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Abstract. The aim of this paper is the study of the mixed random Volterra-Frdholin equation
of the form :

z(t;w) = h(t, z(t,w)) + f k1(t, 7 w) i (7, 2(7;w)) dr

+ Ji” ka(t miw) f(r, (rsw)) dr

under less restrictive conditions than those of [9] and {10]. Namely, we only assume that f; and f;
are sublinear functions.

1. Introduction. The aim of this paper is to investigate the existence and
the stability of stochastic integral equation of Volterra-Fredholm type. Problems
concerning stochastic differential and integral equations have been treated in many
papers and monographs (cf. (3], [4], [7], [8], [9], [10], [11], [12], [13]). The aim of
this paper is to give a new existence theorem for a stochastic integral equation of the
Volterra—Fredholm type of [9] and {10] (cf. also [13]) and to investigate the asymptotic
behaviour and the stability of solutions of that equation.

The most important problem examined up to now is that one concerning the
existence of solutions of considered equations. It is solved mostly by the Banach
fixed point principle, the Schauder fixed point theorem and successive approximations
(cf. [3], (4], (7], [9], [10], [11], [12], [13]). This paper uses the notion of measure of
noncompactness in a Banach space and the fixed-point theorem of Darbo type, cf.
[2], [6]. This approach allows us to weaken conditions of (cf. (9], [10], [13]). Namely,
we replace the Lipschitz type conditions by those with sublinear functions. The
asymptotic stability in mean square is also investigated here.
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We shall deal with a stochastic integral cquation of the Volterra- Fredholm type
of the form

t
(1.1) z(t;w) = h(t,z(t;w)) 4 ,/ Ey(d, ryw) fi(r elmiw)) dr

+ / ky(t,miw) (T, x(ryw))dr
Jo

where t > 0 and

(1) w € 2, where Q is the supporting set of the complete probability measure
space (2, A P);

(i) z(¢;w) is the unknown random function for t € R, (= the set of nonnegative
real numbers);

(iii) h is a scalar function h : Ry x R = R;

(iv) fi(t,z) is a scalar function of t € R and z € R;

(v) f2(t,z) is a scalar function defined for t € R and z € R, the real linc;

(vi) k;(t, ;w) is a stochastic kernel defined for ¢ and T satisfying 0 < 7 < t < oo;

(vii) kz(t, T;w) is a stochastic kernel defined for t and 7in R,.

2. Mathematical preliminaries. We shall give here some mathematical con-
cepts that are essential in understanding the details of this paper.
We now give the following definitions.

Definition 2.1. We shall call z(¢;w) a random solution of the stochastic integral
equation (1.1) if for every fixed t € R, z(t;w) € L?(R, A P) and satisfies (1.1) P-a.e.

Deflnition 2.2. A random solution z(t;w) is said to be asymptotically stable in
mean square if

tlim Elz(t;w)[*=0.

Throughout this paper X will denote an infinitely dimensional real Banach space
with norm || || and the zero element 0. V(z,r) stands for the closed ball centered at
z of radius r. Denote by My the family of all nonempty bounded subsets of X, and
by Ny the family of all relatively compact and nonempty subsets of X.

The following axioms defining a measure of noncompactness are taken from
Banaé and Goebel [2].

Definition 2.3. A nonempty family B C Ny is said to be the kernel (of measure
of compactness), provided it satisfies the following conditions:

1°UVeB=Ue€eB;
2UeB,VcU,V#8=VeB;
3UVEB=NU+(1-NVeB, re|0]];
4°UeB = ConvlUE€B;
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5° B¢ (the subfamily of B consisting of all closed sets) is closed in A with respect
to the topology generated by Hausdorff metric.

Deflnition 2.4. The function g : My — [0,+00) is said to be a measure of
noncompactness with the kemel (ker 4 = B) if it satisfies the following conditions :

1° u(U) =0 <= U € B;

2° u(U) = p(0);

8% u(Conv U) = p(U) ;

42U CV = pU)<puV);

5° u(AU + (1= A)V) < A u(U) + (1 = Mu(V), A €[0,1) ;

6°if Up € My, Un=Upn,and Upyy C Up, n=1,2,..., and if lim p(U) =0,
then U = o, Un # 0.

