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On Bazilevic functions 

O funkcjach Bazilevica

Abstract.The author usee the notation of Differential Subordinations to obtain some new 
sufficient conditions for a normalised regular function, in the unit disc U = [z : \zj < 1} to be 
dose to convex (univalent) in U■ Further some of our results generalize and improve the results 
obtained in different directions by author and others.

1. Introduction, Let f and g be regular in the unit disc U = {z : |z| < 1}. 
We say that f is subordinate to g, written f ■< g or f(z) -< (/(s), if there exists a 
function w regular in U which satisfies w(0) =; 0, |w(z)| < 1 and /(«) = g(w(»)), If g 
is univalent in U then f < g if and only if/(0) = j(0) and f(U) C g(U).

We use H to represent the class of all (normalized) funotions f(z) := z+a}z1 + • • • 
regular in U. Suppose that the function / is regular in U. The function f, with 
/'(0) 0 is convex (univalent) in U if and only if Re(l + zf"(z)/f'(z}\ > 0, z € U.
The function /, /'(0) # 0 and /(0) = 0, is starlike (univalent) in U if and only if 
Re(i/'(i)//(»)J > 0, z € U. The function f is dose to oonvex (univalent) in U if 
and only if there is a starlike function g such that R£}r/’(i)/jj(i)] > 0, z € U. The 
function / is A-spirarlike of order p in U if and only if Re[e,Axjf'(x)//(z)] > peosA, 
z € U for some real A such that |A| < x/2 and p < 1. We denote the class of such 
functions by SA(p). If 0 < p <, then SA(p) is the well-known subclass of the class of 
univalent functions.

A function f e H is said to be in the class A/(p;A) if and only if

(1) zeU

for some p (p > 0), where g € H and h convex in U with A (0) = 1.
FXirthermore we define R(p,d) to be the class of functions in A/(p;A) for which 

A(x) = (1 + (1 - 2ri)x)/(l - z) and g starlike in U. The class B(p,ff) for 0 < t) < 1 
is the subclass of Baalevic functions of type p (1,9,14],

All of the inequalities involving functions of z, such as (1), hold uniformly in U. 
So the condition ’’for all z in U” will be omitted in the remainder of the paper since 
it is understood to hold.
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The aim of this paper is to give some sufficient conditions for a function f € H 
to be ck»e to convex in U and to improve and generalize some of the well-known 
results concerning Bazilevic functions etc

2. Preliminaries. Fbr the proof of our results we need the following Lemmas

Lemma A.Let p be regular in U and q be regular in U with p(0) ss ?(0). IJ p it 
not subordinate to q then there exist points zq &U and fo € oU, and an m > I for 
wA»'eAp(|*| < |r01) C q(U),

W p(*o) = fl(fo) t

and

(b) *op(*o) = fofl'(fo)

Lemma B. Let Q be a set in the complex plane C. Suppose that the function : 
C3 x U —♦ C satisfies the condition »iJ«) 0, for all real u3,p, < 2-,(l +1»3)
and all z & U.

If p is regular in U, with p(0) = 1 and it>(p(z), zp'(z);z) € 0, when z €U, then 
Re p(*) > 0 in U.

More general form of the above lemma may be found in [6].
In the case when ^(s, p; *) = e + P7-1 (7 yt 0, Re 7 > 0), it [3,6] is known that 

if p is regular in U, h is convex in U and A(0) = p(0) then the best subordination 
relation

(2) PW + sp'MlT1 «< A(*) implies p(*) -< q(z) ■< h(z),

z
holds, where ?(*) = 7*“1 / h(t)t",~x dt. Further in [15], for ^(s,p;*) = p, it is shown 

0
that if p is regular in U, and <t> is starlike in U then

(3) zp'M “< ¿(«) implies p(*) -< qt (*) -< <f>(z),

z .
is true, where gi(*) = J dt.

