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1. Introduction

There exists a broad spectrum of publications dedicated to studying dynamics of
large systems of various kinds performed at different levels of mathematical sophisti-
cation, see, e.g., [8, 11, 12, 28, 35]. Their common feature, however, is that the size of
the system under consideration – as well as the complexity of interactions persistent
therein – predetermine the statistical/probabilistic character of the theory developed.

The random motion of infinite systems in the course of which the constituents can
merge, attracts considerable attention. The Arratia flow introduced in [1] provides an
example of this kind. In recent years, it has been extensively studied, see [6, 16, 17, 25]
and the references therein. In Arratia’s model, an infinite number of Brownian particles
move in R independently up to their collision, then merge and move together as single
particles. Correspondingly, the description of this motion (and its modifications) is
performed in terms of stochastic (diffusion) processes. In this work, an alternative
look at this kind of motion is proposed, basing on the Kawasaki model [4, 7, 24], in
which point particles perform random walks (jumps) in Rd, d ≥ 1 with repulsion. One
of the main aims of the present work is developing and studying similar models that
describe this kind of walks accompanied by coalescence. It is done by introducing an
individual-based model of an infinite particle system placed in Rd, in which two point
particles, located at x and y, merge into a particle, located at z 6= x, y, with intensity
c1(x, y; z). Thereafter, the new particle participates in the motion of this kind. In
some cases, we also include the dependence of the intensity on the rest of the particles.
This is realized in Sections 3 and 4.

The phase space of such a system is the set Γ of all locally finite configurations
γ ⊂ Rd, see [4, 7, 14, 18, 19]. In our context, it is introduced in Section 2.1. As
is usual in the approach we follow, the states of the system are probability measures
on Γ, the set of which will be denoted as P(Γ). The considerations are restricted to
the case of sub-Poissonian states, which are defined in Section 2.2. The description of
their evolution µ0 → µt is based on the relation µt(F0) = µ0(Ft) where F0 : Γ→ R is
supposed to belong to a measure-defining class of functions, µ(F ) :=

∫
Fdµ and the

evolution F0 → Ft is defined by the corresponding Kolmogorov equation (2.20). The
precise form of the proposed and studied model is given by (3.1) in Section 3.

A similar individual-based approach can be found e.g. in [33, 34] for describing
phytoplankton dynamics. There, however, only finite particle systems are considered
and no interaction between the particles is directly taken into account – its descrip-
tion is done in a mean-field like way by employing aggregated parameters. Similar
models with merging in a single type population are used to describe predation in
marine ecology [9]. The model studied in this work fits also in the framework of the
coagulation-fragmentation theory, see e.g. [3].

In view of the mentioned applications, my second aim here was to prepare the pro-
posed model to possible modifications as well as developing the corresponding numer-
ical setting. As is typical for theories of this kind, the microscopic (individual-based)
description provides a kind of general picture based on existential results obtained
by analytic methods in suitable Banach spaces, whereas more detailed information
can be obtained only by numerical tools. Most of them are tailored to treat classi-
cal integro-differential equations of various kinds, and thus are barely applicable in
infinite-dimensional Banach spaces. Therefore, it might be quite natural to pass to the
mesoscopic description based on kinetic equations, which rigorously can be done by a
scaling procedure, cf. [2, 32]. For our model, it is performed in Section 5, resulting in
the corresponding kinetic equation (5.5). For this equation, existence and uniqueness
of solutions is also proven, but more importantly, it provides a numerically treatable
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approximation of the dynamics of the original system. In the last section, an algo-
rithm for finding numerical solutions to this equation is developed, complemented by
the analysis of the results of the performed simulations. They shed some light on the
details of the system behaviour, like existence of non-trivial steady states or emergence
of propagating spatial inhomogeneities.

