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Some Remarks Concerning the Cauchy Operator
on AD - regular Curves

Pewne uwagi dotyczgce operatora Cauchy’ego
na AD-regulamych krzywych

Abstract. In this paper we prove some results concerning the Cauchy operator Cr acting on
LP(T') where I is regular in tho sense of Ahlfors-David (i.e. AD-regular). In particular we show
that CF is an involution, i.e. Cr = CF‘ forany p > 1.

Moreover, we give a precse value of ||0r|| in the L¥-case and show that IICr" =1if and
only if I' is a drde.

1. AD-regularity and complementary Hardy speces. Let us suppose
that D is a bounded domain whose boundary is a rectifiable carve I' and let L?(T"),
1 € p < 400, denote the class of complex—valued functions A on I' such that
J Ip(2)] |dz] < +00. A function f holomorphic in D is said to belong to the class
r

EP(D), 1 € p < +00, if there exists a sequence (Jp) of rectifiable Jordan curves Cp in
D approaching T as n — +o00 such that for some M > 0 we have f I£(2)IP|dz] < M

for all n € N. This condition does not depend on a special choice of (0,.), d. [3]. Any

function f € E?(D) has non-tangential limits ae. (w.r.t. the arc-length measure)

on I and the limiting function may be also denoted by f. Then [ |f(z)|P|ds| < +o0
r

and f does not vanish on subeets of I' of positive measure unless f(z) = 0.

Conversely, any function f € EP(D), p 2 1, can be recovered from its boundary
values on I' by means of the Canchy integral :

(1.1) 16y =@e) [ 1) -5, se€D.
r

For 1 € O\ D the integral on the right vanishes identically.
If Dy, Dy 3 co are the components of C\T' then for any h € LP(T), p 2 1, the
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Cauchy-type integral

(1.2) (2::)-'/:.(;)(; _at, 44T,
r

generates two functions f,g holomorphic in Dy and D, resp.

The classical problem to characterize rectifiable curves I' and the exponents p so
that any A € LP(I') would generate via the Cauchy-type integral (1.2) two holomor-
phic functions f € £P(D,), ¢ € EP(D3) with h — f, h — g being bounded linear
operators on L?(T'), has found its final solution in the paper of Guy David [2].

A mare detailed presentation of this important problem, its background and
consequences may be found in the excellent survey article [4].

Since the existence of non—tangential limits of the integral (1.2) at 2 € T' is
equivalent to the existence of the Cauchy principal value C A(z), where

(13) C h{z) = Crh(z) = % PYV. / hc)s-3)"ds, s€T,
r

we may ask an equivalent question : When is the Cauchy operator (1.3) A + CrA a
bounded linear operator on LP.? To this end we need

Deflnition 1.1. A locally rectifiable (not necessarily Jordan) curve I is said to
be regular in the sense of Ahlfors—David, or AD-regular (cf. [1], [2]), if there exists
a constant M > 0 such that for any disk D(a,r) with radius r and centre a the arc
length measure of D(a,r) NT is at most Mr.

The definition of Ahlfors (cf. (1, pp.159-160) is more general than that of David
and applies to curves on Riemann surfaces, with the constant M depending on the
neighbounrhood containing the disk. Since the curves in {1] were investigated in a quite
different setting, we prefer to attribute this concept of regularity to both authors. The
AD-regularity shows to be invariant under Moebius transformations, cf. 5, p.70)].

Aocording to David [2] the Cauchy operator Cr is bounded on LP(T'),
1 < p < +00, for a locally rectifiable (not necessarily Jordan) curve I' if and only if I'
is AD-regular.

I{fT is an AD-regular Jordan curve in the finite plane O, then its complementary
domains D;,D; D oo are of Smirnov type [2]. This means that for any f € E?(D,),
1 € p < 400, there exists a sequence (P,) of palynomials such that

1) = Pu@)Plis =0 a8 m = too.
r

¥

Moreover, if 0 € Dy, then for any g € EP(D,), g(c0) = 0 and p > 1 there exists a
sequence (@n) of polynomials with vanishing constant terms such that

[
./Ig(‘)- Qn(s7")Plds| =0 as n— +oo.
r
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In this case the classes EP(Dy), k = 1,2; p > 1, are obvious analogues of Hardy
classes HP in the unit disk D and therefore we adopt the notation

