On the basis of the 
general diabatic single-particle motion a transport theory has been formulated which is 
referred to as dissipative diabatic dynamics [3]. DDD results in the following changes 
of the collective equation of motion as compared to the adiabatic case (eq.(l)) :

1. The strongly fluctuating adiabatic mass parameter is replaced by its smooth irro- 
tational value (B —»B ,„o().

2. The adiabatic potential with shell corrections is replaced by its value at tempera­
ture which results from excitation energy. This potential for temperatures larger 
than 2-3 MeV becomes close to the liquid drop potential.

3. The Markovian friction is replaced by a retarded friction force

The non-locality of the internal kernel К results from the equilibration within the in­
trinsic degrees of fredom. By using a simple relaxation ansatz К becomes

(3)

where rln(,[t) is the equilibration time. This time has been estimated [13] within the 
Fermi-gas model to be '

r,n,r(t) = Г - 10-“s MeV/e{t) , (4)

/f(t,t') = Cexp 
fin tr(*  )

where e*(t)  is the time dependent excitation energy per nucleon and f=20. The coef­
ficient C(q) (a tensor in the case of more than one collective degree of freedom) stands 
for the stiffness of the system.

The non-locality of the retarded friction term leads to the elastoplastic proper- 
ties of nuclei. If w denotes the frequency of the isoscalar vibrations (w = JC/B) then 
for T,n/r 2> w-1 the system shows an elastic behaviour and for rln(r w~l the frictional 
limit is achieved with Markovian friction force = Crlnlr).

The dissipative diabatic dynamics consists of two basic elements. Diabatic 
single-particle motion approximately describes the coherent quantum-mechanical cou­
pling between intrinsic and collective degrees of freedom. The diabatic excitations 
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produce a repulsive force on the collective motion (the collective kinetic energy is pri­
marily stored in the conservative potential). Then, dissipative collisions, essentially due 
to the residual two-body interactions, try to establish a new equilibrium distribution 
and destroy the diabatic potential. The intrinsic equilibration by the collisions is a 
time-irreversible process which leads to dissipation. It has been shown in [11] that this 
approach is applicable to nucleus-nucleus collisions in the range of 0.3 to 3 MeV per 
nucleon above the Culomb barrier.

The aim of this paper is to discuss the problem of quasi-elastic recoil during 
central nucleus-nucleus collisions within one-dimensional as well as two-dimensional 
dynamics. The system 20SPb + 12łSn is chosen to maximize the effect of the elastic re­
sponse [8|. In this case the adiabatic potential is more or less repulsive for all reasonable 
values of the collective variables and, hence, the elastic response cannot be obscured by 
the equilibrium forces. In cases of lighter systems (40Ca + 40Ca and ,0Zr + ’°Zr [7]) 
adiabatic potentials differ significantly. The minimum for the spherical configuration 
of the total system exists which produces a driving force towards fusion. For heavy 
systems the repulsive Coulomb force predominates and fusion is impossible.

The paper is organized as follows. In sect. 2 the basic definitions and equations 
for a set of q = {</„} of collective variables are summarized. In sect. 3 the evaluation 
of the ingredients of the collective equation of motion is described. The results of one­
dimensional trajectory calculations are discussed in sect. 4. In sect. 5 the preliminary 
results for two-dimensional dynamics of the same system are presented.

2 Basic relations
For a set q = {?„} of collective variables diabatic single-particle states are 

defined [5] by

Pa = exp -i{/ -W(r,q,q)) Po(r,q) ,
л Jt0 (5)

where ea denotes the single-particle energies. All stationary states <pa scale according 
to the same collective velocity field v = VW like:

4~~ I Pa > = |i(Vwn) • V + V • (Vwn)| I <po > 
dqn 2 (6)

for W = EnînW«. The velocity field is allowed to describe compressions (ДИ2 / 0). 
With the scaling condition (6) all couplings proportional to <j„ vanish in the single­
particle Schrôdinger equation for the diabatic representation. Diabatic wave functions 
with different nodal structure (different character) exhibit crossings of the corresponding 
diabatic energy levels. The word ‘diabatic’ is derived from the greek word ‘Siaflabi'çeti/’ 
for ‘to cross’.