The dissertation consists of four parts. First, in Section 2 some basic facts and tools
are provided. Its first part consists mainly of discussing how metrics can be introduced
on configuration spaces. Relationship between the Prohorov metric and Euclidean-
type ones is given. Most of the facts proven there are the effect of recent work and
are presented here for the first time. In this part, spaces of simple configurations and
multi-configurations are precisely distinguished, which is not the case for the rest of
the work, as this distinction does not play crucial role in further considerations, which
is explained in the next part. There, basic notions and tools are given, which are
then used in the next sections. It is a compilation of facts that can be found in articles
treating similar models like [14, 7, 4, 21, 18], see also [19] for more detailed background.
The same holds true for the last part of the first section, where an introduction to the
general framework of constructing dynamics, which is used within the work, is given.

Sections 3 and 4 are devoted to the construction of microscopic dynamics of the
model of coalescing repulsive jumps. The contents of these two sections are published
in [23]. In the first part, the model is defined using the framework described in Section
2.3. It is done by precising the exact form of operator L in equation (2.20). Then,
the corresponding equation for correlation functions of states is derived. In the second
part, the main results corresponding to the dynamics of the system studied are given in
the form of two theorems. Theorem 3.2 covers existence and uniqueness of the classical
solution to a corresponding equation on the level of correlation functions (2.23) for a
finite time horizon in a scale of adequate Banach spaces. The most technically involved
and definitely the most laborious result presented within this dissertation is Theorem
3.3, which shows that the result from Theorem 3.2 can be uniquely identified with a
state of the system. The proof of this theorem is quite complicated, it involves an
additional auxiliary model, as well as its pre-dual and local evolution that are used to
prove a required positivity property (4.1). Section 4 is entirely devoted to this proof.

In Section 5 a scaling from micro- to mesoscopic level of description is performed.
It results in a corresponding kinetic equation which describes the evolution of density
of Poisson state that approximate the actual sub-Poissonian state of the system at
the microscopic level. The main result of this part is Theorem 5.4, which proves the
continuity of the performed scaling in corresponding scale of Banach spaces. This result
was communicated in [22] and also in [31] for a special case of coalescence kernels.
However, the proof was not given there, and a different formulation that utilizes a
notion of Poisson approximability was used, that in the view of Remark 5.1 should be
reconsidered. Next part discuss the similar results for an extension of model discussed,
where coalescence is endowed with a repulsion term similar as jumps. It actually was
studied earlier in [30]. The existence and uniqueness of local in time solution to kinetic
equation is also proven. This result covers the case of corresponding equation obtained
in the first part, for the main model studied within this work.

The last part of the dissertation, Section 6, describes the algorithm devised for
solving the kinetic equation derived in Section 5 for a specific choice of jump and coa-
lescence intensities. It is based on applying adequate boundary conditions, automati-
cally adjusting system size and using Runge-Kutta method for numerical integration,
some details are given in Section 6.1. The contents of this section are the results of
cooperation with Dr. Igor Omelyan in years 2018-19. The most interesting results of
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performed simulations, including emergence and propagation of spatial inhomogeneity,
as well as possible existence of non-trivial stationary states, are presented in Section
6.2. Most of the results of Section 6 are published in [22] and [29]. Some additional,
unpublished results are given as well.

To summarize, my results presented in this work are:

(1) comparing Prohorov and Euclidean-based metrics on configurations spaces,
proving some basic metric properties (Section 2.1),

(2) introducing the model of coalescing random jumps (Section 3.1),
(3) proving the existence and uniqueness of local in time microscopic dynamics

(Sections 3 and 4),
(4) passing to the mesoscopic level by continuous scaling (Section 5.1),
(5) introducing extension of the model (Section 5.2),
(6) proving the existence and uniqueness of local in time solutions to correspond-

ing kinetic equations for both models (Section 5.2),
(7) elaborating numerical algorithm for finding solutions to the kinetic equation

for a special case of the coalescence kernel (Section 6.1),
(8) performing numerical simulations of the system dynamics in several interest-

ing cases and analysis of the results (Section 6.2).

2. Configuration spaces

The basic notion used in this work is the configuration space. Its elements are
called configurations. It allows one to deal with systems of many (usually infinitely
many) particles.