If & measure of noncompactness u satisfies in addition the following two condi-
tions :

7 uU+V)<pU)+uV);
8° p(AU) = |A|n(U), A€ R ;

it will be sublinear.
Let M C X be a nonempty set and let yu be a measure of noncompactness on X'.

Deflnition 2.5. We say that a continuous mapping T : M — .Y is a contraction
with respect to u (u-contraction) if for any set U € My its image TU € My, and
there exists a constant k € [0,1) such that

H(TU) < k- pU) .

We shall use the following modified version of the fixed-point theorem of Darbo
type.

Theorem 2.1. Let C be a nonempty, closed, convez and bounded sct of X and
let T: C — C be an arbitrary u—contraction. Then T has at least one fized point in
C and the set Fix T = {z € C : Tz = z} of all fized points of T belongs to ker p.

Let Cp(R4, L*(Q, A P), p) (or shortly Cp) denote a space of all continuous maps
z(t;-) from R, into L%(Q, A P) with the topology defined by the norm

llzllp = sup{p(t)l|lz(t)l2 : ¢ 2 0} < oo .

The space C}, with norm || ||, is a real Banach space (see Banas [1], Zima [14]).
Now for z € Cp, U € Mc, T > 0, and ¢ > 0, we put

BT (z,€) = sup{|lp(t)z(t) — p(s)z(s)l|L2 : t,s € [0, T), |t — o] < €};
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BT (U,e) = sup{ﬂT(I,s) :ze U}
A (U) = lim 8T(U,e);
Po(l) = ‘l!i—{H lff{[lr}.
a(l') = lim sup sup [[#(t)||2p(t);
—oo rel (2T
bU) = lim  sup {||p(t)z(t) - p(s)z(s)llLs};
0 4, >T
#o(U) = Bo(U) + a(U) + sup{p(t)m(U(t)) : t > 0};
m(U) = Bo(U) + H(U) + sup{p(t)m(U(t)) : t 2 0},

where m is a sublinear measure of noncompactness on My 4+ nnd
U(t) = {z(t) € L*(AP):x € U}

The functions o and p; define sublinear measure of noncompactness on Me,

(see [1], [2]). It is also known (see 1], [2]) that ker g is the set of all sets U7 € M,
such that the functions belonging to U are equicontinuous on any compact of R and

Jim p(t)[z(t)l[L> =0

uniformly with respect to z € U. Further properties of yo and s, can be found in [1]
and [2]. :

3. Main results. We make the following assumptions concerning the equation
(1.1).

For each t and 7 such that 0 < r < t < oo the stochastic kernel k,(t,7;w) has
values in Lo (2, A P) and the stochastic kernel k;(t, 7;w) for each t and 7 in R} has
values in Lo (92, A P).

The mappings

(t,7) = ky(t,7;w) and (¢, 1) — k2(t, Tiw)
from the sets

Ay ={(t,7):0<7<t<oo} and A;={(t,7):0<7<o00, 0<t<o00},

respectively, into Lo (€2, A P) are continuous.
We define for 0 < 7 < t < 00,

ky(t,7) = P-ess sup |k (¢, 1;w)| ,
wEeN

and for each ¢, and 7in R,

ka(t,7) = P-ess sup |ka(t, 7;w)| -
wEen
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The above assumptions imply that if & € Cp, then for cach 1 € Ry

[[ki(t, D)e(r) L2 < kildso)lz(r)l2 . 7=1,2.