0

3. Main results.

Lemma 1. Lte h be convex function in U, with A(0) = c and let r(z) be regular 
function in U with Re{r(*)} > 0. I] p(z} — c + pi z + • • • is regular in U\ and satisfies 
the differential subordination

(4) p(z) + zp'(z)(r(z)} •< h(z),

then
P(«) -< A(*).
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Proof: Let us first suppose that all the functions under consideration are regular 
in the closed disc U. For that we shall first show that if p(z) is not subordinate to 
A(z), then there is a zo, zo € U, such that

(5) P^)+zop'(zo)(r(zo))^h(U)

which would contradict the hypothesis.
If p(z) is not subordinate to A(z), then, by Lemma A, we conclude that there are 

z0 € If, fo € trU, and m, m > 1, such that

(6) p(*o) + *op'(«o)r(zo) = A(fo) + (fo)r(zo)

Now Re{r(z)} > 0 in 17 implies |arg(r(z))| < jt/2, and io A'(io) is in the direction of 
the outer normal to the convex domain h(U), so that the right-hand member of (6) 
is a complex number outside A(C7), that is, (5) holds. Because this contradicts the 
hypothesis namely (4), we conclude that p(z) -< A(z), provided all functions under 
consideration are regular in tJ.

Ib remove this restriction, we need but replace p(z) by pp(z) = p(pz) and A(z) 
by Ap(z) = A(pz), 0 < p < 1. All the hypothesis of the theorem are satisfied, and 
we conclude that Pp(z) -< hp(z) for each, 0 < p < 1. By letting p —» 1“, we obtain 
p(z) «< A(z) in U.

Lemma 2.Let r be regular function in U with Re(r(z)} > 6 > 0 for z eU. Ifp 
it regular in U with p(0) = 1, 0 < 1 and

(7) Re p(z) + zp'(z)(r(z))} > 0,

then
Rep(z)>

20 + 6 
2 + 6 *

Proof. Let di = (2d + Î)/(2 + Î), tfr(«,e;z) « « + e(r(z)) and P(z) = 
ss (1 - di)“*(p(z) - d»)- Fbom (7) we obtain that Re(^(P(z),zP'(z);z)} > 
in U. The conclusion of the lemma follows from Lemma B if we can show that for 
each z € If, Re n;z) < -y when m < 2~*(1 + «?). But in this case we
have Re vi*,z) = [Re(r(z))]t>i < —This shows that Re P(z) > 0 and hence 
Re p(z) > di in U.

Remark. Let M and N be regular in If with Af (z) = zn + • • •, JV(z) = z" + • • • 
and d be real.

If AT(z) maps If onto a (possibly multi-sheeted) region which is stariike with 
respect to origin then, with A(z) convex in If and A(0) = 1, p(z) = Af(z)/JV(z), 
r(z) sb JV(z)/zM'(z) and from Lemma 1, we get

(»)

On the other hand, from Lemma 2 we obtain

1,1 R*{^w}>>’implie’Re{ÿ(Îy}>TÎTi#>
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whenever N(g) = x" + • • • satisfies

(>»l Re{^)}><' ,6t'

Here it is interesting to observe that if N(.z) = z/(l + z)2 (and hence N satisfies 
Re(zN'(z)/N(z)) > 0 in If) and Af is determined by M'(z)/N'(z) = (1 + (1 — 
20)x)/(l — z) then M(z)/N(z) = (1 — /?)(1 + x) + #. This shows that the bound in 
the relation (9) for 6 = 0 cannot be improved, there by establishing that the results 
of MacGregor [5] and Libera [4] are the best possible ones. Some applications 
of (9) are given in [11). The relation (8) generalizes a result of [12, Lemma 1] in a 
different method.

Theorem 1. Let f € H and ft < 1. If a, A be complex numbers with Re a > 0 
and |A| < then

(11) Re{(l+Ax)[(l + aAx)/'(x) + a(l + Ax)x/"(x)]} >3

impliu Re{(l + >«)/'(,)} >

Proof. Let p(z) = (1 + Xz)f'(z) and r(x) = a(l + Ax). Then 
(1 + Ax) [(1 + oAx)/'(x) + o(l + Ax)x/"(x)] = p(x) + r(x) xp'(*) and so by Lemma 2 
and (11) we obtain

Re{(l + Xz)f'(z)} > whenever 6 < Re(a + aAx).
2 + c

But 6 can be chosen as near Re a— |aA| as we please and so by allowing 6 —» Rea-|aA| 
from below, we establish our claim.

