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Part III. Additive Processes in Torus

Abstract. In the previous parts of this article additive stochastic processes in groups hav­
ing globular neighbourhoods of zero were considered. In this part we investigate the behaviour of 
increments of additive processes taking values in torus.

We have already observed in Section 2 of Part I of this paper that certain familiar 
topological groups do not possess globular sets at all. The most important group of 
such a kind is torus (see Example 4, Section 2). However, it appears that investiga­
tion of additive processes in some groups which are not globular can be reduced to 
a procedure in suitable globular ones. Below we discuss in greater detail the case of 
torus. Assuming that X is an additive process satisfying additional regularity condi­
tions with values in torus, we describe a method of construction of the corresponding 
process X* taking values in a globular group. The obtained process X* enables us to 
reproduce X in a unique manner.

5. A representation of additive processes and limit theorems in torus.
In the sequel we identify the one-dimensional torus Ti with the unit interval 
< —1/2,1/2 ) on the real line considered with operation ® being addition (mod 1). 
More exactly, x ® y = x + y — Ent(x + y + 1/2) for x,y €< —1/2,1/2), where 
Ent(x) = max{j € Z : j <i). Obviously, Ti equipped with the metric topology 
induced by the distance

p(x,j/) = min{|a: - y|, 1 - |z - y|}

is a To topological Abelian group. The p-dimensional torus Tp is defined as the 
product group Ti X ... X Tj (p times).

It is fairly well-known that within the class of metric spaces the Baire and Borel 
cr-fields coincide - cf. e.g. Prop. 1.3, Chapter I, Vakhania, Tarieladze and Chobanian 
(1985). Moreover, a separable, metrizable topological group with its Borel <x-field is 
a measurable group (see Vakhania et al. (1985), Prop. 2.1, Chapter I), so that 
(Tp,S(Tp)) is a measurable group. The same is obviously true also for the group 
Rp; more generally, Rp as a separable metric linear space with the Borel cr-field 
B(RP) = <?(RP) is a measurable vector space.
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The group-valued mapping f : Rg+ —♦ G is said to be a lamp function, i.e. function 
which has limits along monotone paths - c.f. Straf (1972), if f is right continuous 
and possesses limits at each orthant Ot placed in any point t € R+. To formulate it 
more precisely, consider a family 72 of 2q q-tuples T = (ri,... , rg), where each r, is 
the relation < or > in R+. Then f is a lamp function, if it satisfies the following two 
conditions:

1° the limit /(t, T) = lim»_t,<ri /(«) exists for each T € 72 and t € Rq+, and 
2° /(t.rj = /(<) for T!

We say that f : 72+ -> 6 is a function without discontinuities of the second 
kind along access lines, or in short is a lamp function along access lines, if f is right 
continuous and has left limits on Or i-axis, on each line parallel to Or 2-axis contained 
in the hyperplane OX1Z2, and so on ..., on each line parallel to Ozg_i-axis contained 
in the hyperplane Or 1X2 • • • ig-i, and on each line parallel to 0rg. Clearly, if f is a 
lamp function, then it has no discontinuities of the second kind on access lines. The 
ordering of axes may be here arbitrary - in any case we can change the numeration.