(14)  H?(D,):=E®(D,) , HP(D)):={g€ E’(D;) : G(oo) =0},

where Dy 3 0, D3 3 oo are complementary domains of an AD-regular Jordan curveT',
Then HP(D;) are said to be complementary Hardy spaces of I'. Since the non-
tangential limiting values on I of f € H?(D,) and g € H?(D;) uniquely determine
the functions f,g via the Cauchy integral (1.1) (for g the orientation of I' has to be
changed) we may consider complementary Hardy spaces of I' as subspaces of LP(I').
As painted out by David [2], for any 1 < p < +0o and any A € L?(T') the
unique decomposition A = f — g with f € H?(D,), g € H?(D,) holds so that

(1.5) L*(T') = B*(D,)UH?(D,) , HP(D,)nH?(D;) = {0}.
Thus L?(I') may be considered as a topological and a direct sum of complementary

Hardy spaces of I'. The unique David decompasition (1.5) of A € Lp(TI') is performed
by the Plemelj formmlas

(1. 16)=3 ) +C ), g(e) = 3 [-h(s) + O h(e)
a.e. on I so that

(1) Mo)=1()-0(); fe€H"D,), g€ H?(Ds),
(1.8) C h(s) = f(¢) +als) -

As an immediate consequence of (1.7), (1.8) and the uniqueness of the decompcsition
(1.7) we obtain

Theorem 1.2. IfI' is an AD-regular Jordan curve then the Cauchy operator
(1.3) is an involution on LP(T') for any p > 1, i.c.

(1.9) o*=1 , orC'=0,

where I stands for the identsty operator.

Proof. If h = f € H?(D,) then g = 0 by the uniqueness statement and (1.8)
implies Of = f. Similarly, h = —g € B?(D;) impliea Og = —g. Using this we obtain
from (1.8) : COA=Cf + Cg=f — g = A and this is equivalent to (1.9).

Corollary 1.3. C(L*(T")) = L*(T).

Corollary 1.4. The numbers A = F1 are the only eigenvalues of the operator C.
The functions f € H?(D,), g € H?(D;) are eigenfunetions corresponding to A = 1
and A = -1, resp.

In fact, if A = ACh for some A € O and h € L?(T'), A # 0, then by (1.9)
Ok = AA, i.e. A =AM and hence A = F1. If A = 1 then (1.7) and (1.8) imply g = 0
and A = f € H?(D,). Similarly A = —1 means A = ~Oh and consequently A = —g.
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Corollary 1.5. The resolvent Ry = (I — AC)™! has the form

Ry=(1=-2)""T401=-2""C, A#F1.

2. Complementary Hardy spaces H?(Di) of I' H p = 2 then L’(l")
becomes a Hilbert space with the inner product < z,y >= l/ll‘lfz(z)y(z) |ds]|. We

may assume without loss in generality that the length of T' sa.f.mﬁm IF| = 1 and
0 € D,. The Plemelj formulas (1.6) determine oblique projections of L?(T') onto its
subspaces H2(Dy), k = 1,2, and also the angle a € (0;x/2] between these subspaces,
as given by the formula

(21)  cosa=sup{Re < z,9> /||| - ||y|| : = € H*(D,), vy € H*(D,)} .
With this definition we have

Theorem 2.1. IfT is an AD-regular Jordan curve in the finite plane then the
norm ||C|| = ||Cr|| of the Cauchy operator (1.3) acting on L?(T') satisfies

(2.2) IC| = cot }o .

The smallest value ||C|| = 1 corresponds to the case of the orthogonal decomposition
(1.5) of L3(T') which takes place if and only if T is a circle.

Proof. Let h € L*(T") have the decomposition (1.7). Due to (1.7) and (1.8) we
have

ICIl = sap{lICAIP/II]P : h € L*T)\ {0}} =
=sup{lf +9l*/Ilf —ol*: f =g # 0} =
38 2Re< f,0> _2Re<f,g>n
= sup{[1+ 717 + ol I ISP +1el? 15

Now, sup2 Re < £,g > (IfI + lg|’)™* = supRe < f,9 > (Ifll lgl)=" = cosar
and this implies ||C|| = [(1 + cosa)/(1 = cosa)]'/? = cot }a. Thus ||C|| = 1 if and
only if @ = /2. H T is the unit circle T, then any h € L?(T) has the decomposition
h) = £6)-0(6), where £(5) = & ans” 0le) = £ pus= =, £ Janl? < 4oo

and § [Bal? < +oo. Hence IlChll’ = || = E lanl’+ E [ mdff(cm“d)

nal
for any h € L?(T). Thus ||C|| = 1 and H’(D;) .L H’(Dg) hold forT = T The con-
verse statement is less trivial.