Theorem 3.1. Suppose that the functions f;, i = 1,2, and h in the stochastic
integral equation of the Volterra-Fredholm type (1.1) satisfy the following conditions :

(1) functions f; : Ry x R = R, 1 = 1,2, are sublinear, that are |fi(t, z(t;w))| <
u;(t)|z(t;w)|+vi(t) P-a.s., i = 1,2, for some nonnegative functions u, and v;, 7 = 1,2,
are continuous and defined for t € Ry, and let us denote

4 = sup{p(t)( L ki(t, ) (7)/p(r)) dr
g l:w k2(t,r)(u2(r)/p(r))dr) 1t € R+} )

B(t) = p(t) (Jh(t,0)| + ,[ kit T (r)dr

o
B =sup{B(t):t€ R;} < o0 .

+/m kg(t,r)vg(r)dr) forte R, ,

Suppose that
(ii) lim—co B(t) = 0;
(i) [ht, 2(t;w)) — h(t, y(t;w))] < Kla(t;w) — y(E)| P-a.s. for k € [0.1);
GvYM:=k+A<];
(v) for any given but fized T > 0

lim sup{[A(t,z(s)) = h(s,2(s)llL2 : s, € [0,T), It = sl < €} =0

uniformly with respect to z € U C V(0,r), where r = B/(1 - M);

(vi) the mappings z(tiw) — fi(t,z(tw)), i = 1,2, Cp(Ry, L} (R, A P), p) into
Cp(R4+.L%(Q, A P),p) are continuous in the topology generated by the norm || - ||,;

(vii) limy—oo p(t)| fi(t, 2(2)) — fi(t, ()L = 0, ¢ = 1,2, uniformly with respect
to z and y belonging to V(0,7), r = B/(1 - M);

(viii) there ezist L, i =1,2,3, satisfying 0 < Ly + Ly + Ly < 1 such that
m(_fol ky(t, myw)fr(r,U(7)) dT) < Lim(U(t)),
m( I kalt, i w)fa(, U(r))dr) < Lym(U(t)),

m(h(t,U(t))) < Lam(U(¢)), L. € [0,1), i = 1,2,3,
U(t) = {z(s) € L*(N,AP), s>0, ze U CV(0,r):



112 D.Szynal, S. Wedrychowicz

pOlz®)i: < U|Ip}, t >0, where r = B/(1 — M).

Then there ezists al least one solution z € Cp of equation (1.1) such that

lim p(t)=()llzs =0 .

Proof. Define the H on C, by

(Hz)(t,w) = h(t, z(t;w)) + /' k(¢ mw)fi(rz(ryw)) dr
0
1 l;m ka(t, yw) fo(r,z(T;w))dr .
Using assumption (i), (it) and (3.1) we get for z € C,,
PO HD)BlIez < p(&) (Fllz(t)]lL2 + h(2,0)
¢ et (s dr + i "kt I Aa(r 2D d)
< llzlly (k + ple) J{ ku(t, T)(ur (7)/p(7)) dr + Jé ka(t,7)(ua(7)/p(7))dr))
+ p(t) (Ih(tv 0)' + At ky (ts Ll (T) dr + ‘Aw k2(.tv T)”?(T) dr) b

Hence, we get

|Hz|| < Ml|z||, + B,
which implies that H maps C, into Cp. Moreover, we note that
H:V(0,r) - V(0,r) forr=B/(1-M).

We now prove that the map H is continuous in the ball V(0,r). Let z,y € V(0,r).
By assumption (vii) for any given ¢; > 0, i = 1,2, we can choose T > 0 such that

(3.3) p(DIfi(r,z(7)) = filr,y(T))l|L» <ei, whenever r > T .

