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On the Coeflicients of Certain Classes of Analytic Functions
O wapdczynnikach pewnych klas funkdgji analitycznych

Abstract. In this paper we solve cartain problems for the coeffidents of Nl.)(ﬂ) dasses of
Nevanlinna analytic functions, Sl'z (0) classes of Schwarz analytic functions and P dass of analytic
functions with positive real part in |z]| < 1.

1. Let N (a) denote the class of Nevanlinna analytic functions
[ dut) Z“ (a)
o B _ o ckla
(1) !(z)_'/'—t-.k-l?-, z¢f{zlas2<51}),

where a is a fixed real number (-1 € a < 1) , p(t) is a probability measure on |[a, 1]
and

1
(2) ex(a) =/t""'dp(t) , k=12,... (ale=1).

L]
Let N3(a) denote the class of associated analytic functions

1

3) o= 1= [ 32 = Y s
km1

in the s-plane with thecuts 1 € z £ +ooand o £ 2 < 1/afor-1<a <0,
1<3< toofora=0and 1 <z < 1/a for 0 < a < 1, where the coefficients ci(a) arc
given by (2). The classes N} 3(a) were introduced in [1) - [3]. Certain properties of
the special classes of Nevanlinna analytic functions N} = Nj(-1) , N3 = N3(-1) and
totally monotonic functions T' = N3 (0) were examined in [4] - (6] and [7), respectively.
For example, in [1] it was noted that the functions (1) and (3) are univalent for |z| > 1
and 3] < 1, respectively. Now we shall solve certain problems for the coeffidents (2).
Further we shall indicate the dass N3(a) only.
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Theorem 1. For fireda (—1 £ @ < 1), the coefficients (2) satisfy the sharp

inequalitics
(4) lex(@)| €1, £=2,3,...,
where the equality Rolds only for the rational function
\ ; -
(5) elz)= 7= = Y *eM),
k=l
as well as for the rational function
(®) plz) = 2 1)*=1:* € Na(=1)
=1

if a = ~1, and for the rational functions

) olz )-l—;;+1_,—2(( )*' A+ 4a):* € Ma(-1)

A13>0, A1+ A3 =1

ifa=~1 and k—1 is an even number.

Proof. For =1 £a <1 and k= 2,3,... from (2) it is obvious that

1 1
(8) lex(a)] = | f =t dp(t)| < f dp(t) =1,

where the equality halds if and only if u(t) is a step—function with one jump 1 at the
point ¢t = 1, and if ¢ = —1 with one jump 1 at the point ¢ = -1, and if a = -1 and
k - 1 is an even number with two jumpe A; 2 > 0 with sum 1 at the points t = —1
and ¢ = 1, respectively. Thus from (8) and the representation formmla (3) we obtain
the sharp inequalities (4) and the corrcaponding extremal fanctions (5) - (7).

Theorem 3. Lete (=1 €a<1)defirzedandm—-1 (m =2,8,...) be a

divisor of n =1 (n = 3,4,...), where m < n. Then the coefficients (2) satisfy the
sharp inequalities

(9 1-enfa) € 22 (1 = emfa)) .

where the equality holds only for the function (5) and, ifa = —1 and m —1 is an even
numder, for the functions (6) and (7) as well

Corollary . In particular, for m = 2, the sharp inegualities

(10) l=cn(a) S(n=1)(1—cs(a)), n=384,--.-
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hold, where the equality holds only for the function (5).
Proof. Under the conditions of Theorem 2 let us set
(11) n-l=(m-1) (¢=23,...).

In addition, by aid of (2) we obtain the identity

(12) (m = 1)(1 = en(a)) = (r = 1)(1 = em(a)) = / G(¢) dn(t)
where
(13) Gt)=(m-1)(1=¢t"1)=(n=1)(2 =t™"").

Now from (11) and (13) it follows tnat
(14) G(t) = (m—=1)(1 = ™) (14 ™ 4 ... polm=Ne=D) _g) <o

for a £t < 1 where the equality halds only for¢t = 1 and, ife = —1 and m — 1 is an
even number, for ¢ = —1 as well. Thus from (14) we conclude that the right-hand side
of (12) is nonpositive and it is equal to zero if and only if p(t) is a step-function with
one jump 1 at the point ¢ = 1 and if ¢ = —1 and m — 1 is an even number with two
jumpe A;.3 2 0 with sum 1 at the points ¢ = —1 and ¢ = 1, respectively. Therefore,
from (12) and the representation fornmla (3) we obtain the sharp inequalities (9) and
(10) and the unique extremal functions (5), (6) and (7), respectively.