This section is devoted to providing some introductory information regarding con-
figuration spaces. The first subsection introduces the space of configurations and dis-
cusses how it can be metrized. In the next part, the measures which are required
later, as well as some useful technical tools are introduced. In the last subsection,
the general idea of introducing dynamics on the configuration space is given for better
understanding of steps taken in Section 3.

2.1. Metric properties of configuration spaces. Let (X, d) be a topological
metric space.

Definition 2.1. The n-element configuration space Γ(n)(X) is the family of all
subsets γ ⊂ X of cardinality |γ| = n.

Let Σn stand for the set of all permutations of {1, . . . , n}. Consider metrics dn and

Dn on Γ(n)(X) given by

dn(ξ, η) = min
σ∈Σn

n∑
k=1

d(xσ(k), yk),

where ξ = {x1, . . . , xn} and η = {y1, . . . , yn}, and

Dn =
dn

1 + dn
.

Lemma 2.2. If (X, d) is locally compact, then (Γ(n)(X), Dn) is locally compact as
well.

Proof. Take an arbitrary η ∈ Γ(n)(X). Denote η = {y1, . . . , yn}. As X is locally
compact, there exist compact closed balls K(yi, ri), i = 1, . . . , n. For simplicity, assume
that they are disjoint. If not, we take closed balls of smaller radii instead, e.g. δ/3,
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where δ is the smallest distance between elements of η. They are compact as closed
subsets of compact sets.

We claim that

Kη =
{
{x1, . . . , xn} : ∀i xi ∈ Ki

}
is a compact neighbourhood of η in Γ(n)(X).

The set Kη contains an open ball B(η, r
1+r ), where r = min

i=1,...,n
ri, and therefore is a

neighbourhood of η. It remains to show that Kη is compact. We will show sequential
compactness, as in metric spaces it is an equivalent notion.

Take an arbitrary sequence (ηk) of elements of Kη. We have

ηk = {y(k)
1 , . . . , y(k)

n }, ∀i y(k)
i ∈ Ki.

Next, choose from (ηk) a subsequence (ηkj ) such that for each i

y
(kj)
i

j→∞−−−→ xi ∈ Ki

for some ξ = {x1, . . . , xn}. We can do it, as Ki are disjoint and compact (first we
choose a subsequence such that elements lying in K1 converge, then a subsubsequence
such that elements lying in K2 converge and so on).

We have for each i

d(y
(kj)
i , xi)

j→∞−−−→ 0,

so that

dn(ηkj , ξ)
j→∞−−−→ 0

and therefore

Dn(ηkj , ξ)
j→∞−−−→ 0.

It means that Kη is compact and therefore (Γ(n)(X), Dn) is locally compact. �

Lemma 2.3. If (X, d) is σ-compact, then (Γ(n)(X), D) is σ-compact as well.

Proof. Let X =
∞⋃
k=1

Xk, where each Xk is compact. Let Ak be their countable dense

subsets. For a ∈ Ak and r > 0 define sets

Ck(a, r) = K(a, r) ∩Xk,

where K(a, r) denotes closed ball centered at a with radius r. Sets Ck are compact as
closed subsets of compact sets.

Consider sets

C
(
r; (k1, a1), . . . , (kn, an)

)
=


{
{x1, . . . , xn} : xi ∈ Cki(ai, r)

}
,

if Cki(ai, r) are pairwise disjoint,

∅ otherwise,

where r > 0 and ∀i ki ∈ N, ai ∈ Aki .
Then

Γ(n)(X) =

∞⋃
N=1

⋃
k1∈N

. . .
⋃
kn∈N

⋃
a1∈Ak1

. . .
⋃

an∈Akn

C
( 1

N
; (k1, a1), . . . , (kN , aN )

)
.

Indeed, for each η ∈ Γ(n)(X) we can always choose N ∈ N such that the smallest
distance between elements of η is bigger than 4

N . Each element yk of η lies in some

Xk and lies closer than 1
N to some ak ∈ Ak (as Ak are dense in Xk). Closed balls

K(ak,
1
N ) are pairwise disjoint (because the smallest distance between every two yk is
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4
N ), so that Ck(ak,

1
N ) are also pairwise disjoint. yk ∈ Ck(ak, 1

N ), as yk ∈ K(ak,
1
N )

and yk ∈ Xk.
It remains to show that C

(
r; (k1, a1), . . . , (kn, an)

)
are compact subsets of (Γ(n)(X), Dn).