On the other hand, by (vi), for any given (") > 0, i = 1,2, there exist §; > 0,1 = 1,2,
such that for all € [0, T)

(34) P(T)"fi(T, z(T)) = f.-(?',y(T))HL: < E(‘) ) 1= 1,2,

whenever ||z —y|, < 6, i=1,2
Moreover, by (iii), for any given €3 > 0 there exists § > 0 such that

(3.5) p(t)l[A(t, z(t)) — At g2 <ea
whenever ||z —y|, < 6 .
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Furthermore, we can assume without loss of generality that there exists T > 0 such
that u;(t) > 1, 1 = 1,2, whenever t > T, and u} = min{u(r) : 0 < 7 < T} > 0,
1=1,2

Hence, using (3.5), and putting pr = max{p(r) : 0 < r < T} we have for t > T

(36)  pOIH2)) - HOls < pe)(IA2(0) - ity ()2
o+ kD 2(1) = ulry(r s de

+ [’ ka(t, Dl fo(r,2(7)) - falryu(r)lga dr < s
+ p()(pr/ul) - J,{Tkx(t,T)(ux(f)/P(T))llfx(ﬂz(f))
~ A )| o dr + /T (8. 7) (s (7))l
Na(r2(7)) = Falru()les dr)
+p(t)((pr/u])- L ka(t, 7)(ua(7)/p(r)p(r) | fa(r 2(7))
~ falry()lLz dr + /r ka(t, 7) (ua(r)/p(r))p(7):
Nfalry(r) = falry(Dlles dr) -

Therefore, by (iv), (3.3), (3.4) and (3.6) we obtain

(3.7) f;lgp(t)ll(Hx)(t) — (Hy)(tllLs < €3 + M((pr/ul)e'V

+ e + (pr/ul)e® +¢3) .
Moreover, it can be seen that for any given £4 > 0 one has

sup_p(t)[[(Hz)(t) — (Hy)(t)llL2 < eq s
0<<T

whenever ||z —y|lp <6 .

Thus by (3.7) and (3.8), for any given ¢ > 0 ||[Hz— Hyl|l, < ¢, whenever ||lz—y||, < 6,
z,y € V(0,r).

Let now be givene >0, T >0and t,s € [0,T], [t—s| <e. By (3.2)for0 < s <t
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and z € U C V(0,r), we have

(3.9) Ip(¢)(Hz)(t) - p(s)(Hz)(s)llL2 < Ip(t) — p(s)|-
Nkt 2(@)llL2 + p(s)lIA(E, 2(2)) — h(s, 2(s))ll .

100 =0l | [ e o],
)] [ )= ko A o],
4| [ Bnnn )], + 150 - o)
: ”[ﬁ I:Q(t,r)fg(r, z(r)dr|  +p(s)
| [ ettt sy

L?

But using (3.1) with : = 1 and z replaced by f;(r,z(7)), we obtain

@10) o) =pto) | [ Bt

[2
< p(t) — pls)] - / ky (2, 7)llu (7)2(7)] + o1 (7)l| 2 dr

< T|p(t) — p(s)| - (r - max{k,(t, 7)(us(7)/p(7)): 0 < T < T}
+ max{k,(t, )y (r):0< < T}).

Similarly we get

G1) )| [(k,(t,r)— k(s DAz ]|

< Trp(s) max{|ki(t,7) — k1 (s, 7|(u1(7)/p(7)): 0 < 7 < T}
+ Tp(s) max{|k;(¢,7) — ky(s, )1 (7): 0< + < T},

and

(312) p(s)| / (D) ar]| | <1t olpte)

+(r - max{k;(t, 7)(u1(7)/p(7)): 0 < 7 < T}
+ max{k;(¢,T)v;(7): 0<7<T}).

Now using (i), (iv) and (3.1) for i = 2, we have the following estimates
(3.13) Ip(t) — (o) | [" ka(t, 1) fa(ra(r)) dr| |
<o)~ p0o) - " kalt, ) ua()p(r)) dr

o0

+ A ka(t, T)va(r)dr) < max{ ;(17) 10 <t < T}Ip(t) - p(s)|(Mr + B).



On Solutions of a Stochastic Integral Equation of the Volterra- Fredholm Type 115

Now we note that
J'/’ ka(t,7) = ka(s, 7)|| fa(r, 2(7))|| L2 dr < 00 .
(1]

Indeed, we have

p() [’ lka(t, 7) = koo, ) M fa(r, (7))o dir
<o [ B Db+ [t ()

#r [ k(o) dr+ [ baGs, st dr)
< p(s) 2-max{1/p(t): 0 <t < T}(Mr + B).

