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On Bazilevic Functions

O funkcjach Bazilevica

Abstract.The author uses the notation of Differential Subordinations to obtain sume new
sufficient conditions for a normalized regular function, in the unit disc U = {z : lz[ < l} to be
dose to convex (univalent) in U. Further sume of our results generalize and improve the results
obtained in different directions by author and others.

1. Introduction. Let f and g be regular in the unit disc U = {z : |z| < 1}.
We say that f is subondinate to g, written f < g or f(z) < g(z), if there exists a
function w regular in U which satisfies w(0) = 0, |w(z)| < 1 and f(z) = g(w(z)). If ¢
is univalent in U then f < ¢ if and only if f(0) = ¢(0) and f(U) C ¢(U).

We use H to represent the class of all (normalized ) functions f(z) := z+aqz3 +- -+
regular in U. Suppose that the function f is regular in U. The function f, with
J'(0) # 0 is convex (univalent) in U if and only if Re{l + z/"(z)/f'(2)] > 0, z € U.
The function f, f'(0) # 0 and f(0) = 0, is starlike (univalent) in U if and only if
Re{zf'(z)/f(2)] > 0, z € U. The function f is close to convex (univalent) in U if
and only if there is a starlike function g such that Re{=f’(z)/g(z)] > 0, z € U. The
function f is A-spirarlike of order p in U if and only if Re[e**zf'(2)/f(z)] > pcos A,
z € U for some real A such that |A| < x/2 and p < 1. We denote the class of such
functions by S*(p). If 0 € p <, then S*(p) is the well-known subclass of the class of
univalent {functions.

A function f € H is said to be in the class M (u;A) if and only if

(1) ()7 =) (2) <h(z), €U

for some p (4 > 0), where g € H and A convex in U with A(0) = 1.

Furthermore we define B(p,3) to be the class of functions in M (p;h) for which
A(z) = (1+ (1 = 23)1)/(1 - z) and g starlike in U. The class B(u,8) for0 £ 8 < 1
is the subclass of Bazlevic functions of type p [1,9,14).

All of the inequalities involving functions of 2, such as (1), hold uniformly in U.
So the condition "for all z in U™ will be omitted in the remainder of the paper since
it is understood to hald.
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The aim of this paper is to give some suffident conditions for a function f € H
to be close to convex in U and to improve and generalize some of the well-known
results concerning Bazilevic functions etc.

2. Preliminaries. For the proof of our results we need the following Lemmas
Lemma A.Let p be regular in U and g be regular in U with p(0) = ¢(0). Ifp is

not subordinate to g then there exnist points 2o € U and ¢o € oU, and anm 2 1 for
whieh p(|z| < |20]) € ¢(U),

(») p(20) = ¢(50) |
and
(b) 209 (20) = ¢0q' (50)

Lenmma B. Let (1 de a set in the complex plane C. Suppose that the function ¢ :
C? x U — C satisfies the condition ¢(ius,vy;z) € 0, for all real u3,v; < 27'(1+u)
andallzeU.

If p is regular in U, with p(0) = 1 and ¥(p(z), zp'(z);3) € N, when z € U, then
Rep(z) >0inU.

More general form of the above lemma may be found in [6].

In the case when ¢(s,v;2z) = 0 + 09! (7 # 0, Re ¥ 2 0), it [3,6] is known that
if p is regular in U, A is convex in U and A(0) = p(0) then the best subordination
relation

(2) p(2) +2p'(2)7™" < h(z) implies p(z) < g(z) < h(2),

halds, where ¢(z) = yz~7 } A(t)t?~! dt. Further in {15), for ¥(w,0;z) = v, it is shown
that if p is regular in U, ao.ndéissta.ﬂ.ikeinU then

(8) zp’(2) < ¢(z) implies p(z) < q1(z) < ¢(2),

is true, where ¢;(z) E}&{l)l“" dt.
0

3. Main results.

Lemma 1. Lte h be convez function in U, with h(0) = ¢ and let r(z) be regular
Junction in U with Re(r(s)} > 0. Ifp(s) =c+p1s+--: is regular in U, and satisfies
the differential subordination

0 p(z) + zp'(2)(r(2)) < h(s),

then
p(2) < h(z).
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Proof: Let us first suppose that all the functions under consideration are regular
in the closed disc U. For that we shall first show that if p(z) is not subordinate to
A(3), then there is a 20, 20 € U, such that

©®) p(z0) + 209 (20)(r(20)) ¢ MU)

which would contradict the hypothesis.