In the derivation of the transport equations [3] a time-smoothing procedure 
has been applied for the collective quantities which by definition should be the slow 
modes of the system. Within this formalism no ordinary friction term arises. Instaed, 
dissipation is obtained only through the changes of the occupation probabilities na 
for the diabatic single-particle states. These changes are essentially due to two-body 
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collisions although one-body collisions from the remaining one-body coupling within 
the diabatic representation may also contribute. The collision term conserves the total 
mass and charge as well as the total energy. In practice we approximate the collision 
term by the relaxation equation

dn„(t) _ _ f no(t) - fta(q, ц,Т) 1
dt I r,n(r(t) / ’ 1 '

where the intrinsic equilibration time (4) is time dependent via the changing excitation 
energy. The equilibrium occupation numbers are Fermi functions

na= {1+expp^j}’*.  (8)

The chemical potential ц and the temperature T are determined from the conservation 
of particle number and energy, respectively.

The expectation value of the many-body hamiltonian, including two-body in­
teractions, is given as sum of potential and kinetic collective energies

< ff>=V(q) + |E Bnmqnqm . (9)
" n.m

The collective equations of motion (Euler-Lagrange equations) resulting from (9) are

= ^ = -Çno(t)--^ , (10)

where the derivatives of the diabatic single-particle energies enter. Equations (7) and 
(10) form a set of coupled equations which are local in time, and hence Markovian. 
However, if we eliminate the intrinsic variables na(t) by formal integration of eq. (7)

no(t) = MO - J^df exp J-dB r^Jr(e)] (П)

we obtain the non-Markovian collective equations of motion

^(EA^m) - ^^qmqm. + £/‘dt-Knm(t,t')qm(t') = F; (12) 
dt m 2 dq„ ^Jt0

for the collective variables. In the harmonic approximation the integral kernel is given 
by (

K„m(t, t') = Cnm(q) exp [- f‘ dB 7-U«)] (13)

and is referred to as the elastoplasticity tensor. The stiffness tensor is defined by

and thus does not depend explicitely on t. We can easily recognize the elastic limit 
for r,ni, 3> (i — f) when becomes the stiffness tensor C„m = Knm(t,t' = i).
For small amplitudes the corresponding vibrations can be identified with isoscalar giant 
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vibrations (1,3,4,14,15). For slow motion where “ <jm(t) we find the frictional 
limit with the friction tensor £nm = J dt' t').

The equilibrium force

*>-£<<)£ . (15)

may be approximated by the derivative of the adiabatic potential which is smoothed 
like with a finite temperature. The corresponding potential should be very close to the 
liquid drop energy (the sum of surface plus Coulomb energies).

3 Equilibrium force, mass and stiffness tensors for 
2°8pb -f- 124Sn.

In order to study the dynamic evolution of the colliding system according to (12) 
we have to calculate the ingredients of this equations. The basic problem of choosing 
the proper collective variables, however, arises. The most important collective variable 
is a quantity describing the relative motion of two colliding nuclei. As we deal micro­
scopically with two-center shell model it is convenient to choose this quantity as f - the 
distance between the centers of the two potentials (one can also relate it to the distance 
between the centres of masses). In the case of one-dimensional dynamics we merely 
consider the evolution of this single collective variable.

£ (fm)

Fig.l. The adiabatic potential (solid line) and irrotational mass parameter 
(dot-dashed line) as functions of the elongation coordinate for 208Pb + 124Sn.

Within the two-center shell model (TCSM) there also exist the other candidates 
for the collective variables. These are: deformation 6 = (the same for both 
fragments), mass asymmetry and neck parameters - 6, a and e, respectively (for the 
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A

exact definitions see [5] ). Among them the deformation seems to be the most important 
and it is chosen to be a dynamical variable in the case of two-dimensional dynamics. 
The other parameters are fixed in calculations described below.