By the estimate given above, for any given § > 0 and sufficiently large T we have
(3.14) p(s) I’w |ka(t, ) = ka(s, )| || fa(r, 2(7))|| L2 dr
» T
< p(s)(rﬁ {ka(t, ) = ka(s, 7)l(ua(7)/p(7)) dr
T
x A [ka(t,7) = ka(s, Tlvs(r) dr) + p(s)-
4 " att,7) = ks, a2l o
< max{kz(t,7) — ka(s,7) : 0 < 7 < T} - max{ky(t,7) " :
T
0<7<T) (rp(S)/ ka(t, 7)(ua(7)/p(7)) dr
o
r
#800) [ kaltun(r)dr) + supe) 0 <0 ST

Ifs " ka(t,7) = ko) a2 dr

< max{ky(t,7) — ka(s,7) : 0 < 7 < T} - max{ky(t,7) " :
0 < 7 < T} sup{p(s)/p(t) : s,t € [0,T], s < t}(Mr + B)

+sup{p(s):0<s<T}- /:0 lk2(t, T) — ka(s, T)|-

Nf2(ry2(r))l|L2 dr < C(T)(Mr + B) + 6,

where C(T) is a positive constant.
We need to recall the definition of the modulus of continuity which is defined for
all real functions w as:

(3.15) vr(w;e) = sup{|lw(t) —w(s)| : t,s € [0, T]. |t - s] <=} . «>0.
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Using now (3.15) , the properties of the functions ky, k; and p we have
(3.16) }l_l’.!;l] vr(ky;e) = !ll_rfa vr(ke;€) = !ll_x.r}J vr(p;e) =
Moreover, by the assumption (iii) and (v), we see that
(317) tim vr(Ih(t, 2(1) ~ ks, 2(s)llz3i€) = 0
Therefore, by (3.9)-(3.14) and (3.16), (3.17), we get for U C V(0,r)
(3.18) Bo(HU) =0
Fix now U c V(0,r), r = B/(1 — M). We prove that
(3.19) a(HU) < Ma(U) .

It is clear, by the definition of the integral, that for any given n; > 0 there exists a
positive integer n; = n;(n;) such that for n > n,

t
I/ ky(t, 7)(ua (D)lz(7) || L2 /p(7))p(T)dT
n-1
X kD) I 2G)E] <m

Let now T < t. Put k} = max{k:0< k <n, % < T}, then we have

[ k() (ll2(7)l| s /(r))p(r) dr

<t 2 (2 (1)
n—1

+ X s EEIE)

k=k3 41

o())(3)
G

=m+hL+1.
Now for any given n; > 0 there exists n = n(52) such that for n > n,
kt kt kt
I, <k;t- ma.x{p(-n—)"(;) IL’ 2 < T} max{k; (¢, )
(uy()/p(1)):0<T<T}n ' <n;.

Similarly, for any given n3 > 0

t
b < sup{p®lz(Oler €2 TH( [ ka(t (/B d +)
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for sufficiently large n.
We put

9e(7) = ku (8, 7)(ua(7)/p(7)) .
g: (1) = g(r, ll=()||12p(T) , where t€ Ry, r € V(0,r).
By the assumption of Theorem 3.1 we get

j g9:(r)dr < oo, Ig,‘('r)dr<oo forte R, .
0

Jo
This fact allows us to find functions g;, gf which are nonnegative decreasing and
lim Gi(r) = Jlim (1) =0.
These functions satisfy additionally the following conditions:
9:(7) S gi(r) , i (1) < gi(r)

and
(e ] (o <]

J/ Gi(r)dr < oo, ﬁ F(r)dr < oo .

Hence, we éan write
o0 =<
§(r)dr= lim h Y Gi(nh)
0 e | n=1

and

A " R(r)dr= Jim B3 Gi(nh) (see [15]).