Suppose that [|G|| = ||Op|| = 1. Then ||Ch|| = ||A| for any A € L*(T) in view
of (1.9) and this implies that C is unitary, i.e. C~! = C*. However, C~! = O (d.
(1.9)) and hence C = C*, i.e. C is self-adjoint. Assuming that the length |[I'| = 1
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and s = 5(s), 0 € » £ 1, is the equation of ' we have

< Ox(s),y(0) > = j (-‘- PV. j' ‘(""“)‘“)g(.) PP

(t) = z(s)
=1 2()y(s) ' (t) do dt
x -h-oo // 5(t)—2(e) '

where Q = [0;1] % [0;1] , Pe = {0+t € Q : |0 — t| < e}. Moreover,

< 2(0),0y(s) >= — lim / / ’('):::)) :’i-().;io dt

Thus < Oz(s), y(s) >=< 2(s),Cy(s) > forall z,y € L?(T") implies 5'(8)/[s(t)—2(s)] =
#(0)/[216) - 3(s)), or Im{s"(s)' (1) /[2(¢) — 3(s)]*} = 0 ae. in Q, with z(s) absclutely
continuous on [0; 1]. On integrating w.r.t. ¢ we obtain that arg [z(t) — z(e3)]/[2(s) -
2(ey)] = const for any fixed ¢;,0; (0 < ¢; < 03 < 1) and ¢ € (#3;1) which is a well
known characteristic property of a cdrde. This ends the proof.

The following lemma may be helpful in evaluating the angle a between the sub-
.paces H¥(D,), H?(D;) and consequently the norm of C in L?(T).

Lemmmm 3.2. Let T be an AD-regular Jordan curve in the finite plane with
p)=1and0 € Dy. If (pn), » € NU {0} and (g,), n € N are Szegé polynomials

for Dy and Dy, resp. (gn being actually polynomials in 3=} withowt a constant term)
then

(2.3) cosa = lup{ReE E ejdi < pjrqr > Zl‘:l’ Z |de]? = l}

Jjm0 k=l k=]

Proof. The sums zpy = 2 EPi v In = }: dxgs are dense in H3(D;) and
§=0

H?(D,), resp., because Dy, Dy are of Smirnov type. We may assume that ||z,,|| =
m n

“’n“ = 1 which is equivalent to E ‘c‘-i’ = 2 ldﬂ’ = 1. Then we have
§=0 b=}

m n
Re < zpm,¥n > /llzmll llyall +Rc22e;3: < pjvts >

J=mO k=]

and (2.3) readily fallows.

Loroliary 4.3. Under the assumptions of Lemma 2.2 there exists § € (0;1) such
that | < pj,gx > | S & for any k,j+1€N.
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Corollary 2.4. IfT is AD-regular uith 0 inside I’ and for any system of complex
numbers {60,815.+.,8m;ib1,03,...,0n} we have

(24) / ({: ) (?_: B/) )= 0

r Ji=o
thenT is a gircle.

Note that (2.4) implies the orthogonality of complementary H? - spaces of I'.
In a paper to fallow we shall be concerned with several interesting consequences
of the Theorem 1.2.

REFERENCES

(1) Ablfors, L. V. , Zur Theorse der Uberlagerungsflichen , Acta Math. 65 (1835), 157-184.

[2) David, Q. , Opératesry mtegraus nnguliers sur cerfaines courbes ds plan complere , Ann.
Scent. Bc. Norm. Sup. 17 (1984), 167-189.

[3) Duren, P.L. , Theory of H? Spaces , Academic Press, New York, London 1970.

[4) Semmes , S. , The Caschy ntegral, chord~arc curves, and quasiconformal mappings , The
Biberbach Conjecture~Proceedings of the Symposium on the Ocassion of the Proof, Providencs.
RL 1986.

[3) Zinsmeister , M. , Domaines de Lavrenties , Publ. Math. d'Omsay, Pans 1985.

STRESZCZENIE

W peacy tej podano lilka wynikéw swigsanych 3 operatorem Cauchy’'ego Cr dzialajecym w
peaestrzeni LP(T'), prsy asym krsywa I’ jest regulama w scnaie Ahlicsa-Davida W szczeg@ncda
wykazano, 2e operator Cr jest inwclucjs, tsn. Cr = CF' dla dowolnego p > 1. Ponadto
zalezriono dokiadng wartodd nurmy vperatora Or w paaypadku P= 2 i wykazano, ze IICr “ =1
wiedy i tylko wtedy, gdy I’ jast olaygem