Theorem 2. Let f G H and 0 < 1. If a is real and A is such that ¡A| < 1, then

Proof. If we let p(x) = e-A*/'(x) and r(x) = 1/(1 + Ax) then (12) is equivalent 
23 4- <5io Re[p(x) +r(»)xp'(x)J > ft, and so by Lemma 2 we obtain Re{e~A,/'(x)} > —----—
2 4" ®

whenever 6 < 1/(1 + |A|). Now Theorem 2 follows by allowing 6 -* 1/(1 + |A|) from 
below.

If we take a real and positive, ft = 0 and set <

»»(*) = (1 + <»Ax)[(A + Ax)/(x) + (1 + Ax)x/"(x)]
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Re{wi(z)} > 0 implies Re{(l + Az)/(z)j > X, and 

Re{w3(z)} > 0 implies Re{e-A'/'(z)) > 1

then by letting a -* oo, the above theorems for |A| < 1 are seen to be equivalent to

(13)
(H)

where

w, (z) = (1 + Az)|Az/'(z) + (1 + Az)z/"(*)1 and 

•><«)=

The relations (13) and (14) cannot be true for functions respectively other than f(z) = 
= A-1 log(l + Az) and f(z) = (eA* - 1)/A.

In the following theorem we extend the results (13) and ( 14) as follows: 

Theorem 3. Let f € and 0 < 0. Then for |A| < 1

(15) Re] (1 + Az)[Az/'(z) + (1 + Az)z/"(«)l} > p,

implies Re{(l + Az)/'(z)} > • ™dfor\X\< 1,

(1«) Re{€-A‘(l + Az)“* [—Az/’(z) + »/"(*)] } > ?

implies Re{e-A7'(z)} > 1 + 20(1 + |A|), z € U.

Proof. Let 3, = [20+(l-|A|)]/(1-|A|) and p(z) = (l-dJ-^il+AzJHz)-^!, 
then p is regular in U, p(0) = 1 and (15) is equivalent to

Re[(l + Az)zp'(z)] > 0/(1 - 0,) £ -2“1 (1 - |A|).

For real «j,»i < -(1 + «’)/2 and all z € U, we have

Re(l + Az) < —1(1 — |A|).

Therefore by Lemma B with $(u,v;z) = (1 + A;)r and fl = {» £ C : Re w > 
-2-*(l-|A|)b we deduce Re p(z) > 0 in U. This completes the proof of part (a).

Part (b) follows on the similar lines.

Corollary 1. Let f € H and 8 < 0. Then for |A| < 1

(17) Re{(l+Ar)[-  ̂+ (l + A>)/'(x)]} >8

implies Re{(l + Az)’/'W} > ~ ~ H
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and/or |A| < 1,

(M) R.{.-A.[-/k) + Z!iL]}>(,

implies Re{e_A,(l + As)~* /'(s)| > 1 + 0(3 + 2|A|).

The proof of the above corollary easily follows from Theorem 3, replacing /*(*) 
by /(*)/*•

Remark 3. Since the functions (« = 1,2,3,4), defined by ji (s) = s/(l + As); 
SFi(s) = se**; ya(s) = s/(l + As)9; j<(s) = se**(l + As); are all starlike in U, 
(U) with ,(Rea,~laAl) < 0 < l, (12) with -o/2(l + |A|) < fi < 1, (15) with 

_!£z2!) < 3 < o, (16) -- .J— < g< o, (17) with s f< 0

“d (I8>witk -5W s 3 "=0 " -««• *» •
f € S to be dose to convex in 17.

Similary using Lemma 1 and considering a real, non-negative and choosing r(s) 
and A(s) appropriately, one may get many such results as stated in Theorem 1 and 2.

Using (2) and (3) we next prove the following.

Theorem 4. Let f £H, f 0 in 0 < |A| < 1.
(a) Let h be convex function in U with A (0) =s 1, p > 0 and a 0 with Re o £ 0. I] 
f satisfies .

(19) (1 - o)(^if + o/'(s)(^)'4-* -c A(s),

then
t

(20) -< 5 x“(',/o) / dt ■< *(«).

o

(b) Let be starlike in U with <£(0) = 0. If f satisfies

He» (££i)' < JW'S. 