Let X = {Xt, t € 72+} be an additive stochastic process with values in Tj having 
realizations without discontinuities of the second kind along access lines. We do not 
investigate conditions ensuring the above property, but it is clear that the mentioned 
assumption is weaker than lamp realizations of X and in fact it is not significantly 
stringent. For example, it can be proved that an additive stochastically continuous 
process X with values in G under some mild additional restrictions possesses a modifi­
cation with lamp realizations (cf. Zapala (1991)), so a fortiori it satisfies our assump­
tion. We say that X = {Xt, t € 72+} is the process with moderate jumps, if along each 
line contained in 72+ parallel to any axis of the system of coordinates the process X has 
no left-hand side jumps that exceed 2~’, i.e. p(X(t), X(t—; ¿)) < 2-’ for every t € 72+ 
and « = 1,... ,g, where X(t—;i) denotes the left-hand side limit of X(s) at t when 
Sj = tj stay constant for j i and s; grows to t,. Obviously, if X = {Xt, f € 72+} 
is an Rp-valued additive stochastic process, then the canonical map from Rp into Tp 
given by (zj,... , zp) —♦ (zi — Ent(zi + 1/2),... ,xp — Ent(zp + 1/2)) determines an 
additive stochastic process in Tp. Concerning the converse, for q = 1 under some 
regularity conditions on realizations Skorohod (1986), Chapter V, Theorem 14 and 
Corollary, described a representation X* for the process X with values in Tp, such 
that X* takes values in Rp and X = X* (mod 1). For this purpose Skorohod used 
a stopping times technique. The same method in the multidimensional case with an 
application of general stopping domains (discussed e.g. by Walsh (1986) ) seems to 
be rather complicated, therefore we propose here a simplified way of proof being a 
modification of an argument due to Skorohod (1986).

Theorem 5.1. Let X = {Xt, t € 72+} be an additive Ti valued stochastic 
process with moderate jumps having trajectories without discontinuities of the second 
kind along access lines. Then there exists a real-valued additive process X* with lamp 
realizations along access lines such that X = X* (mod 1). Conversely, if X is a real­
valued additive stochastic process which has lamp realizations along access lines, then 
there exists an additive stochastic process *X with the same property taking values in 
Ti, such that *X = X (mod 1).

Proof. Introduce the transformation S : Ti —► <—1/2,1/2) given by the
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formula S(x) = x. We shall describe the construction of a new process X* with values 
in R. Fix an arbitrary t € Rg+ and denote t{ = (tj,... , f,,0,... , 0) for i = 0,1,... , q. 
Furthermore, put T, = {£,- + (a — — t,) : i < a < i + 1} for i = 0,1,... , q — 1,
and T(<) = lj?=o Ti- Consider the one-parameter process Y* = indexed by
a € < 0, q > after appropriate change of scale. Clearly, Y* possesses realizations 
without discontinuities of the second kind, thus we can define inductively: t0 = 0, 
and for a given t*,

inf{a € < 0, q >: a > t* and p(y‘(o), y‘(r*)) > 2~,_1} 
if this set is nonempty,

q otherwise.

It is obvious that t* are then the usual one-dimensional stopping times. Define
next

X*(f) = S(X(0)) + £ [s(y‘(rt-) © y'Cr*-!))

(5.1)
+ s(y‘(Tt)©y‘(T*-)^jx(’’*-i <q),

where © stands for subtraction in Tj. Observe that every trajectory of Y* has only 
finitely many e-oscillations, e > 0. Hence it follows that for each uj € ii the sum on 
the right-hand side of (5.1) consists of only finitely many terms, and in consequence 
X* is well-defined.

We are going to prove that X* is an additive process. Let <a,b) C Rg+ be an 
arbitrary rectangle. Evidently, computing AP(<a,6)) we have to use .Y*(s) with 
all combinations of Si = a, or bi, 1 < i < q. Moreover, for a fixed Si,... , sg_i, X’(s) 
appear twice with distinct signs + or — depending on the last coordinate sq = aq or 
sq — bq. Denote oa — q —- 1 -1- aq/bq, s a —— (sj,... , sg—i,Qg), — (sj,... ,sg_2,feg) 
and m = min{fc : r* > oa), where 7> are stopping times relative to Y*b. Note that 
for p(x,0) + p(j/,O) < 1/2 we have S(x) + (—)S(y) = S(x © (©)j/). Therefore

(5.2) - X*(s4)-X*(sa) =

= {52 ^(y^^-jey'»^,)) +s(y’‘(rt)©y“(rt-))]x(rl_1 <9)
k>m

- [s(y*‘(oa-)©y“(Tro_,)) + s(y>‘(aa)©y’‘(aa-))]x(rm-1 <«.)}
= { E [s(y“(h-)ey’i(TM)) + s(y“(h)©yi‘(h-))]x(rM<9)

Jk>m+1

+ [5(y,‘(rm-)ey,,(a.)) + s(y',(T„)ey,,(rm-))]x(rm-1<?)}.

