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The natural operators lifting vector fields
to the bundle of affinors

Abstract. All natural operators T  T (T ⊗T ∗) lifting vector fields X from
n-dimensional manifolds M to vector fields B(X) on the bundle of affinors
TM ⊗ T ∗M are described.

1. Introduction. In [3], the second author studied the problem how a 1-
form ω on an n-manifold M induces a 1-form B(ω) on TM ⊗ T ∗M . This
problem was reflected in natural operators B : T ∗  T ∗(T ⊗ T ∗) over n-
manifolds. It is proved that the set of natural operators T ∗  T ∗(T ⊗ T ∗)
over n-manifolds is a free C∞(Rn)-module of dimension 2n, and there is
presented a basis of this module.
In this note we study a similar problem how a vector field X on an n-
manifold M induces a vector field B(X) on TM ⊗ T ∗M . This problem is
reflected in natural operators T  T (T ⊗ T ∗) over n-manifolds. We prove
that the set of natural operators T  T (T ⊗ T ∗) over n-manifolds is a free
C∞(Rn)-module of dimension n+ 1. We construct a basis of this module.
We recall that a natural operator B : T  T (T ⊗ T ∗) over n-manifolds
is anMfn-invariant family of regular operators

B : X (M) → X (TM ⊗ T ∗M)
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for all n-manifolds M . The invariance means that if vector fields X1 on
M and X2 on N are ϕ-related for some local diffeomorphism ϕ : M → N
between n-manifolds then the vector fields B(X1) and B(X2) are Tϕ⊗T ∗ϕ-
related. The regularity means that B transforms smoothly parametrized
families of vector fields into smoothly parametrized families of vector fields.
From now on x1, . . . , xn are the usual coordinates on Rn and ∂i = ∂

∂xi

for i = 1, . . . , n are the canonical vector fields on Rn.
All manifolds and maps are assumed to be of class C∞.

2. Examples of natural operators T  T (T ⊗ T ∗).

Example 2.1. Let X be a vector field on an n-manifold M . Let T ⊗ T ∗X
be the flow lifting of X to TM ⊗ T ∗M . More precisely, if ϕt is the flow of
X, then Tϕt ⊗ T ∗ϕt is the flow of T ⊗ T ∗X. The correspondence T ⊗ T ∗ :
T  T (T ⊗ T ∗) given by X → T ⊗ T ∗X is a natural operator (called the
flow operator) in question.

Example 2.2. For k = 0, . . . , n − 1 we have the canonical vector field Lk

on TM ⊗ T ∗M such that

Lk(A) =
d

dt

∣∣∣∣
0

(A+ tAk), A ∈ End(TxM) = TxM ⊗ T ∗xM, x ∈M,

where Ak is the k-th power of A (A0 = id). The vector field Lk will be called
the k-th Liouville vector field on TM ⊗ T ∗M (L1 is the classical Liouville
vector field on TM ⊗ T ∗M). The correspondence Lk : T  T (T ⊗ T ∗) is a
natural operator in question.

3. The C∞(Rn)-module of natural operators T  T (T ⊗ T ∗) over
n-manifolds. If L : V → V is an endomorphism of an n-dimensional vector
space V then a1(L), . . . , an(L) denote the coefficient of the characteristic
polynomial

WL(λ) = det(λidV − L) = λn + a1(L)λn−1 + · · ·+ an−1(L)λ+ an(L).

Thus for every n-manifoldM we have maps a1, . . . , an : TM⊗T ∗M → R
(as TxM ⊗ T ∗xM = End(TxM)).
The vector space of all natural operators B : T  T (T ⊗ T ∗) over n-
manifolds is additionally a module over the algebra C∞(Rn) of smooth
maps Rn → R. Actually given a smooth map f : Rn → R and a natural
operator B : T  T (T ⊗T ∗) we have natural operator fB : T  T (T ⊗T ∗)
given by

(fB)(X) = f(a1, . . . , an)B(X)

for any vector field X on an n-manifold M .
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4. The main result. The main result of this short note is the following
classification theorem.

Theorem 1. The flow operator T ⊗ T ∗ together with the k-th Liouville
operators Lk for k = 0, . . . , n − 1 form a basis of the C∞(Rn)-module of
natural operators T  T (T ⊗ T ∗) over n-manifolds.

The proof of Theorem 1 will occupy the rest of this note.

5. The result of J. Dębecki. The vector space End(Rn) of all endo-
morphisms of Rn is a GL(n)-space because of the usual (adjoint) action of
GL(n) on End(Rn).
We have the following result of J. Dębecki.

Proposition 1 ([1]). Any GL(n)-equivariant map

C : End(Rn) → End(Rn)

is of the form

C(A) =
n−1∑
k=0

fk(a1(A), . . . , an(A))Ak

for some uniquely determined maps fk : Rn → R.

6. The vertical type natural operators B : T  T (T ⊗ T ∗) over
n-manifolds. A natural operator B : T  T (T ⊗ T ∗) is of vertical type if
B(X) is a vertical vector field for any vector field X on a n-manifold.
Using Proposition 1 we prove the following fact.

Proposition 2. The C∞(Rn)-submodule of vertical type natural operators
B : T  T (T ⊗ T ∗) over n-manifolds is free and n-dimensional. The k-th
Liouville operators Lk for k = 0, . . . , n− 1 form a basis of this module.

