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Abstract. This paper deals with an application of meesures of noncompactness in the theory
of differential equations in Banach spaces. Using the relation between a sublinear noncompeactness
measure and the Hausdorff measure the authoress has proved an existence theorem for differential
equations in Banach spaces.

Introduction. In 1978 J. Banad in his Ph.D Thesis [1] introduced a definition
of measure of noncompactness by an axiomatic approach. His set of axioms was
chosen in such a way that many natural realizations were passible. It showed to be
useful for applications (see [2] or [3] and the references given there). In what fallows

a property of such measures will be proved. We shall also deal with the initial value
problem

(1) g=f(tz2) , 20)=20

where f is a function with values {rom an infinitely dimensional Banach space. It is
well known that continuity of f is not suffident for the existence of local solutions
to (1) and some extra cornditions are necessary. Our additional condition will be
expressed in terms of Banad measures of noncompactness and will extend some results
of [5] to the case of such measures.

2. Notations and deflnitions. The notation of (2] and [3] will be accepted.
In particular, (E, || - ||) will be an infinitely dimensional real Banach space with the
2ero element §. The family of all nonempty and bounded subsets of E will be denoted
by Mg. Ng will stand for the family of all relatively compact sets in E. For any
X € Mg the convex dosure of X will be denoted by conv X.

Now let us quote the basic definitions.

Definition 1. [3) A function p : Mg — (0,00) is said to be a measure of
noncompactness in E if it satisfies the following conditions :
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1°  the family ker p = {X € Mg : u(X) = 0} is nonempty and ker p C NE,

2 XcY= u(X) S ),

3 pconv X) = u(X),

£ pAX+(1-2Y) < M(X) + (1= A)p(Y), A€ (0,1),

8% if Xpn€ Mg, Xn=2YXn, Xnt1C Xnforn=12,...andif lim p(Xp) =0

then ﬁ Xn #0.
n=1
The family described in the axiom 1° is called the kernel of p.
Notice that u(X) = u(X) [2].
A measure p satisfying the condition
6°  p(XUY)= max{p(X),s(Y)}
will be referred to as a measure with the maximum property.
A measure p such that for all X,Y € Mg and A€ R
7 s(X+Y) S p(X)+a(Y),
8 w(AX) = Nn(X)
will be called sublinear.
We will say that 4 is regular if it is both sublinear and has the maximum property
and if its kernel consists of all relatively compact sets in E.
In 1] and (3] a large collection of measures of noncompactness in classical Banach
spaces is presented. Here let us notice that the basic measures i.e. the so—called
Kuratowsld measure ag and the Hausdorff measure x g defined as follows :

ap(X) =inf{e > 0: X can be covered by a finite number of sets
having diameters sinaller than e}
xe(X) = inf{e > 0: X has a finite e-net in E}

are regular.

3. A property of measures of noncompactness. First let us recall the
fallowing

Theorem 1 ((3], (4]). If s is a reqular measure of noneainpactness in E then
(2) u(X) S u(K(0,1))xe(X) , XEMg.

Thus each regular measure is comparable with Hausdorfl measure in the sense
given in (2). The aim of this section is to prove a generalization of the above theorem.

Theorem 2. Let p be a sublinear measure of noncompactness such that
ker p = Ng. Then (2) holda.

Proof. Take ¢ > 0. Let us cover X with the finite number of balla K(ax,r),
k=1,2,...,n such that r < xg(X) + ¢ which is possible by the definition of xg.
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Hence

u(X) € ,.( U K(a.,r)) = u({a1,a2,.+ .80} + rK(8,1)) < ru(K(0,1)) .

k=1

Thus
#(X) < (xe(X) + €)u(K(0,1))

and taking e — 0 we get the conclusion.
Now, let us illustrate that our Theorem 2 is stronger than Theorem 1. To this
purpose we shall show that there exiat measures of noncompactness being sublinear

with the kernel consisting of all relative compacts in E but lacking the maximnm

property. Let us consider a Banach space E = E; x F3 and let us define a measure
of noncompactness in E by the formula :

(8) #(X) = x£,(Pg, (X)) + x5, (P£. (X)) , X€Me
where Pg,, Pg, are projections onto E; and Ej; respectively. It is obvious that p
given by (3) is sublinear and that ker g = Ng. To show that it lacks muximum
property let us toke a € E3, b € E) and denote by Kg,(0g,,1), Kk,(fE,,1) unit
balls in E; and E; respectively.

Then putting

X= (Ksn(osul) X {a}) U ({b} x Kg,(6g,, l))
we get p(X) =2 but
mu{”(Ksl (oEll l) X {a}) ’ l‘({b} X KE,(OE,,I))} =1.

Finally let us also mention that it is still unknown if a measure p considered in
Theorem 2 has to be equivalent to x g, i.e. if there is a constant @ such that

(4) a xe(X) < p(X) < p(K (@0 1))xe(X) , X€Mg.
There are many examples of p satisfying (4), e.g.

(5) xe(X)<ap(X)<2xe(X) , X€Mg.
Moreover, if F' is a subspace of E then

(6) xe(X) S xr(X)See(X) , X€Mp.