Take an arbitrary sequence (ηi) of elements of C
(
r; (k1, a1), . . . , (kn, an)

)
and de-

note

ηi = {y(i)
1 , . . . , y(i)

n }, ∀k y(i)
k ∈ Cki(ai, r).

Next, choose a subsequence (ηij ) such that

y
(ij)
k

j→∞−−−→ xk

for some xk ∈ Cki(ai, r) for all k = 1, . . . , n. It is possible, as Cki(ai, r) are disjoint and
compact (first we choose a subsequence such that elements lying in Ck1(a1, r) converge,
then a subsubsequence such that elements lying in Ck2(a2, r) converge and so on). We
have ξ = {x1, . . . , xn} ∈ C

(
r; (k1, a1), . . . , (kn, an)

)
.

For each k = 1, . . . , n

d(y
(ij)
k , xk)

j→∞−−−→ 0,

so that

dn(ηij , ξ)
j→∞−−−→ 0

and therefore

Dn(ηij , ξ)
j→∞−−−→ 0.

It means that

ηij
j→∞−−−→ ξ

in (Γ(n)(X), Dn). Therefore C
(
r; (k1, a1), . . . , (kn, an)

)
is compact, which means that

(Γ(n)(X), Dn) is indeed σ-compact. �

Even if (X, d) is a complete, σ-locally-compact metric space, the space of configu-

rations Γ(n)(X) need not be complete (for n ≥ 2).

Example 1. Consider X = R with Euclidean distance d(x, y) = |x − y|. Take a

sequence (ηn) of elements of Γ(2)(R) given by ηn = {− 1
n ,

1
n}. Then

D2(ηn, ηn+k) ≤ d2(ηn, ηn+k) = 2

(
1

n
− 1

n+ k

)
=

2k

n(n+ k)
<

2

n

so that (ηn) is Cauchy. However it does not converge in Γ(2)(R), as the only limit

point of
∞⋃
n=1
{− 1

n ,
1
n} is 0.

In view of Example 1, we may consider another metric on Γ(n)(X). For ξ =
{x1, . . . , xn} and η = {y1, . . . , yn} define

D̂n(η, ξ) = Dn(η, ξ) + δn(η, ξ),

where

δn(η, ξ) =

∣∣∣∣ 1

δn(η)
− 1

δn(ξ)

∣∣∣∣
with δn(η) = mini 6=j d(yi, yj) being the smallest distance between elements of η ∈
Γ(n)(X).

Lemma 2.4. If (X, d) is complete, then (Γ(n)(X), D̂n) is complete as well.
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Proof. Take any sequence (ηk) of elements of (Γ(n)(X), D̂n) which is Cauchy, i.e.

∀ε > 0 ∃m0(ε) ∈ N ∀m ≥ m0(ε) ∀k ∈ N : D̂n(ηm, ηm+k) < ε.

From D̂n(ηm, ηm+k) < ε we have both

Dn(ηm, ηm+k) < ε

which means that (ηk) is Cauchy in (Γ(n)(X), Dn), and∣∣∣∣ 1

δn(ηm)
− 1

δn(ηm+k)

∣∣∣∣ < ε,

which means that
(
1/δn(ηk)

)
is Cauchy in R with Euclidean metric and therefore con-

verges to 1
δ > 0. It cannot converge to 0, as it would mean that (δn(ηk)) is unbounded

so that (ηk) could not be Cauchy in (Γ(n)(X), Dn). Indeed, take any ε > 0 and m
such that for all k ∈ N we have Dn(ηm, ηm+k) < ε < 1. Then dn(ηm, ηm+k) <

ε
1−ε and

therefore for each y ∈ ηm there exists y′ ∈ ηm+k which lies in B(y, ε
1−ε). It means that

δ(ηm+k) < δ(ηm) + 2ε
1−ε so that (δn(ηk)) is bounded.