The equilibrium force (15) is approximated by the derivative of the adiabatic 
potential with respect to the collective variables

di ' ‘ ~ 36 ’
The adiabatic potential is calculated as the sum of surface and Coulomb energies within 
a generalized liquid drop model with the shape defined by f and 6. The calculations 
are performed according to the method of Moller and Nix [17]. In Fig.l the adiabatic 
potential for the system 2O8Pb+124Sn is illustrated for the one-dimensional case (solid 
line). It is seen that apart from the narrow region of f (slightly smaller than the distance 
at contact) the potential produces a repulsive force. The two-dimensional contour plot 
of the adiabatic potential for the same system is shown in Fig.2.

Fig.2. Two-dimensional contour plot of the adiabatic potential for the sys­
tem 208 Pb + 124 Sn. The energy separation between the dotted lines is 5 MeV. The 
thick dashed line shows the contact configurations for different shapes (sharp surface 
assumed).

Note that 6 = l,f = 0 corresponds to the spherical configuration of the total 
system, whereas 5 = 1 and large | $ | corresponds to separated spherical fragments. 
The dashed lines show the contact configuration for different deformations. The one-
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dimensional case shown in Fig.l corresponds to the cut of the Vorf(ç,6) for 5 = 1.

Fig.3. Contour plots of the components of the mass tensor for the system 
“"Pb + l24Sn. In the upper part cuts are separated by 1 unit and the thick dashed 
line coincides with the cut = 11. For the off-diagonal component the separation 
between dotted lines is 10 units and the one between solid lines is 40 units. For Bst the 
separations are : 100 for dashed lines and 1000 for solid lines. The thick dashed line 
indicates the contact configurations for different shapes.
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The mass tensor has already been studied in ref. [5] for various systems and it 
has been shown there that the mass tensor calculated from the cranking formula in the 
diabatic two-centre shell model is within 10% equal to the value given by the Werner- 
Wheeler approximation [16] to the irrotational flow (the cranking mass tensor which 
results from diabatic states exactly fulfilling the scaling condition (6) should coincide 
with its irrotational value). Therefore, in order to simplify time consuming calculations 
the Werner-Wheeler approximation has been used. In Fig.l the diagonal Bif component 
of the mass tensor is also presented as a function of the collective variable < (dot-dashed 
line). The mass parameter J3ft is largest for separate nuclei (having the reduced mass 
value) and smoothly goes down for more compact configurations. For the same distance 
it is also smaller for prolate deformations (6jl) than for oblate ones (64I).

Fig.3 presents contour plots of all components of the mass tensor for the system 
under consideration. The dot-dashed line in Fig.l corresponds to the cut of the 
according to 6=1.

T=2.0MeV
T=1.5MeV
T=1.0MeV
T=0.5MeV

£ (fm)

Fig.4. The diagonal component of the stiffness tensor calculated for different 
values of the nuclear temperature. The solid line represents the results for T=2...3 MeV 
(deviations within linewidth).

The stiffness parameter (calculated within DTCSM according to eq. (14)) as 
function of the distance between the centers of the single-particle potential is shown 
in Fig.4 (one-dimensional case) for different values of the nuclear temperature. The 
temperature is calculated via

T = у/ъе^МеУ MeV (17)

from the total excitation energy e*  given by

c . 1 1101 
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where Ес.м, Ецп and A denote the bombarding energy in the centre-of-mass system, 
the collective kinetic energy and the total nucleon number, respectively. The stiffness 
parameter presented in Fig.4 exhibits strong shell effects for low temperatures which 
are smoothed out with increasing temperatures and practically vanish for T>2 MeV.

