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On the Rate of Convergence of Functions of Sums of Infima
of Independent Random Variables

Abstract. Let {Yn,n > 1} be a sequence of independent and positive random variables,
defined on a probability space (Q, A, P), with a common distribution function F'. Put
Y. =inf(1,Y2,...Yn), m2>1,and Sp= Z:,:l}',; ,n>2,5=0.

Let g be a real function such that g' satisfies the Lipschitz condition, and let {apn,n > 1} be
a sequence of positive real numbers.

In this paper the convergence rates in the central limit theorem and in the invariance principle

for {g(Sn/an),n > 1} are obtained.

1. Introduction and notations. Let {Y;, n > 1} be a sequence of independent
and positive random variables (i.p.r.v’s.) with a common distribution function F such
that

1
(1) [ |F(z) —z/€lz=% dz < 0o forsome ¢, 0<f¢< oco.
Jo

Let us put

Yo =inf(Y;,Y2,...Ym), m>1,and Sa=)» Y¥m,n22, 85 =0.

m=1

There is a large literature on properties of Y,y , n>1 (cf. [3]-[11]) .
Now, let G be the class of real and differentiable functions g , such that ¢’
satisfies the Lipschitz condition, i.e.

(2) lg'(z) — ¢'(w)|l < LIz -yl ,

where L is a positive constant.

The asymptotical normality for functions of the average of independent random
variables is considered, for instance, in [1], [2], [12], [13] and [16]. In this paper we
examine the rate of weak convergence of {g(Sn/an), n > 1}, where S, is the sum
of infima of independent random variables, g belongs to G , and {an, , n > 1} isa
sequence of positive numbers.
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2. Results. Let {Y, , n > 1} be a sequence of i.p.r.v’s. with a common
distribution function F such that (1) holds for some £, 0<¢<oo.
Let us define

S Llogn
3 Z, = e =) - >1,
®) £/Zlogn g (Llognjay) [g (On) g( Qn )] &S

where g € G and {a, ,n > 1} is a sequence of positive real numbers such that

@n —00,a3 n —+00. Let Fz denotes the distribution function of Z, and @® the
standard normal distribution function.

Theorem 1. Under the assumption (1) and (2), we get

1082 n 1 -B./2

where {en ,n > 1} is any sequence of positive real numbers decreasing to zero such
that

(5) e,.a,,/(2logn)‘/2 — 00, and €n(2logn) 200, asn— o0,
and
’
(6) B“ — e"(!nlg (elog n/a")l . 0 < 0 < 1.
L6¢\/2logn

Putting € = log2 n/(log n)1/2 . a_nd ap = logn where 1052" = 108(105") [}
from Theorem 1 we easily get the following:

Corollary 1. Under the assumptions of Theorem 1 we have

log, n

gt -0 (250

),un—*oc.

Now, let us define random functions {Z.(t) t €<0,1>}, n > 1, as follows:

an /S[!tlo‘n]) (Zt logn )
g1 =gt——— |t »
¢\/2logng' (¢tlogn/ay) { \ @& n }J'

Zi(t) =0, t € (0,1>, Z,(0) =0, n > 1, where [z] denotes the integral part of z .
One can note that {Z,(t), t €<0,1>} is a sequence of D<o,1> - valued random
elements, where Dco,> is the space of functions defined on [0, 1] that are right-hand
side continuous and have left-hand side limits.
Let us denote

(7 Z(t) =

exp{—(2k + 1)2x?/82z%} ,

SRS
()8
T

®) ()= Pl sup (W(t)| <] =

-
I
(=
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where {W(t), t €<0,1>} is a standard Wiener process on D15 -

Theorem 2. If g € G and inf, |¢'(z)| > 0, then under the assumptions (1),
(2) and (5) we get

sgplP[oZ\:gl |Za(t)] < z] - T(2)|

(9) ¥
=0 (ma:x{(logn)"/3 W BERE i 1/28- "/2}) , asn — oo ,
Cﬂ
where
(10) Cn = €nan ogle l¢'(tlogn/an)|/L6\/2logn, 0<8<1.

From Theorem 2, putting ¢, = (logn)~'/®, a, = logn , we obtain
Corollary 2. Under the assumptions of Theorem 2 we have

sup [P[ sup |Zn(t)| < 2] - T(z)| = O((log ) ey

3. Proofs of the results. In the proof of Theorems 1 and 2 we apply Theorem
1 [9] and Theorem 1 [8], respectively.

Proof of Theorem 1. At the beginning suppose that {X, ,n > 1} is a sequence
of independent random variables uniformly distributed on [0, 1] (i.r.v’s.u.d.). In this
case £=1. _ _

Put X3 =inf(X;,X2,..., Xm) m21, Sa=Y"0_, X5 ,n22,85 =0,
and define

y _ a NEARL
(1) Zn = Vv2logn g' (logn/ay) lg (ﬂn) g( ap )] :

where g and a, are as in (3).
Let us denote

g9(z)—g(logn/an}
’tn(f} = { (z-logn/an)g'(logn/an) i # logn/a,. !