From convergence of
(
1/δn(ηk)

)
we have, in particular

∃R > 0 ∃M0(R) ∈ N ∀m > M0(R) : δn(ηm) > R.

Take an arbitrary

ε <
R

4 +R
.

and
m0 = max(m0(ε),M0(R)).

Denote
ηm0 = {x1, . . . , xn}.

Then for each m > m0 exactly one element y
(i)
m of ηm lies in each ball B(xi,

ε
1−ε).

For each i = 1, . . . , n the sequence (y
(i)
m ) is Cauchy in (X, d), which we assumed to be

complete. Therefore each of these sequences converges to some x(i) that lies in a closed
ball K(xi,

ε
1−ε), each two of them distant by at least R/2, which in particular means

that each x(i) is different, so that

ξ = {x(1), . . . , x(n)} ∈ Γ(n)(X).

Notice that ξ does not depend on the choice of ε. Moreover, we have

Dn(ηm, ξ) ≤ dn(ηm, ξ) =
n∑
i=1

d
(
y(i)
m , x(i)

)
≤ nε

1− ε
and

δn(ηm, ξ) =

∣∣∣∣ 1

δn(ηm)
− 1

δn(ξ)

∣∣∣∣ ≤ ∣∣∣∣ 1

δn(ηm)
− 1

δ

∣∣∣∣+

∣∣∣∣1δ − 1

δn(ξ)

∣∣∣∣
≤ ε|δ − δn(ξ)| 1

δ · δn(ξ)
≤ 4ε

R2(1− ε) ,

as δ ≥ R, δn(ξ) ≥ R/2 and |δ − δn(ξ)| ≤ 2ε
1−ε . It means that for any sufficiently small

ε > 0 we can pick m0 such that for all m > m0 we have

D̂n(ηm, ξ) ≤
nε

1− ε +
4ε

R2(1− ε)
ε→0−−−→ 0.

Therefore (ηm) converges to ξ in (Γ(n)(X), D̂n). �

Instead of changing the metric, we can consider the completion of (Γ(n)(X), Dn).
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Definition 2.5. By (Γ̂(n)(X), Dn) we denote the completion of (Γ(n)(X), Dn).

We can identify Γ̂(n)(X) with symmetrization of Xn, i.e. the set of all equivalence
classes {[x1, . . . , xn] : xi ∈ X}, where (x1, . . . , xn) and (y1, . . . , yn) belong to the same
class if and only if there exists a permutation σ ∈ Σn for which xi = yσ(i). The metrics
dn and Dn are defined in the same way as previously

dn([x1, . . . , xn], [y1, . . . , yn]) = min
σ∈Σn

n∑
k=1

d(xσ(k), yk)

and

Dn =
dn

1 + dn
.

If we consider the set of all classes [x1, . . . , xn] having xi 6= xj for i 6= j, we obtain

the representation of Γ(n)(X). The isometrism is given trivially by [x1, . . . , xn] 7→
{x1, . . . , xn}.

We can identify elements of Γ̂(n)(X) with multisets of cardinality n on X. The
multisets having at least one element of multiplicity bigger than 1 can be identified
with the corresponding classes of divergent Cauchy sequences in (Γ(n)(X), Dn). In

view of the above, we will call the elements of Γ̂(n)(X) multi-configurations in contrast

to (simple) configurations of Γ(n)(X).
From now on, assume that (X, d) is a complete separable metric space (so that

the corresponding topological space is Polish). An important idea is to identify the

elements of Γ̂(n)(X) with measures on (X,B(X)). Each µ̂ = [x1, . . . , xn] ∈ Γ̂(n)(X)
corresponds to a measure

µ̂ =

n∑
i=1

δxi , (2.1)

where δx is a Dirac δ-measure centered at x, i.e. for all measurable A ⊂ X

µ̂(A) =
n∑
i=1

IA(xi)

with IA being the indicator function of A. For a measurable f : X → R and ξ̂ =
[x1, . . . , xn] we will use notation

ξ̂(f) =

∫
X

fdξ̂ =
n∑
i=1

f(xi).