Fig.5. Contour plots of the components of the stiffness tensor for the system 
20SPb + 124Sn. In the upper part cuts are separated by 4 units between solid as well as 
dotted lines. For the off-diagonal component the separation between solid lines is 100 
units. In the lowest part the separations are : 1000 for dashed lines and 5000 for solid 
lines. The thick dotted lines indicate contact shapes.
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In the two-dimensional case the components of the stiffness tensor are presented 
in Fig.5 for the case T=2 MeV when most of the shell effects vanish because for the 
energies under consideration the excitation energy is large enough (except perhaps from 
the very early stages of the collision process). One should notice that the non-diagonal 
elements of the stiffness tensor as well as of the mass tensor are not small and produce 
a strong coupling of the motion in the two collective variables.

4 One-dimensional dynamics
We have studied the dynamical evolution of the system M’Pb+124Sn as function 

of the incident energy above the Coulomb barrier,

' _ Ecxt — Vço«i
£‘" " Arti

between 0.1 and 5 MeV/u.

TIME (IO’23 s)

Fig.6. Quantities describing the time evolution of the system for three values 
of the incident energy above the Coulomb barrier, e'in = 1 (dotted lines), 2 (dot-dashed 
lines) and 3 MeV/u (solid lines). Top: elongation f as functin of time. Middle: intrinsic 
equilibration time Tinlr. Bottom: kinetic energy with respect to initial value.
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Fig.6 shows the dynamical evolution of the system for three values of the inci­
dent kinetic energy 1, 2 and 3 MeV/u. For e,„ =1 and 2 MeV/u we get a remarkable 
elastic or quasi-elastic behaviour of the system. In these cases the kinetic energies at the 
exit point (the barrier) are 50 MeV and 30 MeV, respectively, corresponding to »05% 
and »25% of the initial energies. The interaction times (i.e. the times the system stays 
inside the Coulomb barrier) are almost the same (» 90- 10-23s). The collisions proceed 
almost in the same way apart from the fact that for higher incident energy the inter­
penetration of the colliding nuclei is deeper, while the excitation energy is higher. Since 
Ti„t is inversely proportional to e' it becomes smaller at higher bombarding energies. 
The qualitative behaviour of the trajectories change drastically as one goes to ein = 3 
MeV/u. In this case the interaction time increases to more then three times the values 
obtained for ein = 1 and 2 MeV/u. The reason is that the system is reflected back once 
by the elastoplastic force which is built up on the way towards reseparation. For times 
t>100 10-23s practically all kinetic energy is dissipated and the nuclear temperature 
T>2 MeV is stabilized while the system creeps towards the Coulomb barrier.

Fig.7. Kinetic energy at the exit point (left) and interaction time (right) as 
functions of the initial kinetic energy per nucleon above the Coulomb barrier for three 
different values of t*. The straight dotted line represents the initial kinetic energy (in 
the CM system).

The results obtained for different values of the parameter Г are summarized in 
Fig.7 where the kinetic energies at the exit point (Coulomb barrier) and the interaction 
times are shown as functions of the incident kinetic energy for three different values of 
V. For the cases t*=20  and t*=10  (the latter is close to the frictional limit) we have 
found a sudden change of the interaction time as function of the initial kinetic energy. 
There exists a particular initial energy (the value depending on t*)  beyond which the 
interaction time becomes roughly three times larger and the quasi-elastic behaviour 
of the system switches to a frictional one where the kinetic energy at the exit point 
becomes very small.
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5 Two-dimensional dynamics
We consider here the central collisions of 208Pb + 124Sn at several incident 

energies in the range of 0.2 - 5 MeV above the Coulomb barrier. The time evolution 
of the system is obtained by solving the equation of motion (12) for two collective 
coordinates: elongation ç and deformation 6. The evolution of the system is calculated 
starting from the contact configuration of two spheres (5=1, f=12.6 fm) and assuming 
an initial velocity equal to the velocity of the relative motion (5(t=0)=0). Numerical 
integration of the equations of motion is performed using the predictor-corrector method 
and checking its accuracy by total energy conservation condition.