If p(3) is not subordinate to A(z), then, by Lemma A, we conclude that there are
20 €U, ¢o € oU, and m, m 2 1, such that

(e) P(30) + 20p'(20)r(20) = A(50) + mgoh’(s0)r(20)

Now Re{r(z)} > 0 in U implies |arg(r(z))| < x/2, and ¢h’(so) is in the direction of
the outer normal to the convex domain A(U), o that the right-hand member of (6)
is & complex number outside A(U), that is, (5) holds. Because this contradicts the
hypothesis namely (4), we conclude that p(z) < A(z), provided all functions under
consideration are regular in

To remove this restriction, we need but replace p(z) by p,(z) = p(pz) and k(z)
by A,(z) = h(pz), 0 < p < 1. All the hypothesis of the theorem are satisfied, and
we conclude that p,(s) < h,(z) for each, 0 < p < 1. By letting p — 1=, we obtain
p(3) <A(s)in U.

Lermuma 2.Let r de regular function in U with Re{r(z)} >6§>0forzelU. Ifp
is regular inU withp(0) =1, 8 <1 and

(M Re p(z) + 9'(2)(r(2))} > 8,
then
e f ++ 66

Proof. Let 8, = (28 + §)/(2 + §), ¥(s%,vi2) = w + o(r(z)) and P(z) =
= (1 - £1)~(p(s) — B1). From (7) we obtain that Re{¢(P(s),sP'(z);2)} > ~§
in U. The conclusion of the lemnn follows fmm Lemma B if we can show that for
each : € U, Re ¢(usi,01;2) € —§ when o3 € 27'(1 + u}). Bat in this case we
have Re ¢(w3i,v,32) = |[Re(r(z))]oy, S —§. This shows that Re P(s) > 0 and hence
Re p(z) > B, in U.

Remark. Let M and N be regular in U with M(s) =3"+---, N(z) ="+
and 8 be real.

If N(s) maps U onto a (possibly multi-sheeted) region which is starlike with
respect to origin then, with A(s) convex in U and A(0) = 1, p(s) = M(z)/N(s),
r(s) = N(z)/sN'(s) and from Lemma 1, we get

(8) ’;,((',’ A(z) implies ‘:((:; <A(z).
On the other hand, from Lemma 2 we obtain
M'(x) [ 2ip M)y 2846
@ R"'{N'(:)}""m""““’{u(.)} 246 2P
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whenever N (z) = 2" + . - - satisfies

N(z
(10) Re{;l-é-(-:-)-}>6. €U (0<68<d)

Here it is interesting to observe that if N(z) = z/(1+ z)? (and hence N satisfies
Re(zN'(z)/N(z)) > 0 in U) and M is determined by M'(z)/N'(z) = (1 + (1 -
2B)z)/(1 = z) then M(z)/N(z) = (1 = B)(1 + z) + B. This shows that the bound in
the relation (9) for é = 0 cannot be improved, there by establishing that the results
of MacGregor [5] and Libera [4] are the best possible ones. Some applications
of (9) are given in [11]. The relation (8) generalizes a result of {12, Lemma 1]} in a
different method.

Theorem 1. Let f € H andf < 1. Ifa,\ be complez numbers with Rea > 0
and [A| £ H5E, then

(1) Re{(1+A5)[(1 + a22)f'(2) + a(1 + 22):1" ()] } > B
implies Re{(l + Az)f'(z)} > ?—:'—Rt"?‘lg’;i['

Proof. Let p(z) = (1+ Az)f'(z) and r(z) = «(1 + Az). Then
(14 A2)[(1+ arz)f'(z) + a(1 + Az)zf"(2)] = p(z) + r(z) zp'(z) and s0 by Lemnma 2
and (11) we obtain

Re{(1+ Az)f'(z)} > 2::; whenever § < Re(a + aAz).

But § can be chosen as near Re a—|aA| as we please and so by allowing§ — Re a—|al|
from below, we establish our claim.

Theorem 2. Let f € H and B < 1. If a is real and A is such that |A| S 1, then

(12) Re{e*[(1 = 2o )M () + o 1))} > 8
implies Re{c"“f'(s)} > 2’:((11—:_::\\]”;*—:.