0
These results are sharp.

Proof, (a) Consider p(s) = (^)*. Then p is regular in U, p(0) » 1, and a 
simple calculation yields

(i - +»r(*)(^)',"‘ = p(«)+
(21)
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FYom (19) and (21) we obtain p(x) + xp'(x) x h(z}. Hence by (2) we obtain the 
conclusion (20).

The proof of part (b) follows on the similar lines from (3). Hence the theorem.
z

Choosing h and <j> appropriately and taking p = 0 we obtain

Corollary 1. Let f € S.
(22) Re{/'(«)} > 3, 3 < 1 implies f(z) -< /3+(l- 3)[~1 - ; log(l - «));
(23) |/'(x) - 1| < 1 implies |££l - l| < |;

(24) f'(z) •< eA*, |A| < 1 implies ■<  ------
2 z

(25) */"(*) ■* ze** implies f'(z) -lx -—for k real 0 < k < 1/2;

(26) zf"(z) X implies f'(z) X —

(27) zf"(z) x z implies f'{z) — 1 x x;
(28) zf"(z) x ----- + 1))* implies f'(z) — 1 x (fc+ l)-,[fcx - log(l - x)J, for

all k:\k- 1/8| < 3/8.
»

Since the function £ defined by ¿(x) = —1 — J log(l — x) is convex (univalent) 
in U, the coefficients are all positive, ((U) c f) = (w 6 C : |arg w| < x/3} and 
Re ¿(x) > 2 In 2 - 1 in U, we obtain the following interesting result from (22)

Re /'(x) > 0 implies gn1=(w:Rew> 21n2- 1)0(1 

and Re f'(z) > - 2) ’“'PÜ*8 } > 0 in £7.

Corollary 2. Let f € J?(n.3). « M a positive integer, and 3 < 1. Then

(^)" x nx-" J [(1 + (1 - 2.)t)/(l - 1)] t"-1 dt 

0

The result is sharp.

Proof. Take a = 1 and h(z) = (1 + (1 — 23)*)/(l — *) in Theorem 4. 
According to a result obtained in [11, Corollary 3], we deduce

Re[»x“" j [(1 + (1 - 23)0/0 - <)] t"“1 A] > >n U

0

and so Corollary 2 improves the result of [11 and 14, Lemma 1].
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Corollary 3. Let J € H. Then for n a positive integer, we have 

Re{(l - «)[£&)" + n/'(«)(^)n"*} > 0

implies (^)" -< d + (1 — £)(— 1— | log(l —x)] and/or a 0, Re a > 0 and A / 0,

complex, we have
(l-a)  ̂+ «f(xB 1+Ax 

implies < 1 + z.

Proof. Proof of the first part follows from Theorem 4 by taking h(z) = 
= (1 + (l — 2/?)x)/(l — x) and considering p = a = n and proof of the second 
part follows by taking A(x) = 1 + Az and p = 1.

Let {/, x} denote the Schwarzian derivative

zrw.i/rw fes

The following theorem relates the Schwarzian derivative of f to the starlikeness and 
convexity (and univalency) of /, can be proved in a manner similar to that of Theorem
4. It is illustrated as follows:

Theorem 5. Let / € H. Then for a / 0 with Re a > 0,

(a) (i + o)iZ^l+o?[iyZ,,}+|(£^)

implies j" -< k x“1/® J dt and

/"(«)’(b)
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implies 1 + -jïfaj ' a *~X^a i h(t}tlfa~l dt, where h is convex in U with A(0) = 1;

(c) «Th)
/(-’)

¡„pSe.iûil-lxîÎÜlj,,  ̂
fM J •0

x)

zfrt(z\ *
implies ~ ■< f dt where <f> M starlike in U. 

/'(«) o

Remark 4. With appropriate choices of h and <j>, respectively as convex and 
starlike in the above theorem, one can obtain sufficient conditions for different sub­
classes of convex and stariike functions.

Using the result of Mocanu [7, Theorem 2] and Lemma 1 we improve and 
generalize the results of [9, Theorem 1], etc.

