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Some remarks on strong factorization
of tent spaces

ABSTRACT. We provide new assertions on factorization of tent spaces.

In this note, we provide new assertions concerning strong factorization of
so-called tent spaces. In order to formulate our results we will need some
standard definitions ([3, 4, 5]).

Let

RV = {(z,t): 2 € R",t > 0},
D) ={(y,t) € R{™ s |z —y| <t}
and B(z,t) = B be a ball with center z € R".
For x € R", let

Aoo(f)(@) = N(f)(z) = sup |f(y,1)],

(y,t)el(z)

1/q
Ay(f)(z) = ( [, dt)

1/q
Co(f)(@) = (222‘31/ dydt) ,

where T'(B) is a tent on B in R™ (see [3, 4])

and
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Define spaces Ty, T% and T,° respectively

17 = {f : f is measurable in Riﬂ satisfying
1A llze = [[Aq(f) (@)l Lo (rn) < o0},

T2 = {f: f is measurable in R’}r“
with continuous boundary values on R"

such that |fllzg, = s (F)(@)lar) < o0}
and
T, ={f: f is measurable in R’ffl
satisfying || fllzge = [|Cq(f) (@)l L < 00}
One of the main results of [3, 4] asserts that
(A) TP =TET,* for 0 < p,q < oo.

The mentioned equality was for the first time obtained in [3] for p > 2,
q = 2. Such type strong factorization theorems have numerous applications
in the theory of analytic spaces ([2, 4, 6]). We give some results similar in
spirit to (A). As we can easily notice mentioned factorizations of Ty classes
were not considered before for p = co. In this note we, in particular, intend
to give an answer to that natural question. On the other hand T} type
classes that were defined above are heavily based on classical L? spaces in
R™. Our next intention is to replace them by their natural extensions: the
well-known L Lorentz spaces in R"™ and to prove, if possible, a result similar
to (A) equality.

Let C(n)~! be the volume of the unit ball ([4]) so that [P 1(gny = 1,
where PP(z) = C(n)t™"xp(o,(x) and xp(s)(x) is the characteristic func-
tion of the set B(0,t). For x € R", define

(Pym)(x) —C(n)/ dp(y, t)

P "

where p is a positive Borel measure in Riﬂ.

Lemma 1. Let Po(g)(x.t) = G [, 9()dy, g € Ligp(R"), S(u) =

loc
Po(Pgp)™", where 0 < 7 < 1 and  is a positive Borel measure on R".

Then
1 duz )\
o | suanauen<c|( [ 1)
|B| Jr(B) T(B)r(y) "

Remark 1: For 7 = 1, Lemma 1 was proved in [4].

L (B,dy)
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Proof. Let h(y) = Pyp(y), y € R". Modifying proofs in [4] we have

_dp(x,t
| sute.dutat) < o [ () P8 g,
T(B) T(B) J B(w,t)

d t
e h(y)T/ M(ia )dy
Rn T(B)NI(y) ¢

1-7
< C|B] sup / dﬂ(f’t) .
yeRr \JT(B)r(y) ¢

The proof is complete. O

Let X, Y and Z be quasinormed subspaces of the class of all measurable

functions in R™. For 0 < a < 1, we say X ¢ Y Z, if for any v € X, there
exist w € Y, v € Z such that u = w - v®.
Let T;7° be the class of measurable functions f satisfying

A
1l = / e < oo.
Y

L>>(R™)

Theorem 1. Let 0 < ¢ < o0, p > 0 and 0 < a = s/q < 1. Then
T & TRTL®.

Remark 2: If we replace T;°° classes in Theorem 2 with larger TP classes,
then for s = ¢ Theorem 1 is known (see [3, 4]).

Proof. We will modify the proof of [3, 4]. As the proof in [4] (p. 316), we
have

—1/s 1/r
(%) </X |f|_sdy> < (/X \f|rdu> , 1,8>0,

where v is a measure in R". Let us put dv = PP(z)dz, f = Ay(u) in (x).
Then we have

V = (Po(Ag(u)))"" = C(Po(Aqg(u))~*)71/%,

that is, V7° < C(Py(Ag(u)) ™).
Let du(x,t) = (ac,t)q@. Then (A4(u))? = CP;p and

V= < CPy(Pyp) ™1 = Ry (Pyp) ™,
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where 0 < a = s/q < 1. Since w? = from Lemma 1 we have

V??

/ w(z,t)!—— dwdt C/ V™ %du(x, t)
T(B)
<c [ S
T(B)

1
/ lu(z, t)|*dzdt
BTy T Loo(B,dy)

—s/q
< C|B|

< C|B|||ull 7o

which proves that for u € T;”* and w? = vs’ we have w € T)°.