It is easy to see that x(Tm-i < q) = 1 and stopping times r* for k > m determine 
points on the line between sa and s^, thus from (5.2) we infer immediately that 
X*(si,)—X*(sa) can be expressed by means of a finite system of differences X(u—; q)Q 
X(n) and X(u) © X(u—;q), where sa < v < u < sj. ’The same procedure can
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be repeated for each segment <sa,si, > with a fixed s; = a, or 1 < i < q. 
Introduce next the index points r'k obtained from all 7> relative to various Y’b by 
orthogonal projections onto another segments <s„,st> which form edges of <a,b). 
Let r' = min{r[ : > a0}. Then we conclude that

(5.2’) X‘(s»)-X‘(io) =

= { £ +s(r-(ri)er*‘(ri-))]x(ri_1 <?)

Ti>r‘
+ [s(Y‘b(r'-)QY‘b(aa)) +s(y‘(r')ey’»(r'-))]} .

Hence it follows that

(5-3) ¿r(<a,t)) =

= 52 (-l)c‘rd<i<i:,i=ai>[x*(s»)- %•(«.)]

1<»<7 
a,=a, or 6,

fcj
+ s|

1<»<9 
«i=a, or

+ 5|[ y

1<«<0 
«i=a,- or t.

+ s [ y (_l)card{i<j:»j=a

l<»<g 
«■=a, or bi

(y^^ey^-))]}*«, 

(y'‘(r'-)ey’‘(«a))] 

(y-‘(r')ey’‘(r'-))].

< 9)

because ys‘ are processes with moderate jumps along lines parallel to Ox9-axis. 
Notice that the sums which are arguments of S in (5.3) are determined by increments 
of the process X on some subrectangles of < a, 6). Consequently, AX‘(<a,6)) is 
a(A X(<u,v)),u,v 6<a, 6>)-measurable, and therefore X* is an additive process. 
Moreover, from the construction of X* we conclude that X* possesses realizations 
without discontinuities of the second kind along access lines.

To prove the converse statement, put *x = x — Ent(x + 1/2) for x £ R. Then for 
x € Z = {... , —1,0,1,... } we have *(a: +1/2) = —1/2, and so computing the limit as 
x f n + 1/2, n € Z we shall identify 1/2 with —1/2. Observe now that A [*.¥(< a, 6))] 
(mod 1) =* [AX(<a, 6))], i.e. *X is an additive process. Furthermore, *X has lamp 
realizations along access lines and *X = X (mod 1). Thus the process {tX’(t), t E R+ } 
satisfies the required conditions.

Corollary 5.2. Let X = {X(, t E R+} be an additive Tp-valued stochastic 
process with moderate jumps having lamp realizations along access lines. Then there 
exists an additive process X* with values in Rp and lamp realizations along access 
lines such that X = X* (mod 1). Conversely, if X is an additive process taking
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values in Rp which has trajectories without discontinuities of the second kind along 
access lines, then there exists a Tp-valued additive process *X with the same property, 
such that *X = X (mod 1).

Proof. The process X can be written as a vector (Ai,... ,Xp), thus we may 
set X* = (A*,... ,Xp), where X* are constructed like in the proof of Theorem 
5.1. Similarly, for the process X = (Aj,... ,XP) with values in Rp we put *X = 
(‘A,,...,‘A,).

On the basis of the above results one can obtain a maximal symmetrization 
inequality for additive processes taking values in torus. However, it can be easily seen 
that the symmetry of the process X in Tp does not imply that its representation X* 
in Rp is a symmetric process, thus we assume it.