Proof. If welet p(z) = e~**f'(z) and r(z) = 1/(1 + Az) then (12) is equivalent
1o Re{p(3) + 7(3)2p'(s)] > B, and eo by Lemma 2 we obtain Re{¢~**f'(s)} > ¥

whenever § < 1/(1 + |A|). Now Theorem 2 follows by allowing § — 1/A(1 + |A]) from
below.
H we take o real and positive, 8 = 0 and set

o1(2) = (14 aAs)[(L + X2) /() + (1 + Az)zf"(2)]

=Xz "

nix)me 1+ Az
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then by letting o — oo, the above theorems for |A| £ 1 are seen to be equivalent to

(13) Re{w,;(z)} > 0 implies Re{(1+ Az)f'(z)} 2 1, and
(14) Re{wy(z)} > 0 implies Re{e™**f'(z)} 2 1
where

01(2) = (14+ An)[Azf'(z) + s

wa(z) = e~ [— /\le‘(\? i +.\z f"(z)]

The relations (13) and (14) cannot be true for functions respectively other than f(z) =
= A" log(1 + Az) and f(3) = (¢** — 1)/A.
In the following theorem we extend the results (13) and (14) as follows:

Theoremn 8. Let f€H and B <0. Then for|A| < 1

(13) Re{ (1 + M) af'(2) + (14 A2)af"(2)]} > 8,
implies Re{(l+ Az)!’(z)} > m_—lmu ,ond forA\| £ 1,
(16) Re{e™*(14+2e) ™ [-A:£' () + 2/ ()] } > B

implies Re{c"“f'(z)} >1+28(1+|A]), z€U.

Proof. Let 8, = [28+(1-[A])}/(1=]A]) and p(z) = (1= 81) ' [(1+A2) /*(2) =B},
then p is regular in U, p(0) =1 and (15) is equivalent to

Re[(1+A2)zp'(2)] > B/(1 = B1) = =271 (1 = ]A)).
For real #3,v; € —(1+ ©3)/2 and all z € U, we have
v; Re(1+4+2z2) £ —%(l —|AD.
Therefore by Lemma B with ¢(u,v;2) = (1+Az)rand 0 = {w € C: Re w >
—2-(1—|A])}, we deduce Re p(z) > 0 in U. This completes the proof of part (a).
Part (b) follows on the similar lines.

Corollary 1. Let f € H and 8 < 0. Then for |A| < 1
(17) Re{(1+a0[-L2 + 0+ 20)11] ) >

B(3 - A) + 1= Al
-\

implies Re{(1+ A2)*f"(s)} >
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and for [A| £ 1,

(18) Re{e™> [—-’-i—'-’- + I["-F(% }>8

implies Re{c""(l +a2)711(5) } > 14+ B(3 +2A].

The proof of the above corollary easily follows from Theorem 3, replacing f'(s)
by f(2)/s.

Remark 3. Since the functions g; (i = 1,2,8,4), defined by g,(z) = 3/(1 + A3);
9:(2) = 2¢*; ga(2) = 3/(1 + A2)?; ge(z) = zE**(1 + Az); are all starlike in U,
(11) with - Reyr= 1a80) < B < 1, (12) with —a/2(1 + |A]) € 8 < 1, (15) with

1 1-

<0
TP S=ht 5
and (18) with - 3 +2|4\| =———— < 8 < 0 are respectively necessary conditions for a function

f € H to be close to convex in U.
Similary using Lemma 1 and considering o real, non-negative and chocsing r(s)
and A(z) appropriately, one may get many such results as stated in Theorem 1 and 2,
Using (2) and (3) we next prove the following.

_(LT'Ili\ﬂsp<o(1s)wjt];- < 8 <0, (17) with -

Theorem 4. Let f€H, f#0in0<|A|< 1.
(2) Let b be conver function inU withh(0) =1, 4> 0 anda#0 withRea 2 0. [
f satisfies .

(19) - a(L2y 4 ar L)t <aa),
then
(20) (@)" « s s=(wle) / A(e)e /o)=Y 4y < A(s),

(b) Let ¢ be starlike in U with $(0) =0. If f satisfies

ey - Ly <y,

then (!%)-)" < p"'/é(t)t"dt.
These results are aha‘;'p.

Proof. (a) Consider p(z) = (£2)". Then p is regular in U, p(0) = 1, and a
simple calculation yields

(21) (1= E2y 4 o) Ly~ = pia) + £ ape)
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From (19) and (21) we obtain p(z) + 2 zp’(z) < A(z). Hence by (2) we obtain the
condclusion (20).
The proof of part (b) follows on the similar lines from (3). Hence the theorem.