1 , T =logn/a, .

One can observe that
(12) Z,=2\+ 2@,

where

Zm _ S —logn ;. 2z |k Sn o9
n \/a‘l——ogn n n an
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Let an and F,u) denote the distribution functions of Znand 25, respec-
tively. '

By (11), for any €, >0, we get
Faa)(z —€a) = P(IZP] 2 €a) < Fz (z) S Fza(z +ea) + P[1Z?] > €] ,

hence

py  PVRE) - Sl ) - 000
13 : ¢
: +sup|®(z +€n) — B(z —€n)| + P[lZ,(,2)| 2 €n) .

By Theorem 1 [9), we have
logi n
(14) 8‘:P|Fz$‘l)(z) - %) =0 (W) » 881 — 00,
and, moreover, by the inequalities presented in [14), p.143,

(15) sup |8(z + €n) — B(z — €a)] < 2(27) 7% |eal .

.NOW. we shall estimate the last term of the right-hand side of inequality (13).
By simple evaluation, using (2), we obtain

P(1ZP) > ] = P |12 1 9(Sn/an) — g(logn/an) 1>

= €n
L g'(logn/an)  S,/a, —logn/an

€n

_ p [z g 0en/an + 85a/an) ~logn/an)
" g'(logn/an

L \/f_lognl o ]

lg'(logn/an)l an T

<P IZ'I‘I)P

r 1/2
P12 > (oo tog /el

< 2sup |Fz$.”('t) - ®(z)| +2(1 - ®((Bn)'?),

where B, is given by (6), L is a positive constant and 0 <8 < 1. .
Hence, by (13)-(15), Theorem 1 [9] and the inequality 1—®(z) < 1/V2rz e = /2
for > 0, we get (4). Thus the proof, in this case is ended.
Now, let {Y, ,n > 1} be a sequence of i.p.r.v's. with the same distribution func-

tion F satisfying (1), and let, as previous, {Xn ,n 2 1} be a sequence of i.r.v’s.u.d.
on [0,1].

Put
G(t) = inf{z > 0: F(z) > t} .
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Then, by [5], the sequences {G(X,) ,n > 1} and {Y, ,n > 1} are the same in law.
Furthermore, the sum S, = Y ;_, Y, , where Y =inf(1},Y;,...,Yk) ,k > 1 can
be represented as

(16) B = ZG(.\’;) , where X§ =inf(X,,X2,... , Xx), k2 1.
k=1
Let us define {Z, , n > 1} as follows:

= ay (._S‘ \ {[logn)
n = gae——~
¢\/2Togng'(logn/ay) l \a,.) \ an

L

and put

(z)—g(llogn/ay)
hSII)(I) = l!—-:ll:g n?a,):'(loc;n/a,‘) ' T # llogn/aﬂ )
1 , z =Llogn/ay, .

Analogously, as previous, we get

(17) = T

where 3 3
20 St o g0l (3 ]
£v2logn an
By relation (23) [8] for all sequence {¢p ,n > 1} of real numbers such that £, — oo,

as n — oo , we have

w =0(1), as.,

so that

ln
F. 1 <F 1) — y
o (=- eﬁm) Faon(=) < Py (”e o)

for sufficiently large n .
Putting ¢, = flog, n , by (14), we obtain

log, n
(18) sx:plFaln(T)—q’(IN:O(ﬁ,f)_lﬁ) '

Analogously, as previous, we get

), LV @ log; n ot /2
(19) P“Zn IZC,.]—O(m&XiW y€n o 1/2‘ / s

where B, is given by (6).
Using (17)-(19) we get (4) and the proof of Theorem 1 is completed.

Proof of Theorem 2. At first we assume that {X, ,n > 1} is a sequence of
ir.v’s.ud. on [0,1] and put

= an ( S[,. logn] {tlogn
Zn(t) = \/2Iognq(tlogn/a,.)[ \ an ) \ an )] '
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for te<0,1>,n>2,2,(t)=0.
We can write

(20) Za(t) = Z{(t) + Z((1)

where
S{!l logn] = t lUEﬂ
V2logn -

ZO(1) = ZzM(t) [h:, (Brerroeny /a,.) - 1] ,

Z) =

and

(z)—gllel n)
21) hO(z) = | Tleantanistiogaran @ # tlogn/an,
1 , T ={tlogn/ay, .