For u € T;0, let V. = (Py(Ay(u))")/". Then (see [3, 4}) NPy(f) <
CM(f) and hence N(V) < C(M(Ay(u))")V", p > r, where M(f) is the
Hardy-Littlewood maximal function. Thus V € T%, for every p. Indeed M
is a bounded operator from LP(R™) into LP(R”) p > 1. Hence V € T%, for
every p > 0. One the other hand if w = (VS )14, then we can show that for
weTy "  and V eTh,p>0

/g
1 dwdt -
<‘B’ /T(B)w(:z:,t)q t ) < C”UHT;o,ég for s < gq.

The proof is complete. O

We now turn to another extension of (A). The following facts from the
theory of Lorentz classes LP?(R"™) are needed (see [1, 7]).

For q,p € (1,00), the Hardy-Littlewood maximal operator is extended in
LP(R™) (see [5, 1, 7]) and we have

(1) IM(f)l|ra < Cl fllLra,
and
(2) M)z < ClIfllzoe-

Let f be a measurable function in R’}FH. Define

[ llzrps = [1Ag(H)llLos(rmys

[l 2z = IN(f) ]l zwss-
For 0 < p < 0o, the spaces LT,"* and LT%’ are defined by

LTY® = {f : f is measurable in R satisfying [l s < o0},
LT = {f: f is measurable in R"! satisfying Il pms < 00}

Theorem 2. Let s <p < q<oo. Then LT}® = LT&ST;".
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Remark 3: For p = s, this was obtained in [3, 4] before and it coincides
with (A).
Proof. We again use some ideas from [3, 4]. Note first, if [[A(f)[|zr.s(rn) <
0o, putting V' = (Py(A4(f))")"/" as in the previous case we have NV <
C(M(Aq(f)’”))l/r, p,s > r, where M is the Maximal Hardy-Littlewood
operator. By (1) we have

[NVl < ClA(F)llnogamy < 00 for p,s > 0
since
I lees = [ fllLrers,  pys,7 > 0.

The proof of the fact that w = ; € T° follows from the same arguments

as in [4]. Let us show the reverse with the same restriction on parameters.
Let w € T,°, V € LTE®. We will show that

W V[e 1/q
/ nts dxdt < 00.
I'(y)

Lp,s (Rn)

By Hélder inequality for Lorentz classes (see [5]), the following estimate

holds:
1/q
q
w(z, 1)V (,t)| dxdt)

tn—l—s

/ V7wl
r
14,11 L 1 TPl TSl -
where ot =5 and +5 . Choosing 7 such that =D, = s,

then £2 = %2 =1 and B < CHw||Too||NVHLq + which follows (A). Hence
D < ||NV||Lpa||NV||Lq rq-r. Note that 7 = & =P1, ¢ —7=¢q(1- ) =

S1

LPs(R™)

< OINVI[ nr a1 = AB,

52
q

P2
7

p=q-— qp(f — 5) Hence using known embeddings for Lorentz classes (see
[1, 7]) we have D < ||[NV||pp.s(rny for s < p. The proof is complete. O
REFERENCES

[1] Bergh, J., Lofstrom, J., Interpolation Spaces, Springer-Verlag, Berlin, 1976.

[2] Cohn, W., A factorization theorem for the derivative of a function in H?, Proc. Amer.
Math. Soc. 127 (1999), 509-517.

[3] Coifman, R., Meyer, I. and Stein, E., Some new tent spaces and their applications to
harmonic analysis, J. Funct. Anal. 62 (1985), 304-335.

[4] Cohn, W., Verbitsky, 1., Factorizations of tent spaces and Hankel operators, J. Funct.
Anal. 175 (2000), 308-339.

[5] Grafakos, L., Classical and Modern Fourier Analysis, Pearson Education, Inc., Upper
Saddle River, NJ, 2004.

[6] Horowitz, C., Factorization theorems for functions in the Bergman spaces, Duke Math.
J. 44 (1977), 201-213.



154 R. Shamoyan and W. Xu

[7] Stein, E., Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton
University Press, Princeton, NJ, 1971.

Romi Shamoyan Wen Xu

Department of Mathematics Department of Physics and Mathematics
Bryansk State University University of Joensuu

Russian Federation of Nations P. O. Box 111, FIN-80101 Joensuu
e-mail: rsham@mail.ru Finland

e-mail: wenxupine@gmail.com

Received June 2, 2009