Choosing h and ¢ appropnately and taking g = 0 we obtain

Corollary 1. Let f€ H.
(22) Re{['(z)} > B, B< 1 implies f(z) < B+ (1-B)[-1- 12 log(1 - z));

(23) If'(z) = 1| < 1 implies |f_(zﬂ- 1< k

(24) f'(2) < e**, |A| €1 implies ﬂ:—} < i.:—l;
(25) z2f"(2) < zc“' implica f'(z)-1< c'"k— - Jork real0 < k < 1/2;
(26) zf"(2) < —— }1 implies f'(z) < it:,

(27) 2f"(2) < 2 lmplm J'(z)-1<z;
(28) zf"(z) < = (k/(f-: 1) implies f'(z) =1 < (k+ 1)~'[kz - log(1 — z)}, for
allk:|k—1/8] <3/8.

Since the function § defined by £(z) = -1 — 3- log(l —z) is convex (univalent)
in U, the coefficients are all positive, £(U) € @ = {w € C : |arg w| < x/3} and
Re £(z) > 2In2 — 1 in U, we obtain the following interesting result from (22)

Ref(z)>01mphes‘“ €N ={w:Rew>2ln2-1}N0

(2ln2-1) }

f{‘]
-7 mplies Re{=—} > 0in U.

and Re f'(z) > -

Corollary 2. Let f € B(n.B), n is a positive integer. and 8 < 1. Then

(/(z))" < nz"‘][(l +(1-20))/(1 - )] ¢ dt

2

The result is sharp.

Proof. Take a =1 and h(z) = (1 + (1 — 23)z)/(1 = 2) in Theorem 4.
According to a result obtained in (11, Corollary 3], we deduce

Rens= [0+ (- 200/ - 0] = &) > E2tD in g

and so Corollary 2 imnproves the result of {11 and 14, Lemma 1].
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Corollary 3. Let f € H. Then for n a positive integer, we have
Re{(l - n)[%l)" + nf'(:)(Li—z-)-)"-|} >p

implies (M)" < B+ (1-8)[-1-2 log(1-z)] and fora #0, Rea 2 0 and A # 0,
complez, wze have
(1- a)](z,+af'(z)<l+Az

implies == f( - 1+ (347) =

Proof. Proof of the first part follows from Theorem 4 by taking h(z) =
= (14 (1 —28)z)/(1 — z) and considering p = o = n and proof of the second
part follows by taking A(z) =1+ Az and p = 1. :

Let {f, z} denote the Schwarzian derivative

(£"(2) 1f"(2)\?
(Fa) -4 (Fa) 12
The following theorem relates the Schwarzian derivative of f to the starlikeness and

convexity (and univelency) of f, can be proved in a manner similar to that of Theorem
4. It is illustrated as follows:

Theorem S. Let fEH. Then fora#0 withRea 2 0,

+(s) O
() (x+),()+z[{/f, +H (5] <p
q . f( )_< ¢=Ve 1/a=1 e
mplies ) i flu((]t dt and
=f"(z) 1"(2)
(b) 1+ (1+0) s +as i+ 4( o ))]<s(.)
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implies 1+ ;, ((’)] Ve ofh(t)t'/""' dt, where h is convez inlJ with h(0) = 1;
0 P {f e s (F) ] <00

implies ﬁ(;) 1< j 4’( ) &t and

(d) ‘}:(’)’ +2{1:}+ }{f(“;} | <¢t)

implies f’;l )) j $9 4t where ¢ is starlike inU.

Remark 4. With appropriate choices of A and ¢, respectively as convex and
starlike in the above theorem, one can obtain suffident conditions for different sub-
classes of convex and starike functions.

Using the result of Mocanu (7, Theorem 2] and Lemma 1 we improve and
generalize the results of [9, Theorem 1], etc.

Theorem 6. Let f € H and h be a convez function with h(0) = 1. Let p be
a real number with p > 0 and ¢ be a comnplez number with Re(p+¢) >0 andge H
satisfies the property that

(29) - "1 ()’) + ¢ < Quiel2).

Then for F(z)[z #0 i;z U, we have
2f'(2)

(30) PR h(z)
implies a(i—f;%rm < h(z), where
(1) F(z)= [“—:;—' /o' Jid (3t dz]'/",
(32) Clz) = [":;‘ j 7 (e di] e
o

and Q. 4c(3) 15 the function that maps U conformally onto the complez plane slit
along the half-lines Re w = 0,

{Im w| > [Re(p + )]~ | + ¢l(1 + 2 Re(u + ¢))'/2 = I'm ¢].