2. Let 5, (C) denote the class of Schwarz analytic functions .
ki
du(t) <=
(19) 1= [EL -y %, 1>,

0 kw1

where p(t) is a probability measure on [0,2x] and

e .
(16) o= fc'“""' du(t), k=1.2,... (a=1).
0

Let $3(C) denote the class of associated analytic functions

i P
(17) pla) = )= / :i"{:‘)‘ = Zﬂx' v lal<l,
° k=l

where the coefficdents ¢; are given by (16). Certain geometric characteristics of th.e
classes S 3(C) were examined in [8] — [13], where, in particular, it was noted that
the functions (15) and (17) are univalent and starlike for |z| 2 v2 and |3| S 1/V3,
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respectively. Now we shall salve analogous problems for the coefficients (16). Further,
we shall indicate the class S3(C) only.

Theorem 3. The n-th coefficient (16) satisfies the sharp inequality
(18) leal] €1 (n=2,8,...),
where the equality holds only for the rational functions of the form

n=-3 -I’Av 2
(19) )= e I

00 n-1
=Y #Y Aoopilk-1)(a+ 22X) € 5,(0)

kwml v=0 n-1

for some reala and Ag 2 0,...,Apn220 with Ag+---+ 4,_2=1.

Proof. From (16) it is obvious that
ir 2z
(20) el =1 f * 04 du)] s [at)=1 (022),
° 0

where the equality holds if and only if u(t) is a step—function with n jumps 4, 2 0
with sum 1 at the paints of the form a + 2vx/(n — 1) for some real a. Thus from
(20) and the representation formula (17) we obtain the sharp inequality (18) and the
unique extremal fanctions (19).

Theorem4. Letm—1 (m=2,3,...) be a divisor of n—1 (n = 3,4,...), where
m < n. Then the n—th and the m—-th coefficients (16) satisfy the sharp ineguality

n—1
m-=1

(2) Re (1-en) S (222 ) Re (1= em)

where the equality Aolds only for the rational functions of the form

' m-=2
2 3)= L:
(22) p(s) ,Z_;,l-wtpﬁ

Jor some A9 20,...,Am-220 with Ag+ -+ Am-3 = 1.

Corollary . In particular, for m = 2, the sharp inequalities

(23) Re(l-—¢n)S(n—1)’Re(l=¢3), n=38,4,...
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hold, where the equality holds only for the function (5) which belongs to the class
Sa(C) as well

Proof. Under the conditions of Theorem 4 we have the equation (11). In
addition, by aid of (16) we obtain the identity

r
(24) (m = 1)? Re (1 = c) = (n = 1)* Re (1 - em) = f G(t) du(t)

where
(25) G(t) = (m—1)?(1 - cos(rn— 1)t) = (n - 1)*(1 - cos(m — 1)) .

Now from (11) and (25) it follows that

- m-1)gt 2
(26) G(t) = 2(m — 1)? sin? ‘"‘;’ 1) [(::‘Im_’ :l‘ ) = q’] <0

for 0 € t < 2x, where the equality holds only for t = 2vx/(m=-1),v =0,1,...,m~1.
Thus from (26) we conclude that the right-hand side of (24) is nonpositive and it
is equal to zero if and only if p(t) is a step—function with n jumpe 4, > 0 with
sum 1 at the points 2vx/(m - 1), » = 0,1,...,m® 1. Therefore, from (24) and the
representation formula (17) we obtain the sharp inequalities (21) and (23) and the
unique extremal functions (22).

3. Let P denote the class of analytic functions

m.. oS
(27) p(z) = i'—‘-;—:' dp(t) =1+ Z pas*

]
, S k=1

with positive real part in the disc |z| < 1 where 4(t) is a probability measure on [0, 2x]
and

2z
(28) ot =z/¢-"*'d,.(¢) ki Tz 1)
0

The well-known characterization of the coefficients (28) that [ps| £ 2. k = 1,2,...,
is given by Carathéodory (see details, for example, in [14), pp. 3942 and in [15],
Chapter 7, pp.77-106). Another result for the coefficients (28) in our modification is
the following Ruscheweyh theorem (see in (16}, Satz 4, p.22) : Let m (1 = 1,2,...) be
a divisor of n (n = 2,3,...), where m < n. Then the n-th and the m-th coefficients
(28) satisfy the sharp inequality

(29) Re (2—pn) S (2)°Re (2= pm) .



156 P. G. Todorov

With-the help of our method in the proof of Theorem 4 used to the equations (23)
we can prove the inequality (29) simpler. In addition, by aid of the representation
forrmla (27) we find all extremal functions for the inequality (29) namely :

(30) w3 422 lu 'j: -
vm0
.—1.*.22 mE-A.,.txp( zvkﬂ)ep
km] ]

for some 4g 2 0,....,Am~; 2 0 with Ag +--- + A;n—; = 1. Thus our extremal
fanctions (30) supplement the Ruscheweyh theorem for the class P.
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STRESZCZENIE

W tej peacy rozwigzujerny pewne problemy dla wspdlczynnikéw klas Nevanlinny N, l,z(d)
funkcji analitycanych, ldas funkcji Schwarza Sy ,3 (C) i Klasy P funkcji o dodatniej czedd rzeczywistej
wlz| <1