Proposition 5.3. Let X = {A<, t € Rq+} be an additive Tp-valued stochastic 
process which has a representation X* in Rp with sign-invariant increments. If 
<w,z> m an arbitrary bounded rectangle in R9+, then for every open neighbourhood 
U = U(0j of zero in Tp such that V = SU C (—1/2,1/2) u a globular neighbourhood 
of zero in Rp we have,

(5.4) p[ J (AX«,,!)) I t/)] < 4'p[aA’(<w,z)) £ V(-2g)] ,

•,<eo

where D is a finite subset of <w,z>.

Proof. A direct application of Lemma 3.2 (see Part I) for the additive process 
X* yields

p[ 1J (AX(<M)) i tz)] < p[ U (AA*(<s,t)) v)]

s.teo «,ieD
<4’p[aX‘(<w,2))£ V(-29)] .

By analogy, on the basis of Corollary 3.3 we get the following result.

Corollary 5.4. Let X be a stochastic process satisfying the hypotheses of Propo­
sition 5.3 above. Then (5-4) remains true with D replaced by any countable set of 
points Q C <w,z>. If in addition X is a separable process on <w,z> with respect to 
closed sets F € (?(TP) and the set of separability Q, then (5.4) entails

(5.5) P[ J (AA(<s,t)H tz)] <4’p[aA*(<w,z))^ V(-2g)] .

The sign-invariance of increments of the process X* required for an application 
of the above Proposition 5.3 and Corollary 5.4 is a rather cumbersome restriction,
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because it cannot be easily translated into the properties of X and verified. Thus the 
results of this kind for Tp-valued processes seems to be of limited use. Nevertheless, 
an analogue of Corollary 4.3 can be given without such an additional assumption.

Observe that for an arbitrary open set U containing zero in Tp we have SU C 
<—1/2,1/2), so that investigation of increments of X* inside or outside of large 
rectangles V C R+ is meaningless. Therefore we consider only the case where |t| = 
<!•...•<, —»0, because then sets of an upper (or lower) class can be close to zero and 
this is solely interesting situation for Tp-valued processes. For this reason we assume 
that B is now a bounded rectangle from above and, intuitively, Ut are asymptotically 
close to the set {0}. In addition, we admit further only separable processes with 
values in torus, because the conditions ensuring this fact in metric spaces are fairly 
well-known and are not significantly stringent - see e.g. Doob (1953) or Gikhman 
and Skorohod (1965).

Proposition 5.5. Let X = {A/, t € Rg+} be a separable additive stochastic 
process with values in Tp and let U = {Ut, t € P+} be a regularly varying family of 
open neighbourhoods of zero in Tp such that SUt C (—1/4,1/4) for all t £ B are open 
convex sets in Rp containing zero (and thus globular) with (SUt)(—j), j > 1 also open 
and convex. Assume in addition that,

(5.6) rB ■■= Jg^- P[AA‘(<0, t)) (SUt)(-2q - 1)] dt < oo .

Then there exists a deterministic function z : R+ —» Tp such that for an arbitrary

1 < £ Rq+, (4-7) *•’ true in Tp as |/| 0 with + replaced by ©, where Wt(—j) =
and U,(-j) = S~'((SUt)(-j)).

Proof. Let Xt and X{ be defined like in the proof of Corollary 4.3 on the product 
probability space (ft x £l',F x p' ,P x P'). Choose a and define the sets J and J' 
similarly as in the proof of Theorem 4.2. Denote

At = { J [A(XeX')(<s,v))£lZat+,eC7a»+l]} .

0<«<v<afc
It can be easily seen that V) = SUt — SUt are globular sets in Rp, and in view 

of Proposition 2.2 we can take Vt(—j) = (SUt)(—j) — (SUt)(— j), j > 1, because 
(SUt)(— j) are open and convex. Therefore, based on Corollary 3.3 we obtain

(5.7) P x P'[A*] <

<PxP'{ (J [a(A* - A'*)(<s,v)) i SUa>+t - 5C/0*+i]}

0<«<v<a*

<4’PxP'[a(X’-X'*)(<0,<?))£ V„*+«(-2g)] .