Proof. From the result of Mocanu (7, Theorem 2], (29) implies that G(¢) is
analytic, G(z)/z # 0 in U and Hae[pigﬁl + c] > 0 in U. Now if we let

:F'(z2)

» 8(1 (3
p(s) = G"[:}F"’{Z]

and r(z) = 1/[p 0

+ ¢,
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from (31) and (32) we easily obtain

2f'(z)

p(z) +r(2)2p'(2) = PTRYEIE)

and so (30) is equivalent to
p(2) + r(2)=p(2) < h(2).
Now the conclusion of the theorem follows from Lemma 1.

Taking p = 1, h(z) = [1 + (1 = 28)z]/(1 = z) (B < 1), and replacing g(s) by
2g'(z) in the above theorem we obtain

Corollary .Let f € H and ¢ be a complex number with Re(¢+1) >0and g€ H
satisfies the property
z9"(z)

g'(z)

Re [ +1] - Re(e)

Then we have

Reg,(z)>ﬂ1mphesReG,(z)>B.

This improves and generalizes the result of Libera [4, Theorem] and others.
Next, given F, the function f satisfying (31) is written such that

(%) £(2) = F(2){(c + pzF'(2)/F(2)/(c + n} .

When p tends to zero, the subordination relation (30) becomes (zf'(z)/f(z) < A(z), .
and at the same time the relation (33) reduced to

(34) J(z) = F(z) exp{e='(zF'(z)/F(2) - 1)}.
for ¢ # 0. It follows from (34) that

(39) F) = ) emp{==* [ £ 0)/10) - ot}
forRecZOa.ndc#O
With p(z) = (i)) and using (34) we get

1f'(z) zp'(z) (3)

i el
and so by (2) we obtain

2f'(a) A e

(36) 710 < h(z) implies ———— 3P ) /h(l)t 'dt
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where f € H and A is convex function in U with A(0) = 1 and the result is the best
possible. From (36) we see that we can improve and generalize the result of Yoshi-
kawa and Yoshikai [16, Theorem 4] and the author {10, Theorem 8] to

(37) R 2 ‘J{ ((;’ < e h(z)

implies " sFs) <etes~e f A(t)tc=! dt by choosing
F(z) 0

(38) As) = 1-¢"2(2pcos ) — ™)z

1-2

With the above h defined (38), we deduce that (37) is equivalent to saying f € S*(p).
In particular for ¢ = 1,

@) e 5Mp) implies A <154 (1 B)(-1 = Hog(1 - 1)

where 8 = [1 4+ e™**(2pcos A — e*2)]/2. Thus for p =0, (39) gives

/ € $*(0) implies ¢’ ﬂ-)-<|su|A+cou\( -1-1]0g(1-1))

Flz)
and so F € S*(2In2-1).

Theorem 7. Let g be a real number with p > 0 and ¢ be a complex number with
Re(p + ¢) > 0. Suppose that f € H and A be a convez function in U with A(0) = 1.
Then for F(3)/3 #0 inU, we have

[(x) Fis) _B+e [ uten
(40) Zl) i < b(z) implies EE)—.-—; z’+' /l’ L(l)‘l

2y z

where F is defined by (23). The result is the best possible.

F{:))P"

Proof. IIwesetp(x)=F'(z)(—-‘— , then p is regular in U, p(0) = 1 and

1'(s) (L‘.’l)'-l = p(s) + (g +¢)"'2p'(s), 3 € U. Now the condlusion follows from
(2). Hence the theorem.

Remeark 8. Acoording to an earlier result {11, Theorem 2] it can easily seen that
for A(s) = 1+ (1~ 28)s))/(1 - 3),

]

pte i 28(p+c) +1

i [:m/‘” '“(‘)“]W | Ael
L]
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For A(3) = 1 + Az, A # 0 the relation (40) leads to

f'(z)(ﬁ:ﬂ)’-‘ < 1+ Az implies r'(z)(f-iﬂ)"" <1+ (“—:—3_-1) As.
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STRESZCZENIE

Autor usywa pojeda rééniczkowego podporsadkowania aby otrsyraé nowe warunki dostatecane
na to, by funkcja snormalisowana regularma w kale jednostkowym U = {8: ISI < l}byhpttwio
wypukda (jedndlistna) w U. Pewne otrsymane tu wyniki uogélniajy i poprawiajy wyniki otrsymane
weasinie).
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