Theorem C. Let f S H and h be a convex function with A(0) = 1. Let p be 
a real number with p > 0 and c be a complex number with Re(/< + e) > 0 and g € S 
satisfies the property that

(29) ^>+c

Then for F(z)/z ykO inU, we have

(30) . •< A(r) g^zjf^^z)
■ , *F'(s)
,tnpl,e‘ g^Wf'^V) -< h(z), where

(31)

(32)

F(i)= [/“W' *]l/'*9

' and Qf,4.c(<) w the function that maps U conformally onto the complex plane slit 
along the half-lines Re w = 0,

|Im w| > [Re(/i + e)]-1| |;< + c|(l + 2 Re(/i + e)),/l - Im <].

Proof. FYom the result of Mocan u [7, Theorem 2], (29) implies that <?(<) is 
analytic, G(z)/z / 0 in U and Ref/i + e] > 0 in if. Now if we let

P(*)
»r(»> and r(r) = l/[/» «<?(»)

G(r) + e],
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from (31) and (32) we easily obtain

and so (30) is equivalent to

p(,) + r(:):p'(»)^(:).

Now the conclusion of the theorem follows from Lemma 1.
Thking p = 1, h(z) = [l + (1 - 2/?b]/( 1 — «) (0 < 1), and replacing y(z) by

zg'(z) in the above theorem we obtain

Corollary .Let / 6 H and e be a complex number with Re(c+1) > 0 and g € H 
satisfies the property

Then we have

+ l] - Re(e)

This improves and generalizes the result of Libera [4, Theorem] and others. 
Next, given F, the function f satisfying (31) is written such that

(33) f(z) = F(z) {(c + „F* (z)/F(z)/(c + „} l/\

When /i tends to zero, the subordination relation (30) becomes (zf'(z)/f(z) •< h(z], 
and at the same time the relation (33) reduced to

(34) f(z) = F(z)exp{<-‘(zF'(z)/F(x) - 1)}.

for e / 0. It follows from (34) that

(35) F(z) = /(z)exp{-zey f(/*(0//(0 - r1) dt}

for Re e > 0 and e 0.

and using (34) we get

o

and so by (2) we obtain

/(*) F(*)

«
~e J h(t)te-ldt(3«)

o
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where / 6 H and A is convex function in U with A(0) = 1 and the result is the best 
possible. Fbom (36) we see that we can improve and generalize the result of Yoshi- 
kawa and Yoshikai [16, Theorem4] and the author [10, Theorems] to

(37) ' -<e,AA(z)

implies e‘A -—7^ ■< e*xe*~* / A(i)te_1 dl by choosing 
F (z) 0

(38) *(») =
1 - e~**(2/>cosA - e~>A)z

1 —z

With the above A defined (38), we deduce that (37) is equivalent to saying / € Sx(p). 
In particular for c = 1,

(39) f € SA(p) implies < eiX[fi + (I - - *log(l - «)]

where 3 = [1 + e_,A(2peosA — e-,A)]/2. Thus for p = 0, (39) gives

f e SA(0) implies <>A“* »sin A + eosA(-l — |log(l — x))
* V*J

and so F € SA (2 In 2 — 1).

Theorem 7. Let p be a real number with p > 0 and e be a complex number with 
Re(p + e) > 0. Suppose that f € H and A be a convex function in U with A(0) = 1. 
Then for F(*)/s £ 0 in U, we have

(40) -< A(z) implies F^)
//(«)u-> 
' * '

wAers F is defined by (23). The result is the best possible.

Proof. If we set p(z) = f”(r) • then p is regular in U, p(0) = I and

Z*(x) = p(*) + (#• + <)~lsp’(s)) * € U. Now the conclusion follows from
(2). Hence the theorem

Remark 5. According to an earlier result [11, Theorem 2] it can easily seen that 
foeA(s)-|l + (l-2/0-)]/(l-«),

Re [&r / <'*-»»«] 2fi(p + e) + 1 
2(p + e) + 1 z€(f.I
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Fbr h(x) ss 1 + As, A 0 the relation (40) leads to

P + c
M + e+l
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STRESZCZENIE

Autor używa pojada różniczkowego podporządkowania aby otrzymaó nowa warunki doetaieczn» 
na to, by funkcja znormalizowana regularna w kola jadnoatkowym U — {* : |»| < 1} była prawie 

wypukła (jednolirtna) w U. Pewno otrzymane tu wyniki uogólniaj* i poprawiaj* wyniki otrzymana 
wcaaóniej.
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