Note next that A(A* — X'*){< 0,t)) — A(A* — A'*)(< 0,a*)) is a symmetric 
random vector in Rp independent of A(A* — X'*)(<0,a*)) provided t € (ak,ak+l >. 
Thus, by analogy to (4.4) we get

(5-8) P x P'[A*] <
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< 22’+1P x P' [a(X* - X'*)(<0,<)) i Vt(-2q - 1)] 

<22’+2p[AX*(<0,t))^SCZi(-2g-l)] .

Consequently (cf. (4.5)-(4.6)),

(5-9) ^PxP'[A*] < 22,+2(lna) qIg < oo .
teJ

Now for t € <ak~1,ak> we have

{ U [A(xex')(<o,f)W]}u*,
<6<O*-I,o‘>

and hence, on the basis of (5.9),

pxr{ u n h* ex')(<o,t))GW>«]} = i.
X" tt<a‘,an> 

j.neJ' t£B

Finally, setting z(t) = AX'(<0,t))(w') for a fixed u? € ii'j, where P'[Qi] = 1, we 
obtain the desired conclusion.

As was already mentioned, the topology of Tp is generated by the natural metric 
p. Combining Proposition 5.5 and the idea that leads to Corollary 4.4 we can specify 
an upper class of sets for increments of X in Tp more precisely. To simplify the 
writing, denote

po(x) = max[p(xi,0),... ,p(xp,0)] 

for x = (xi,... ,xp) G Tp.

Corollary 5.6. Let g : Rq+ —» R+ be a regularly increasing function such that 
g(t) G <0,1/4) for t G B and let Ut = {x G Tp : po(x) < p(f)}, * € R+. Assume that

(5.10) I't := i • P[AX’(< 0, t)) I {SUt}} dt < oo .

Then there exists a deterministic function z : P+ —> Tp such that for an arbitrary 
6 G R+, 6 > 1, we have

(5.11) p[limmf(p(AX(<0,t))e«(O) < 2^(0]] = 1 •

Proof. Let G R\, 0 > 1 be so close to 1 G R+ that 1 < h(J3) < 6, where 
h(/3) = sup{g(/3t)/g(t) : t G Rg+ \ dRq+}. Then

Upt Q Upt £ {z € Tp : p0(x) < 26gr(t)} .
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Furthermore, SUt — SUt are globular rectangles in Rp and thus we can take 
(SUt — SUt)(—j) = SUt —SUt- Therefore (5.11) follows immediately from Proposition 
5.5.

It is also possible to obtain some analogies of Theorem 4.9 and Corollary 4.10, 
but for this purpose certain additional assumption is needed.

Definition 5.7. We say that the representation X* in Rp of a Tp-valued pro­
cess X is subordinated to X on B with respect to the family U = {I/} of open 
neighbourhoods of zero in Tp, where each SU is a p-dimensional rectangle contained 
in <—1/4,1/4), if there exists a universal constant b, 0 < b < oo, such that for each 
rectangle <s,t) C B and every (open) set U, 0 g U € U, the inequality

PxP' [a(X* - %'*)(< s,i)) iSU - SI/]

< bP x P' [a(X ©%')(< s, <)) £ C7 e </]

holds.

It can be easily seen that for a fixed B and U the process X* is subordinated to 
X, if there can be found a bounded sequence of nonnegative constants {&*, k g Zp} 
such that

P x P' [a(X* - X'*)(< s, <)) g k + (SU - SP)]

< bkp x P' [a(x* - x'*x< s, t)) ek + s((u © P)c)]

for all k g Zp, k / 0, <3,i) C R+ and open sets U 9 0 in Tp. Indeed,

p x p1 [a(x* - %'•)(< 3, t)) isu - sp]

= ^2 P X P' [a(X* - %'*)(<3,i)) g k + (SU - SP)]
*#0

+ £ P X p' [a(X* - A"*)(< s, t))ek + S((U © P)c)]
k

< (1 + sup &*) £> x P' [a(X* - x'*)(< 3,0) g k + S((U © P)c)]
* t

= (1+ sup bk)P x P' [a(X © X')(<s, 0) £ U © p] .

