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A Sufficient Condition for Zeros (of a Polynomial)
to be in the Interior of Unit Circle

Warunek dostateczny aby zera wielomianow
lezaly w kole jednostkowym

Abstract. The main result of the paper is the following theorem: if p(z) is a polynomial of

degree 1, with real coeficients, having all zeros with non-positive real part and
14r\n—k/r\k
A7) ()
W) <wR(rg) (%
for some r, R, 0 < r < R <1, then p(z) has at least (k+ 1) zeros in |z] < 1.

Let p(z) = Y°/_, ai2' be a polynomial of degree n and let M(p, r) = max|,|=, |p(2)|.
The following results concerning the size of M(p, r) are well known.

Theorem A [2]. If p(z) = Y|, ai12' is a polynomial of degree n, then

M(p,r) S M(p,R) ‘

1.1 <r<R,
( ) r'l o R" @

with equality only for p(z) = Az".

Theorem B [1). If p(z) = 3, a;z' 1s a polynomial of degree n, having no
zeros in |z] < 1, then for 0<r < R<1,

M(p,r) _ M(p,R)
(12) A+nn ZA+R)"

The result is best possible and equality holds for the polynomial P(z) = (fﬁ)"

In this note we consider certain restrictions on the estimate M(p,r) and obtain
the information about the zeros of the polynomial p(z). More precisely, we prove
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Theorem. Let p(z) be a polynomial of degree n, with real coefficients, having all
zeros with non-positive real part. If, for somer, R (0 <r<R<1),

(13) o) <oB)(1om)" (3)

k, a non-negative integer, then p(z) has at least (k + 1) zeros in |z| < 1. The result
is best posssble and the eztremal polynomial is

p(z) = (z4+1)" k- 1h4
Proof of the Theorem. Suppose p(z) has m zeros in |z| < 1 and m < k. Let

p(z)=(z=z1)...(z—zm)(z2—2m+1)...(2—2n) and assume |z;| < 1 (j = 1,2,...,m).
Put

o(2)=(z-2)...(z— zm) ,
h(z) =(z = zm41)...(z — zn) .

The polynomials p(z), g(z) and h(z) have positive coefficients. Hence, for all r, R
0<r<R<1),

(2.1) o) 2 o(R)(5)"

by Theorem A, and

1+,-)n—m

(22) h(r) 2 hR)( g

by Theorem B.
On combining (2.1) and (2.2), we get

pr) = g(r)h(r) > g(mh(m(::;)"'“ ' (112)"'
-oB(125) (o )
e R\*
?—'P(R)(::R) (1+r'l;2 )

a contradiction, establishing the Theorem.
For k=n—1and R =1, we get

Corollary 1. If p(z) is a polynomial of degree n, with real coefficients, having
all zeros with non-positive real part and if for somer, 0 <r <1,

p(r) < p(l)(1 ;r)r"“'

then p(z) has all its zeros in |z| < 1.
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We may apply corollary 1 to the polynomial z"p(1/z) to get the following

Corollary 2. If p(z) is a polynomial with real coefficients having all zeros with
non-positive real part and if for some R > 1

p(R) < p() 1T

then p(z) has no zeros in |z| < 1.
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STRESZCZENIE

Gléwnym wynikiem tej pracy jest nastgpujsce twierdzenie: jesli p(z) jest wielomianein o
wspolczynnikach rzeczywistych, ktérego wszystkie zera leza w domknigciu lewej pilplaszczyzuy oraz

o) <R ()" (5)

dla pewnych r, R. 0 < r < R < 1, to p(z) ma co najmniej (k + 1) zer w kole 2] < 1
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