Fig.8. Two-dimensional trajectories for 2MPb + 124Sn for incident energies 
between 0.2 and 4 MeV/u above the Coulomb barrier. The solid line denotes the 
trajectory inside the barrier (compound configuration) and the dotted line shows the 
evolution after reseparation. The dashed line indicates contact configurations.

The trajectories of the colliding system for different incident energies are illus­
trated in Fig.8. All results correspond to t*=20.  The interpenetration of nuclei increases 
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with the increasing energy and for e’„ > 4 MeV/u f even becomes negative for some 
time.

The shapes of the trajectories are easy to understand if one looks at the contour 
plots of Voa(f,5) and C{ç(ç,6). It is seen that the system evolves along the valley of the 
smallest stiffness along which the dynamically built up elastoplastic forces are smallest. 
Along this valley the equilibrium forces are also small (see Fig.2). The coordinates, 
however, are strongly coupled by the non-diagonal elements of the tiffness and mass 
tensors. For low energies this heavy system exhibits similar quadrupole vibrations as 
the lighter ones (40Ca + *°Ca  and °°Zr + MZr [7]). For energies e'„ > 4 MeV/u, our 
investigation is not yet finished because as can be seen from the lowest-right part of Fig.8 
the system escapes from the region where the ingredients of the equations of motion 
have been calculated microscopically (however is still inside the barrier).

Energy

f-10
t"=20

Fig.9. The sum of the kinetic and potential energies (at the exit point at the 
barrier) with respect to its initial value as function of the incident energy for different 
values of the parameter t*.

As the Fermi-gas model estimate of the intrinsic equilibration time is not well 
determined we performed additional calculations with t*=10.  The final results are 
collected in Figs.9 and 10. These results qualitatively agree with those of Fig.7 obtained 
with one-dimensional dynamics. Fig.9 shows that for lower incident energies less than 
one half of the total energy is dissipated whereas for higher incident energies almost all 
energy is dissipated.

The interaction time shown in Fig. 10 is almost the same for lower energies and 
increases rapidly for higher ones. This result is also in qualitative agreement with the 
one of one-dimensional dynamics. Quantitative results and the whole picture of the 
collision process within two-dimensional dynamics, however, differ much.
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t"»10
f»20

£'„ (MeV)

Fig. 10. The interaction time (the time the system stays inside the Coulomb 
barrier) as function of the incident energy.

In closing we note that our studies still cannot give -quantitative predictions 
because we need a wider space to calculate the trajectories for higher incident ener­
gies. The other collective degrees of freedom (mass asymmetry, neck) might also be 
important.

Acknowledgements

The author is very grateful to Prof. W. Nörenberg for Introducing into the 
subject and many helpful discussions.

References
[1] W. Nörenberg, Phys. Lett. 104B (1981) 107

[2] W. Cassing and W. Nörenberg, Nucl. Phys. A401 (1983) 467

[3] S. Ayik and W. Nörenberg, Z. Phys. A309 (1982) 121
K. Niita, W. Nörenberg and S.J. Wang, Preprint GSI-86-35

[4] W. Nörenberg, Nucl. Phys. A409 (1983) 191;
Nucl. Phys. A428 (1984) 177

[5] A. Lukasiak, W. Cassing and W. Nörenberg, Nucl. Phys.
A426 (1984) 181

[6] H.A. Weidenmüller, Progr. Part. Nucl. Phys. 3 (1980) 49
W. Nörenberg and H.A. Weidenmüller, ‘Introduction to the Theory of Heavy-Ion 
Collisions’ (Springer, Heidelberg, 1980)



433 Collective Dynamics in Low Energy

A. Gobbi and W. Nörenberg, in Heavy-Ion Collisions, ed. R. Bock, vol. 2 (North- 
Holland, Amsterdam, 1980)
L.G. Moretto and R.P. Schmitt, Rep. Prog. Phys. 44 (1981) 533
W.U. Schröder and J.R. Huizenga, in ‘Treatise on Heavy-Ion Science’, ed. D.A. 
Bromley, vol. 2 (Plenum-Press, New York - London, 1984)