Clearly, such a regularity condition imposed on distributions of increments 
A(X* — X1*) is not necessary for subordination of X* to X.

Now we shall generalize Levy’s symmetrization inequality which is well-known 
for R-valued random variables (cf. Loeve (1960), §17.1 A) to the case of a finite 
dimensional space Rp.
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Given any random vector Y = (Y,,... , Yp) in (Rp, Bp) we define the median of 
Y by the formula

mY = (mY,,... ,mYp),

where mYi are the usual medians of one-dimensional random variables Yj.

Lemma 5.8. Let Y, Y' be independent random vectors in (W,BP) with a 
common distribution, and let V = (a, b) be a p-dimensional rectangle in Rp. Then we 
have

p x p'[y - y' $ y] > (2p)_1 .p[y-my i v].

Proof. Notice that sets of the form {x, < a,}, {x, > ¿>i}, ..., {xp < ap}, 
{xp > 6p) cover the complement Vc of V in such a way, that some parts of Vc are 
duplicated, but at most p-times. Moreover, P[Y, — mYi > 0] > 1/2 and P[Yi — mYi < 
0] > 1 /2. Hence we obtain

P' P x P'[K - Y' V] > P x P'[Yi - Y[ < a,]
+ PxP'[Y,-Y,'>&,] + ...
+ p x p'[yp - y; < ap] + p x p'[yp - y; > ftp]
> P x P'[Y, - mY, < ai, Y,' - mY,' > 0]
+ P x P'[Y, - mYi > bi,Y( - mY,' < 0] + ...
+ P x P'[Yp - mYp < ap, Yp' - mY'r > 0]
+ P x P'[Yp - mYp > bi, Yp' - mYp' < 0]
= P[Y, - mYi < ai]P[Vi' - mY[ > 0]
+ P[Y, - mYi > 5i]P[l7 - mY,' < 0] + ...
+ P[Yp - mYp < ap}P[Y; - mYp' > 0]
+ P[Yp - mYp > 5,]P[Yp - mY; < 0]

> (1/2) • {p[Y, - mY, < a,] + P[Y, - mY, > 6,]

+ ... + P[Yp - mYp < ap] + P[Yp - mYp > 6,]}

> (1/2) P[Y-mY i V] .

Consequently,

P x P'[Y - Y' V] > (2p)-1 • P[Y -mY iV\.

Let now B = <T,S> be a bounded rectangle in Rq+. Recall that in such a case 
we put B(a) = <T/a,aS> for a € R+, a > 1.

Proposition 5.9. Let X = {Xt, t G R+} be a separable additive Tp-valued 
stochastic process having a representation X* in Rp subordinated to X on <0, a2S> 
with respect to the family U = {U<,tt),<8,ï) C <0,a2S>C Rg+} of open neighbour­
hoods of zero in Tp satisfying conditions (i)' — (it)’ of Definition 4.8, Part II, where
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a >1,0 6^ m specified below, U<a<= ^<«,<) an(t <s,t) C<0,a2S>
are open rectangles contained in (—1/4,1/4) C Rp, B = <T,S>Q R+. Assume in 
addition that for some 0 < a < 1 there exists a € £<»(0) such that,

(5.12)
J*B ~ t TR- jnf PÎAX*(<s,<)) — mAX*(<s,<)) = oo.

JB 1*1 0<«<t L J

Then there can be found a deterministic function z : Rq+ —» Tp such that for an 
arbitrary a' € R+, 0 < a' < a, we have

(5.13) pflimsup[AX(<O,t)) £ z(t) ® =1 ,

with W<>A) = U<s<t) Q and Wt = W<o,<), t € Rq+-

Proof. Clearly, it suffices to prove (5.13) for a' = a. Let

Bk = {A(XeI')(««‘,a‘+1)) i .

