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Remarks on best approximation in R-trees

ABSTRACT. An R-tree is a geodesic space for which there is a unique arc
joining any two of its points, and this arc is a metric segment. If X is a closed
convex subset of an R-tree Y, and if T : X — 2" is a multivalued mapping,
then a point z for which

0<dist(z,T(2)) = 15’( dist (z, T (2))

is called a point of best approximation. It is shown here that if T is an &-
semicontinuous mapping whose values are nonempty closed convex subsets of
Y, and if T" has at least two distinct points of best approximation, then 7" must
have a fixed point. We also obtain a common best approximation theorem
for a commuting pair of mappings ¢t : X — Y and T : X — 2¥ where ¢ is
single-valued continuous and T is e-semicontinuous.

1. Introduction. In [3] the authors extended Ky Fan’s well-known best
approximation theorem [1] to upper semicontinuous mappings defined on
a geodesically bounded R-tree X and taking values in the family of nonempty
closed convex subsets of X. In [5] J. Markin obtained the same result for
‘almost lower semicontinuous’ mappings. Subsequently B. Piatek [6] proved
a theorem that contains both of these results by introducing a more gen-
eral concept of semicontinuity. In this note we show that under Piatek’s
assumption, if there is more than one point of best approximation, then the
mapping must have a fixed point. This can be viewed as an extension of the
following elementary fact: If [a,b] is a real line interval and if a continuous
map f : [a,b] — R satisfies f(a) < a and f(b) > b, then f has a fixed
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point. We also include an observation about common best approximations
for commuting mappings.

2. Notation and definitions.

Definition 2.1. An R-tree (or metric tree) is a metric space X such that:
(i) there is a unique geodesic segment (denoted by [z,y]) joining each pair
of points z,y € X;

(i) if [y, #] N [z, z] = {x}, then [y, 2] U [z, 2] = [y, 2].

From (i) and (ii) it is easy to deduce:

(iii) If p,q,r € X, then [p,q] N [p,7] = [p,w] for some w € X.
We will use the notation (z,y] to denote [z,y]\ {x}.
Let C be a subset of an R-tree X. For z € X, let

dist (z,C) = inf {d (z,y) : y € C}.
By N:(C) we will denote the set {x € X :dist (z,C) <e}. B (z;e) will

denote the closed ball centered at x with radius €.

Definition 2.2. Let X and Y be metric spaces. A mapping T : X — 2V
with nonempty values is said to be almost lower semicontinuous at x € X
if for each € > 0 there is an open neighborhood U of x such that

ﬂ N (T (u)) # 0.
uelU

T is said to be almost lower semicontinuous if it is almost lower semicon-
tinuous at each x € X. The mapping T is said to be upper semicontinuous
at € X if for any neighborhood U of T(x) there is an ¢ > 0 such that
u € B(x;e) = T (u) CU. T is said to be upper semicontinuous if it is
upper semicontinuous at each x € X.

In [6] Piatek introduces a definition of semicontinuity which includes both
of the above definitions.

Definition 2.3 ([6]). Let X and Y be metric spaces. A mapping 7" : X —
2Y with nonempty values is said to be e-semicontinuous at x € X if for
each € > 0 there is an open neighborhood U of = such that

T (u) NN (T' () # 0
forallu e U.

1. ([6]) Suppose T is almost lower semicontinuous at € X. Then given
€ > 0 there exists a neighborhood U of z such that

Ness (T () N (1) Neys (T (u) # 0.

uelU
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So for each u € U there exists z € N3 (T (7)) N (e Neyz (T (u)), y €
T (u), and yo € T () such that

d(y,z) <e/2 and (yo,2) <e/2.

Hence d (y,T (z)) < d(y,2) + d(yo,z) < e. This implies y € N, (T (x)).
Since y € T (u),
T (u) N N (T () # 0.
2. Now suppose T is upper semicontinuous at x € X and let € > 0. Then

there is a neighborhood U of z such that T (u) C N, (T (z)) for all u € U.
Thus trivially

T (u) NN (T'(x)) # 0
forallu e U.

3. Main results. Our main result is the following.

Theorem 3.1. Suppose X is a closed convex subset of a complete R-tree
Y, and T : X — 2Y is an e-semicontinuous mapping whose values are
nonempty closed convex subsets of Y. Suppose also that there exist distinct
points z1,z2 € X such that [z, y;) N X = {z;} for eachy; € T (z;), 1 =1,2.
Then T has a fized point.

This result can be reworded as follows.

Theorem 3.2. Suppose X is a closed convex subset of a complete R-tree
Y, and T : X — 2Y is an e-semicontinuous mapping whose values are
nonempty closed convex subsets of Y. Then either T has a fized point or
there exists at most one point z € X such that

(1) 0 <dist(2,T(2)) = mlg’( dist (z, T (2)) .

Proof. If z satisfies (1), then (z,y] N X = 0 for each y € T (). O

The above theorem, in conjunction with the result of [6] yields the follow-
ing fact. The assumption that the space X is geodesically bounded means
that X does not contain a geodesic of infinite length. This assumption is of
course much weaker than compactness.

Theorem 3.3. Suppose X is a closed convex geodesically bounded subset of
a complete R-tree Y, and let T : X — 2Y be an e-semicontinuous mapping
whose values are nonempty closed conver subsets of X. Then either T' has
a fixed point, or there exists a unique point z € X such that

(2) 0 <dist (2,7 (2)) = mlélf( dist (2,7 (2)) .