[7] A. Lukasiak and W. Nörenberg, Preprint GSI-86-36

[8] P. Rozmej and W. Nörenberg, Phys. Lett. 177B (1986) 278

[9] D.L. Hill and J.A. Wheeler, Phys. Rev. 89 (1953) 1102

[10] L. Landau, Z. Sovietunion 1 (1932) 88; 2 (1932) 46 
E.C.G. Stückelberg, Helv. Phys. Acta 5 (1932) 369 
C. Zener, Proc. Roy. Soc. A137 (1932) 696

[11] W. Cassing and W. Nörenberg, Nucl. Phys. A433 (1985) 467

[12] W. Cassing, A.K. Dhar, A. Lukasiak and W. Nörenberg,
Z. Phys. A314 (1983) 309

[13] G.F. Bertsch, Z. Phys. A289 (1978) 103

[14] G.F. Bertsch, Ann. Phys. (N.Y.) 86 (1974) 138;
Nucl. Phys. A249 (1975) 253
H. Sagawa and G. Holzwarth Progr. Theor. Phys. 59 (1978) 1213

[15] W. Nörenberg, in ‘Theory of Nuclear Structure and Reactions’, 
ed. by M. Lozano and G. Madurga (World Scientific, Singapore, 1985), 
p. 492

[16] I. Kelson, Phys. Rev.B136 (1964) 1667

[17] P. Möller and J.R. Nix, Nucl. Phys. A361 (1981) 190

Streszczenie

W pracy prezentowane są obliczenia numeryczne dotyczące 
centralnych zderzeń jąder z dyssypacją energii. Głównym celem 
pracy jest przedyskutowanie problemu kwazielastycznego odrzutu 
z wykorzystaniem jednowymiarowej i dwuwymiarowej dynamiki. 
Ewolucję zderzających się jąder opisano przez rozwiązanie kla­
sycznych równań ruchu dla współrzędnych kolektywnych. Jako 
współrzędne kolektywne przyjęto zmienną opisującą ruch względny 
fragmentów oraz deformację kwadrupolową. Tensor masowy i siły 
równowagi obliczono makroskopowo /uogólniony model kropli cie­
czy/ , podczas gdy elastoplastyczność wzięto pod uwagę w modelu 
mikroskopowym /diabatyczny, dwucentrowy model powłokowy/.
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Rezultaty dynamiki jednowymiarowej jakościowo zgodne są 
z rezultatami otrzymanymi w przypadku dwuwymiarowym. Główną 
konkluzją pracy jest wniosek, że w centralnych zderzeniach 
ciężkich jąder dla niskich energii zderzeń /1-2 VLeN/uJ można 
oczekiwać efektów kwazielastycznych.

РЕЗЮМЕ

В работе приводятся численные расчеты связанные с централь­
ными столкновениями ядер с диссипацией энергии. Главной целью 
работы является обсуждение проблемы квазиэластичной отдачи с ис­
пользованием одно- и двухмерной динамик. Эволюция сталкивающихся 
ядер описывается путем решения классических уравнений движения 
для коллективных координат. В качестве коллективных координат 
приняты переменная списывающая относительное движение фрагментов 
и квадрупольная деформация, массовый тензор и силы равновесия 
вычислены макроскопически (обобщенная модель жидкой капли), в то 
время как эластопластичность принималась во внимание в микроско­
пической модели (адиабатическая двух-центричная оболочечная мо­
дель).

Результаты одномерной динамики согласуются качественно с 
данными полученными в двухмерном случае. Основным заключением 
работы является то, что в центральных столкновениях тяжелых 
ядер при низких энергиях столкновений (1-2 МэВ/н) можно ожидать 
квазиэластичных эффектов.