Since X* is subordinated to X, by analogy to (4.19) we have,

(5.14) P x P'[Bt] >

> 6->P x P' [a(X* - X'*)(<afc,at+1)) $ S£7<a*i0»+i) - Si/<0*,.»+>)]

> rU-’^P x P'[a(X* - X'*)(<s,f)) i SU<t,at} - Slf<.,o,)]

for every t € (a*, at+1>. The generalized Levy’s symmetrization inequality of Lemma 
5.8 implies that,

(5.15) P x P'[£*] >

> b~14-q(2p)-i omf<(P[AX’(<s,<)) - mX‘(<S,i)) g SU<t,at) - 5tZ<J,a()] , 

and hence,

(5.16) 52 P x - (26p)-1(41na)-’ J"B = oo ,
*eJ

provided J = {fc € Z’ : <ak,ak+1> Cl B 0). Further, observe that for s,t € R+, 
W = {Wr<4it)} satisfies (4.15). Now the same argument as in the proof of Theorem 
4.9, Part II with X replaced by X — X' and U(.)(—2q) by Wp leads to the following 
relation:

= 1 .
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Substituting z(<) = AX'(<0, t))(w') for a fixed u>' € fi'j, where = 1, we obtain
(5.13).

Corollary 5.10. Let X be a separable additive Tp-valued stochastic process 
having a representation X* in Rp subordinated to X. Furthermore, let g : Rg+ —♦ R+ 
be a function with regularly varying increments (see Part II) and let

U<i,t) = {x eTp: po(x) < A<?(<s,t)} , <s,t) C R+ .

Assume that for some 0 < a < 1 there exists a € Ea(Q) such that (5.12) is fulfilled 
and g(t) G <0,1/2) for t € <0, a2S>, where S is the upper-right vertex of a bounded 
rectangle B C Rg+. Then there can be found a deterministic function z : Rg+ —> Tp 
such that for an arbitrary e G R+, 0 < e < /(a) = inf {g (at)/g(t) : t G Rg+ \ dRg+}, 
we have

(5-17) P ilimsup[po(AX(<0,t)) ©z(t)) > 2eg(t)]] 1 .

Proof. The assertion (5.17) follows easily from Proposition 5.9 and properties 
of g (cf. Example 7, Section 4, Part II).

There is also possible to give certain analogues of Theorem 4.12 and its Corollary 
4.13 for Tp-valued stationary additive processes. As previously we consider only the 
case t —► 0 and assume that the index set B is now of the form

(J <7’(')iS(.)>i r <OO)
»<r

where T^'\ are as in Section 4, i.e. 0 < < S^'\
for each i E Z, i < r and —> 0 as t —» —oo.

Proposition 5.11. Let X = (A(, t E Rg+) be a separable stationary Tp-valued 
additive stochastic process having a representation X* in Rp that is subordinated to 
X. Furthermore, let U = {Ut,t E Rg+} be a family of open neighbourhoods of zero 
in Tp satisfying conditions: (i) of Definition 4-1, (ii) of Definition 4-5 and (iv) of 
Definition 4.11, Part II with Ut(—j) = Ui, such that SUt for t E <0,aS^> and 
some 1 < a E R'+ are open rectangles contained in (—1/4,1/4) C Rp. Assume that 
the process X satisfies (4.2J) - (4-25). If in addition

(5.18) S*B:= J l-p[AX*(<0,t))-mAJr(<0,t))£ SU, - SUt] dt = oo ,

then there can be found a deterministic function z : Rg+ —> Tp such that for each 
a € Rg+, 0 < a < 1,

(5.19) pflimsup[AX(<0,<)) </ j(i)® W'oi]] = 1 , 
L J
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where W, = W<Oit} = Wt(-j) = U,QU, for t € Rq+ and Ba = (Ji<r <T(i), S(i)/a>.

Proof. Let a', e', a, e, p, J and J„ be defined as in the proof of Theorem 4.12. 
Consider the events

Dk = { AX(<0, a*+1)) 0 AX'(<0,a*+1)) £ lTQ,ak+1} , k € J .