Moreover, g¢(7) can be choosen such that

oJ WY ) = 3 0| = 0
n=1 n=1
and
Jim B3 k)~ 3 gi(nh)| =0.
n=1 n=1

Let T > 0 be fixed. Choose m such large that m +1 > T. Then, by the assumptions,
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we have

p(f)” [ ka(t, 7)fa(t, (7)) dr“ t)/ gt (r)dr
+p(t)/; k.,(t,r).u,(r)drgpm]/ T(r)dr- hzl;f;:um[

+ p(t)hl i T (nh) — Z a: (nh)| + p(t)h Z g (nh)

+p(t)/ kao(t,7)- vg(r)dr<p(1)|/ ge(r)dr-- "Z,gr(”"|

-}—p[f}h‘z‘g‘(nh] quluh}| + plt)hr Z‘J,[nh]

n=|
o

+ p(t) sup{||z(nh)||;.2p(nh) : n > m+ 1}h - Z ge(nh)

n=m+|

+ p(t) Lm ka(t, T)vy () dr .

Letting now h — 0, we have

pumﬁ.hmﬂthﬁDhL,SwMMMMHMurET}

+p(t) [ mhMﬂ+M0/ ka(t, ) (r) dr
Jo 0

By (iii), we have
pt)|IA(t, z($))lL2 < k-sup{p(t)llz(t)llL2 : ¢ 2 T} + p(t)|h(t,0)] .
Therefore, by the above considerations, we get
POI(H2)B)ll22 < p)IA(2,0)| + M - sup{p(t)|z(t)l12 : ¢ > T)
+mmm+m+mn+wmfhmﬂMﬂw+£”thMﬂwy
Thus, by the assumptions of Theorem 3.1, we obtain

A, supfsup{p(®(Hz)(t)lle2 -t 2 TH < (m 412 +rna)C
+M- Tlim sup{sup{p(t)||lz(t)]l2 : t > T}} .
—0o0 reU

Let now n; — 0, ¢ = 1,2,3. Then we get (3.19). Finally, by (3.18), (3.19) and the
assumptions (viii) we obtain

mo(HU) S D - po(U) ,
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where D = max{L; + Lz + Ly, M}, which proves that H is a yo—contraction. This
fact by Theorem 2.1 ends the proof.

4. Remarks. In the monograph [13] the authors study the stochastic integral
equation of the Fredholm type of the form

(4.1) z(t;w) = h(t, z(t;w)) + [ﬂ k(t, 73 w) f(7, z(r;w)) dT .

(a) Theorem (3.1) extends the following result of Theorem 4.5.3 gven in [13].

Theorem 4.1. ([9], [13] p.125). Consider the random integral equation (4.1)
subject the following condtions:

(i) Hy, and H, are Hilbert spaces stronger than C. and the pair (Hy,H,) is
admissible with respect to the completely continuous integral operator

(Wz)(t;w) = [" k(t, r;w)a(r;w)dr , t€ Ry,

where k(t,T;w) behaves as described previously and the integral

o0 o0
/ / k(t, ) dr dt
o Jo
ezists and is ﬁnitc;‘

(ii) z(;w) — f(t,z(t;w)) 13 a continuous operator on
S ={z(t;w) : z(t;w) € H, , |lz(t;w)||n, < p)

for some p > 0 with values in Hz such that ||f(t,z(t;w))|ln, < v for some vy >0 a
constant;

(iii) z(t;w) — h(t,z(t;w)) is the contraction on S.

Then there ezists at least one bounded (by p) random solutson of equation (4.1)

provided
At z(t; )| Hy + K < p,

where I\ is the norm of the operator W.

We see that the assumptions (i)-(iii) of Theorem imply the conditions (i)-(viii)
of Theoremm 3.1 if we put p(t) = 1for t € Ry, u;(t) =0, i = 1,2 and v,(t) = 0,
vo(t) =4 for t € Ry.

Analogously, we prove that Theorem 3.1 generalizes the Theorems 4.5, 4.5.4, and
4.5.6 of [13].