4. An existence theorem. Let us start with the fallowing

Definition 2. A Carathéodory type function k : (0,T) x (0, 00) — (0, o), i.e.
measurable in ¢ for ¥« € (0,00) and continuous in w for ¢ € (0,T) and such that to
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each 4o > 0 and compact interval Jo C (0,T) there is an integrable on Jo function
Ao with

|k(t,®)] S ho(t) , t€Jo, w€E(0,u0),
is said to be of class K if to each ¢ > 0 there is § > 0 and a sequence (t;)ien, ti — 0%
such that the maximal solution ®; of

o =k(t,%) , «(t) =6

cdsts on (&, T') and satisfies w,(t) < € in (¢,,T).

Note that the class K is the most general class of so—~alled Kamke comparison
functions.

In what follows we will need two lemmas.

Lemma 1 [8). Let E be a separable Banach space and (zn)neN a sequence
of continuously differentiable functions zn : (0,T) — E such that ||z;,(t)|| < M for
t € (0,T). Let p(t) = xe({zn(t) : n € N}). Then p is absolutely continuous on
(0,T) and

#'(t) S xe({z,(t) : » € N}) for almost alit € (0,T).

Lemma 3 [6]. Letk €K andp: (0,T) — (0,00) de an adsolutely continuous
Junction with p'(t) < k(s8,p(8)) for almost all t € (0,T) and ‘E-é* qﬂ = 0. Then

¢ =0 on (0,T).
Applying the above lemmas we have

Theorem 8. Let f : (0,T) x K(zo,r) — E be a continuous and bounded
Junction : ||f(¢,2)|| £ M, MT < r. Let u be a sublinear measure with ker p = Ng
and such that (4) holds. Moreover, let

(7) "(!("X)) S k(‘,}l(X)) v LE (O,T) v Xc R(‘Ou') ’
where 2n(K(0,1) kek.
Then (1) ha‘: a solution on (0,T).

Proof. Our proof will be patterned on the ideas of [5]. It is known that there
exdist so—~called approximate solutions £, to (1) such that

zn(t) = £(t,2a(t)) + yn(t) , t€(0,T)
z,(0) =0

and [[ya(t)l S L, te (0,T).

Thus ||Z,(¢)]| S M +1 for t € (0,T).
Let us put

A= {za(t), f(t,za(t)):nE N, 1€ (0,T) x Q}
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and let F be a linear closed span mcludmg A. So F is a sepamble, closed linear
subspace of E such that

{’n(‘)s ’Jn(‘)' !('| 3»(‘))' ¥n(t):t€(0,T), n€ N} cF.

Put
X(t) = {za(8) : m € N}
X'(¢) = {z(¢) : n € N}
and
p(t) = xr(X(1) .
By Lemma 1
P'(t) S xr(X'(1)) .
Now, let

k(t,w) = sup{p(f(t, X)) : X € K(z0,r), p(X)=u}.
Thus by (7) we get
#(£(6,.X)) < k(1 p(X)) < k(t,0(X)) -

What is more, the monotonicity of g with respect to the inclusion and its continuity
with respect to the Hausdorff distance imply that k is nondecreasing in the second
vanable. Denote

b= pu(K(9,1)).
By (4) — (6) we have

Xr (0.0 S 2 (6,30 < 2 k) 2 Eebxe(0) < 2 ke bxe ).

Hence by Lemma 1
byp(X() < ?—:- k(e bxp(X(1)) -

However, by the continuity of f in (0, 2o) and the equicontinuity of z, and the equality
t (
2ult) = 20+ [ (Floraa(e) = £0,50) do + 11(0,20) + [ ya(e)do
0 )

we have '

Thus by Lemima 2 p = 0 on (0, T). Now it is enough to apply Arzela-Ascoli theorem
and we are done.
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Finally, observe that Theorem 3 can be strenghtened for some classes of measures
p. For example it can be proved with the assumption

MEOD) |
a

if p is 2 measure satisfying the fallowing condition
axe(X) < axr(X) < u(X) < p(K(#,1))xe(X) , X€EMr.

Thus in case of a it is enough to assume that 2k € K.

REFERENCES

1) Banaé, J. , Relatyune miary nieswartoscs w prrestrsensach Banacha, Ph.D Thesis, Lublin
1078 (in Polish).

{2]) Banasé, J. , Applications of measures of noncompaciness o various problems , Zesz. Nauk
Polit. Rzasaéw, Mat. Fis. 2.5 no.34 (1987).

(3] Banasd,J. , Goebel , K , Measures of noncompactness sn Banach spaces , Lecture Notes
in Pure and Appl. Math., Marcel Dekker, 60, New York, Basel, 1880.

[4) Janicka, R , Zasicsouwanie miar nieswartodcs w deoris rdumak rdmiczkowych o calkouych ,
Ph.D Thesis, Lublin 1978 (in Polish).

[sS) Monch,H. ,Harten, G.F. , On the emstence problem for ordinary differential equations
wm Banach spaces , Arch. Math. 39 (1982), 153-160.

STRESZCZENIE

Praca dotyczy asstosowama maary niexwartoda do teori réwnad réaniczkowych w praestrae
mach Banacha Opierajac sie na swiaaku pomieday subliniows nmiary nieswartoéa a maarg Hausdorffa
otraymano pewne twierdaenie egzystencjalne dla réwnad réanicakowych w praestrzeniach Banacha