Since X* is subordinated to X, by analogy to (5.14)-(5.15) for t € <ak, a*+1 > we 
obtain

P x P'[D*] > b~'P x P' [a(X* — X'*)(<0,a*+1)) £ SUa,a„+x - SC/^+.J

> rU-’p x p' [a(x* - x'*) i sua.a>+> - su„.a>+,]
> iV’P x p' [a(x* - x'*) g su, - st/t] 

>4-’(2fcp)-1p[AX*(<0,t))-mAX*(<0,t)) (f SU, - SP(] .

Hence and from (5.18) we infer that SteJ P x P' [Di] = oo. Defining as previously 
the events A^\ (see the proof of Theorem 4.12) and putting

E'kw = {a(x - a(n,*)) t ^o,a„+^}, k e ,

we see that for some 1 < n < N with P x P'-probability 1 infinitely many events 
EkN) occur. Let {fc}, k —> —oo denote the sequence of indices for which EkN^ hold 
a.s. Define next the events

= {A(X QX )«0, ■Ajv>Ak(>+l)+A«*(»+l-/.l)) 6 ±Wpa"+N‘«)} •

Clearly,

P X P'[HA^] < 2P[aX(<0,A^ t0+1)+;cJt(>)+1_<il)) I ±t/,a»+„M»] ,

so that taking into account (4.24) one can select fc(j) —> —oo, fc(j) € {fc} in such a 
way that with P X P'-probability 1 for j > j, = ji(io,a>') and each A,p € A, A, p X 0, 

occur (see the previous part of the article for the definition of A).
Consider now the events

B/ = {¿(X^W^».-^^,..,,)) € •

In view of (4.25) and stationarity of X we have

P x P'[B/] > P2[AX(<0,an+N*(»^(X,j,p))) € >,„)«•.+*»«>] > »?2 > 0 .
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Arguing similarly as in the proof of Theorem 4.12, Part II we select an infinite subse­
quence {/} such that for all j' > j and /z 0, with P x P'-probability 1, B'J) hold. 
In consequence,

A(X e X')(<0, A(N")4(>,)+1_/11)) € Wtan+Nk(n PxP' - a.s., M / 0 . 

Hence and from property (iv) of Definition 4.11 it follows that

A(X © X')(<0, A(Nn)t(>,)+1)) i WaAyk{.,^ P*P'- a.s. 

for sufficiently large j'. Therefore

PxP' [limsup[A(X © X')(<0,t)) i IV*,]] = 1 .

Finally, the same argument as in Corollary 4.3 yields (5.19).

Corollary 5.12. Let X be a separable stationary Tp-valued additive stochas­
tic process having a representation X* in Rp subordinated to X. Furthermore, let 
g : Rq+ —» R+ be a completely regularly increasing function such that g(t) € <0,1/4) 
for t € <0,aS^>, where 1 < a € P+ is a fixed q-tuple, and let

Ut = {x € Tp : p0(x) < <z(t)} , t € Rq+ .

Assume in addition that X and U = {{/<} satisfy conditions (4.24)-(4-25) of Part II 
and (5.18). Then there can be found a deterministic function z : Rq+ —> Tp such that 
for an arbitrary e € R+, 0 < e < 1 we have

(5.20) p[hmsup[po(AX(<O,f)) ©z(<)) > 2egr(t)]j =

Proof. The last conclusion is a direct consequence of the previous Proposition
5.11.

Remarks. 1) All the results of Section 5 remain valid for the process X taking 
values in a nonglobular group C(rj,... , rp), because C(ri,... , rp) can be embedded 
as a subgroup in Tp. In such a case the representation X* of X takes values in the 
globular subgroup Z(ri,... , rp) of the group Rp.

2) The assertions of Propositions 5.9 and 5.11 as well as of Corollaries 5.10 and 
5.12 are true if the sets of indices B(a) and Ba are replaced by their countable subsets 
B'(a) and B'a respectively (cf. Section 4).
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