(b) The proof of Theorem 3.1 can be extended to the case when z(- ;w) €
L, (2, AP).

(¢) If p(#) = 1 then a random solution z(t;w) of (1.1) is asymptotically stable in
the sense of Definition 2.2,
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5. Example. First we give examples functions which are sublinear, but they do
not satisfy the Lipschiz condition.

Lenuna 1. If a rcal function satisfies the Lipschitz condition and st is differen-
tiable then the derivative is bounded.

We omit the proof.
Example 5.1. Let f: Ry -» R be defined as follows:
f(z) =z - exp(sinz) .

We see that
If(z)I<e-|z] for zeR,,

and
f'(z) = exp(sinz) + - cos z - exp(sin ) .

Hence, by Lemma 5.1, the function f does not satisfy the Lipschitz condition.
Example 5.2. Let f : Ry — R be defined as follows:
fz)=(z-n+1)"+n-1 for z€[n—-1,n),

where n € N.
It is clear that °

z—n+12(z-n+1)" for z€[n—1,n), where neN.
By the above inequality we have
[f(z)| <|z|] for zeR,.
Moreover,
f(z)=n(z—-n+1)""! for z€[n—1,n), where neN.
‘By Lemma 5.1 the function f does not satisfy the Lipschitz condition.
Using the functions of Example 5.1, and 5.2 one can prove the following result.

Theorem 5.1. Let in the equation (1.1)

fi(t, z(;w)) = z(t; w) exp(sin[z(¢; w)]) ,
f(tz(tiw)) = (z(tjw) —n+1)"+n-1, z(iw)€[n-1,n),

where n € N, and
h(t,z(t;w)) = h(t;w) .

Suppose that
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() ki(t,7) ST (O (r) ka2, 7) S Fa(t)Fa(7),
where ky, ky, ky are positive functions and k, is differentiable function;

(i) Di(t) := p(t)'ié,(t)( Jot®(1)/p(r) dr + f;(ka(r)/p(7)) dr) positive, differ-
entiable and D; = sup{D,(t):t€ Ry}, D, €|[0,1);

(iit) D1(0) = k1 (0) f;° Fa(r)dr,

and
ﬁ " (Kr)/ Da(m)) exp [(ea(n YKL (1)+K; (1) Dy (1 )(D1 () () dmy ) dr < oo

(iv) lim p()llz(t) — (D)2 =0
uniformly with respect to = and y belonging to V(0,r), where r = ||k||,/(1 — D;);

) lim p®IA(E)e = O;
(vi) there exists Ly for i =1,2 satisfying 0 < Ly + L, < 1 such that

m([ ki mw)fi(nU(n) dr) < Lim(U(1)) ,

m( [ ka(tmw)afa(rU(r)dr) < Lam(U(t)) , where Ly, Ly € [0,1),
0

U(t) = {a(e) € LR AP), 520, 3 €U € VO, : (0l S 11}
£20, r=|hl,/(1 - Ds).

Then there ezists at least one solution = € Cp of equation (1.1) such that

la(®)lLs = o((1/Ds(t)) exp( j{ (ks (B () + By (1)D1 (7)) - (Dy(D)Fa () i)

Proof. By differentiating D;(t) we obtain

' - ~ —~
p(t) = D (t)exp—(l ((ekr(T)kr2(7) + Ky (7)Dy(7))/ D ( 1)) - k.(r)))dr) .

Hence, using Theorem 3.1 we get the statement of Theorem 5.1.
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STRESZCZENIE

W pracy bada sig losowe réwnanie Volterry-Fredholma postaci:
t
z(t;w) = h(t,z(t,w)) + / ki (t, riw)fi(r z(riw)) dr
2 0
+ jl ka(t, myw) fa(r, 2(riw)) dr
0

przy slabszych zalozeniach niz rozwazane w pracach [9] i [10]. Zakladamy jedynie, ze f; i f2 sa
funkcjami subliniowymi.