We remind that in this case ¢ =1 . We will show, that

(22)  sup|P[ sup |Z0)(t)| < z] - T(z)| = O(max{(logn)™'"* ,ex}) ,
z 0<t<1

where T(z) is given by (8), and e, satisfies (5).
Let us put

» s & ) .
Snk= 1Sk Z]/l} /(2logn)'/?
=1

and define the random functions {Xn(t) ,t €<0,1>} as follows:

Xa(t) = Sap, for t€<titisr), 1<k<n,
Xn(0)=0,n>1,

where t; =logk/logn, 1<k<n,n>2.
One can note that

(1)) —
Ploggl 1Z22(t) = Xa(t)] 2 en)

& g tlogn g;—ZL 1/i| ]
=P | et ve) - - = 2 €p
B T Sy, e B
Sis1—logk Si—X% 1/i
<p [ k+1 10X Ok =1
- [l?’?gﬂ lmax( V2logn Vv2logn
S —2,’;, l fowe Sk — log(k + 1\ -
V2logn V2logn /1= "
3 ; k -
= P max max( Xk, Lam(1/i) —logk log(k+1) - 3, 1/

1
|
]

Llrsn’?;c“ \W2logn V2logn ! V2logn
SPIX] +v>en/2logn] =0

)2]



42 H. Hebda-Grabowska and B. Bartmanska

for sufficiently large n, as by (5) €n\/2logn — 0o, as n — oo , where 7 is the Euler's
+ constant (y =~ 0,577) .
Hence

P sup [Xa(t)] S z — ea] < P[ sup [Z8(t)] S 2]
0<t<1 0<t<1

< P[sup |Xn(t)| <z +6€),
0<t<1

and
sup| P sup [Z()] < 2] - T(z)|
(23) z 0<t<1 ~
< sup|P[max S| < 2] = T(2) +5up|T(z + €a) = T(z — en)]
On the other hand
(24) sup |T(z + €n) — T(z — €a)| < /8/72en ,

(cf.(3.1), [15]), so that by Theorem 1 [8], we get (22).
Now, let us observe that

P[ sup |Z2(t)] 2 en)
0<t<1

g (tlogn/a,. +6 S[ctlogn]/an - tlogn/a,.) )
= P[ sup, 1200 (
g'(tlogn/ay)
|L0|S[,- logn) — tlog n|| 1
€n
ang'(tlogn/ay) | = 7
nQn inf lg’ (HOS"/O’n)h
< Z(”f 2 €nQpin 0<t<1
> [oi‘f‘g’ll n O < L6\/2Togn i
< Pl sup |Z{V(t) 2 €/,
<1

2o

<p| S 1zl

where C, is a positive constant given by (10).
Hence, by (22),

P sup |ZP(2)] 2 en] < P[ sup |2((t)] 2 C1/?)
0<t<1 0<t<1
= P[ sup |W(t)| < CA/? - P sup |2{")(t)| < CL/?]
0<t<1 0<t<1

+ P sup |W(t)| > C,/%

0<t<1
< sup|P[ sup |Z(V(t)| < 2] - T(z)| + 4P(W(1) > CA/%)

z 0<t<1

= O((logn)™""* + P

V2 c‘/2
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so by (23) and (24) we get (9).
Now, let {Y,, n > 1} be a sequence of i.p.r.v's. with the common distribution
function F satisfying (1), and let us put

20 = Ty (tlognTon) [” (i_) sk (afng n)] :

where {S,, n > 1} is given by (15).

Putting
1) " 3‘[,.1.,...! —Ztlogn
2{" (1= £/2logn
we have
(25) Za(t) = Z,, (1) + 2 (1)[h4(Sn/an) - 1] ,

where h}(z) is defined by (21). If we denote
Foa(z) = Pl sup 2V < 1],
0<t<1

then by Theorem 1[8] we have
(e [Fa(z) - T(z)| = O((logn)™*/%) .
Moreover, we obtain
P[ sup (2, (t)[h4(Bn/an) — 1| 2 en]
0<t<1

il
< P[sup |ZV(0)? 2 Ca] < Pl sup |Z} (t)| > CM?)
0<t<1 0<t<1

< sup [Fa(z) — T(z)| + 4PW(1) > C3/?)

- 4 —Ca/2
= O((logn)~1/® + We J)i

Usind (25), (26) and the above, we get (9) and the proof of Theorem 2 is com-
pleted.
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