Proof. Let B : T  T (T ⊗ T ∗) be a vertical type natural operator over
n-manifolds. Because of the naturality and the Frobenius theorem this
operator is uniquely determined by the restriction of vertical vector field
B(∂1) to the fiber End(T0Rn) = T0Rn × T ∗0 Rn.
Using the naturality of B with respect to the homotheties tidRn for t 6= 0
we see that

B(∂1)|End(T0Rn) = B(t∂1)|End(T0Rn)

for t 6= 0. Putting t→ 0 we see that

B(∂1)|End(T0Rn) = B(0)|End(T0Rn).

Because of the naturality of B(0) with respect to linear automorphisms
of Rn we have a GL(n)-equivariant map

C : End(T0Rn) → End(T0Rn)
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given by

B(0)(A) =
d

dt

∣∣∣∣
0

(A+ tC(A))

for A ∈ End(T0Rn).
By Proposition 1 we have that

C(A) =
n−1∑
k=0

fk(a1(A), . . . , an(A))Ak

for some uniquely determined maps fk : Rn → R. Then

B(∂1)(A) =
n−1∑
k=0

fk(a1(A), . . . , an(A))Lk(A)

for all A ∈ End(T0Rn). That is why B =
∑n−1

k=0 fkL
k, as well. �

7. Proof of Theorem 1. It is clear that Theorem 1 will be proved after
proving the following fact.

Proposition 3. Let B : T  T (T ⊗ T ∗) be a natural operator over n-
manifolds. Then there exists a unique map f : Rn → R such that B−fT ⊗
T ∗ is a vertical type operator.

Let π : TRn ⊗ T ∗Rn → Rn be the bundle projection.

Lemma 1. There exist unique maps fk ∈ C∞(Rn) such that

Tπ(B(wo)(A)) =
n−1∑
k=0

fk(a1(A), . . . , an(A))Ak(w)

for A ∈ End(T0Rn) = T0Rn ⊗ T ∗0 Rn and w ∈ T0Rn, where wo is the
“constant” vector field on Rn with wo

0 = w.

Proof. By the invariance of B with respect to the homotheties tidRn for
t 6= 0 we have the homogeneity condition

Tπ(B((tw)o)(A) = tTπ(B(wo))(A).

Then by the homogeneous function theorem, [2], Tπ(B(wo)(A) depends
linearly on w.
So, we can define a map C : End(T0Rn) → End(T0Rn) by

C(A)(w) = Tπ(B(wo)(A))

for all A ∈ End(T0Rn) and w ∈ T0Rn.
Because of the naturality of B with respect to linear automorphisms
of Rn, C is GL(n)-equivariant. Then applying Proposition 1 we end the
proof. �

Lemma 2. Let B : T  T (T ⊗ T ∗) be as in Lemma 1. Let f0, . . . , fn−1 be
the maps from Lemma 1. Then fj = 0 for j = 1, . . . , n− 1.
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Proof. Consider j = 1, . . . , n − 1. Let b = (b1, . . . , bn) ∈ Rn. Let A ∈
End(T0Rn) be such that A(∂i(0)) = ∂i+1(0) for i = 1, . . . , n − 1 and
A(∂n(0)) = −bn∂1(0)− . . .− b1∂n(0). Then ai(A) = bi for i = 1, . . . , n.
Let ϕt = (x1, . . . , xj+1+txj+1+. . . , . . . , xn) be the flow of ∂j+1+xj+1∂j+1

near 0 ∈ Rn.
Since T0ϕ1 ◦ A ◦ T0ϕ

−1
1 6= A (as the left hand side evaluated at ∂j(0) is

equal to 2∂j+1(0) and the right hand side evaluated in the same vector ∂j(0)
is equal to ∂j+1(0)), we have

(1) T ⊗ T ∗(xj+1∂j+1)(A) 6= 0.

Using the Zajtz theorem [4], since (∂j+1 + xj+1∂j+1)(0) = ∂j+1(0) 6= 0,
we find a diffeomorphism η : R → R such that

(2) j10ψ = id

and

(3) ψ∗∂j+1 = ∂j+1 + xj+1∂j+1

near 0 ∈ Rn, where ψ(x1, . . . , xn) = (x1, . . . , xj , η(xj+1), . . . , xn).
Clearly ψ preserves ∂1. Because of (2), ψ preserves A. Then ψ preserves

B(∂1)(A).
Because of (2), ψ preserves any vertical vector tangent to TRn ⊗ T ∗Rn

at A. Moreover, ψ preserves all ∂l for l = 1, . . . , n with l 6= j + 1. By (3), ψ
sends T ⊗ T ∗(∂j+1)(A) into T ⊗ T ∗(∂j+1 + xj+1∂j+1)(A). Then ψ sends

B(∂1)(A) =
n−1∑
k=0

fk(a1(A), . . . , an(A))T ⊗T ∗(∂k+1)(A)+some vertical vector

into B(∂1)(A) + fj(b)T ⊗ T ∗(xj+1∂j+1)(A).
Then because of (1), we have fj(b) = 0, as well. �

Proof of Proposition 3. Because of Lemmas 1 and 2 we have

B(∂1)(A) = f0(a1(A), . . . , an(A))T ⊗ T ∗(∂1)(A) + some vertical vector

for any A ∈ End(T0Rn). Since B is determined by B(∂1) over 0, the proof
of Proposition 3 is complete. �
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