Proof. Theorem 5 of [6] assures the existence of at least one point for which
dist (2,7 (z)) = inf e x dist (z, T (2)). O
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Proof of Theorem 3.1. Let S denote the unique metric segment with
endpoints z; and zp. For z € S, let f (z) denote the unique point of T'(x)
which is nearest to . The structure of Y assures the existence of a unique
point £ (z) € S which is nearest to f (x). Clearly & (z;) = z;, i = 1,2. Let

C={zes: f(z)#(v)}.
We assert that for each z € C there exists €, > 0 such that if u € S
satisfies d (u,x) < &4, then & (u) = £ (z), and in particular v € C. Indeed
let 0, = dist (f (z),S) and choose €, > 0 so that d (u,x) < &4,

ue X =T (u)N Ns, /o (T () # 0.

Let w € T (u) N N5, /2 (T (z)). Since the segment [w, f ()] lies entirely in
N(;E/Q( (x)) it must be the case that [w, f ()] NS = (. Now suppose
¢ (u) # & (x). Then the path
)

[§ (@), f@)]U[f (x),w]Uw, f(w)]U[u& )]V (u),§ ()]
would form a loop in X — a contradiction. It follows that & (u) = & (z).

Now let F':=={x € S: & (z) =x}. Any point z € F\C is clearly a fixed
point of T and we are finished if F\C # ). So we suppose F' C C and show
that this leads to a contradiction. The preceding argument shows that the
set F' consists of isolated points of S. By redefining z1, 29 if necessary, we
may suppose that F' = {z1, 29}, i.e., we may suppose that & (z) # x for all
x € |21, 2] with z1 # x # 2.

Let

A= {reS:¢() el al);
B={zeS:&(z) €z, 2]}.

We now show that A is an open subset of S. The argument at the outset
shows that there is a neighborhood U of z; such that & (u) = z; for each
u € U. Suppose x € A with x # z;. Then § = d(z,&(x)) > 0. If some
neighborhood of x is in A there is nothing to prove. Otherwise we can
choose a point u of S sufficiently near = so that (i) T'(u) N\ Nj/o (T (z)) # 0,
(ii) d(u,r) < d(z,§(z)), and (iii) u ¢ A. Let w € T (u) N N9 (T (7)).
Conditions (ii) and (iii) imply & (u) # € (z). Since u ¢ T (u), the path

[§ (w),w]Uw, f(@)]U[f (@), ()] U[E(x), & (u)]
is a loop. Therefore we conclude that A is open, and it follows similarly that

B is open. Since AU B = S we conclude that AN B # (). But if x € AN B,
then £ () = x, contradicting our assumption. O

Corollary 3.4. Suppose X is a closed convexr subset of a complete geodesi-
cally bounded R-tree Y and suppose f : X — Y is continuous. Then either
f has a fized point, or there exists a unique point z € X such that

0<d(zf(2) = inf d(z, f(2)).
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4. Common best approximations. Again let X be a closed convex sub-
set of an R-tree Y. Two mappings t : X — X and T : X — 2% are said to

commute if t(T'(z)) C T(t(x)) for all z € X.
It is known that the nearest point projection p : Y — X is nonexpansive.

Theorem 4.1. Let X be a closed convexr geodesically bounded subset of
a complete R—tree Y. Suppose t : X — Y is a continuous mapping and
T : X — 2Y is an e-semicontinuous mapping with nonempty closed convex
values. Suppose t and T satisfy
(1) Fix(pot) is a conver subset of X,
(2) pot and poT commute.

Thent and T have a common best approximation, i.e., there exists z € X
such that

d(z,t(z)) = xlg)f{d(x,t(z)) and

dist (2, T(2)) = xlg)f( dist (z,T'(2)) -

Proof. The proof follows the ideas of the proofs of [3, Theorem 2.1 (p. 684)],
[7, Theorem 4.1] and [4, Theorem 5.1]. Since p : ¥ — X is nonexpansive
and T : X — 2Y is e—semicontunuous, poT : X — 2% is e—semicontinuous
and has a fixed point by [6, Theorem 4]. Since pot: X — X is continuous,
by Theorem 3.4 of [2] Fix(pot) # () and it is convex by (1). It is easy to see
that Fix(pot) is closed in X. We now let A = Fix(pot). From (2) we have

pot(poT(z)) CpoT(x) forall x € A.

Again by [2, Theorem 3.4], p ot has a fixed point in p o T'(z) and hence
poT(x)NA#( for each 2 € A. Now we define F': A — 24 by

F(z)=poT(zx)NA for each x € A.

By [6, Lemma 2|, F' is an e-semicontinuous mapping. By [6, Theorem 4|, F'
has a fixed point, i.e., there exists z € A such that z € po T(z) N A. This
implies z € po T'(z) and z = p o t(z). Therefore

d(zt(2)) = d(p o t(2), 4(=)) = inf d(a,(2).

For showing that dist(z,7(z)) = inf,ex dist(x,T(z)) we separate to two
cases.

Case 1. T(z) N X = (). Since both T'(z) and X are convex and closed, and
they are disjoint it must be the case that p o T'(z) = {z}. Hence

dist(z,T(z)) = dist(po T'(2),T(z)) = xlg)f( dist(z, T'(2)).

Case 2. T(2)NX # (. Thus z € poT(z) = X NT(z). This implies z € T(z)
and hence the conclusion follows. OJ

As a consequence, we obtain the following corollary.
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Corollary 4.2. Let X be a closed convexr geodesically bounded subset of
a complete R—tree Y. Suppose t : X — Y 1is a nonexpansive mapping and
T : X — 2Y is an e-semicontinuous mapping with nonempty closed convex
values. Suppose that pot and poT commute. Then t and T have a common
best approrimation.
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