Each measure of the form (2.1) corresponds to an element of Γ̂(n)(X) and each such

measure with distinct xi corresponds to an element of Γ(n)(X). In view of the above

measure representation of configurations, we can equip Γ(n)(X) and its completion
with Prohorov metric. We define it as follows (see [10], A2.5).

Definition 2.6. Let ξ̂, η̂ ∈ Γ̂(n)(X). The Prohorov distance between ξ̂ and η̂ is
given by

πn(ξ̂, η̂) = inf{ε ≥ 0 : ξ̂(F ) ≤ η̂(F ε) + ε and η̂(F ) ≤ ξ̂(F ε) + ε for all closed F ⊂ X},
where

Aε =
⋃
x∈A

B(x, ε), ε ≥ 0,

denotes ε-neighbourhood of set A.
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Notice that for ξ̂, η̂ ∈ Γ̂(n)(X), straightforwardly from the above definition we have

πn(ξ̂, η̂) ≤ n, (2.2)

as ξ̂(X) = η̂(X) = n so that for any F ⊂ X we have ξ̂(F ), η̂(F ) ≤ n.
We will show that metrics Dn and πn are strongly equivalent, but let us start with

two technical lemmas.

Lemma 2.7. Let n ∈ N, ξ̂ = [x1, . . . , xn] ∈ Γ̂(n) and A1, . . . , An ⊂ X be such that

∀k ≤ n, k ∈ N ∀{i1, . . . , ik} ⊂ {1, . . . , n} : ξ̂
( k⋃
j=1

Aij

)
≥ k.

Then, there exists a permutation σ ∈ Σn such that xi ∈ Aσ(i) for each i = 1, . . . , n.

Proof. We will prove this fact by mathematical induction. The base case n = 1 is
trivial. Suppose it is valid for case n = N ∈ N. Suppose the assumptions are satisfied
for case N + 1. Then xN+1 must belong to some Ak. Let Bi = Ai for i = 1, . . . , k − 1
and Bi = Ai+1 for i = k, . . . , N . Then by the induction hypothesis in the case N ,
there exists σ ∈ ΣN such that xi ∈ Bσ(i), which means that there exists a bijection
s : {1, . . . , N} → {1, . . . , k − 1, k + 1, . . . , N + 1} such that for i = 1, . . . , N we have
xi ∈ As(i). Take σ′ = s∪{(N+1, k)}, which is the desired permutation from ΣN+1. �

Lemma 2.8. Let ξ̂ = [x1, . . . , xn] and η̂ = [y1, . . . , yn]. Let s ∈ Σn be such that

dn(ξ̂, η̂) =
n∑
k=1

d(xs(k), yk).

Then

(a) max
k

d(xs(k), yk) ≤ 1 =⇒ πn(ξ, η) ≥ dn(ξ̂, η̂)

n
,

(b) max
k

d(xs(k), yk) > 1 =⇒ πn(ξ̂, η̂) ≥ 1

n
.

Proof. Take ξ̂ = [x1, . . . , xn] and η̂ = [y1, . . . , yn].

Denote ε = πn(ξ̂, η̂). Suppose in case (a) that

ε <
dn(ξ̂, η̂)

n

and in case (b) that

ε <
1

n
.

In both cases it makes ε < 1. Choose any k ≤ n, i1, . . . , ik ∈ N and pick a closed set
F = {xi1 , . . . , xik} in Definition 2.6 of πn(ξ̂, η̂). Taking into account ε < 1 and that

ξ̂, η̂ take integer values only, we have

k ≤ ξ̂(F ) ≤ η̂(F ε) = η̂
( k⋃
j=1

B(xij , ε)
)
.

By Lemma 2.7 it means that there exists σ ∈ Σn such that each yi ∈ B(xσ(i), ε), which
means that

dn(ξ̂, η̂) < nε,

which is contrary to the assumption we made in case (a). In case (b) on the other
hand, it means that

dn(ξ̂, η̂) < 1,
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which makes max
k

d(xs(k), yk) > 1 impossible. �

Lemma 2.9. Metrics Dn and πn are strongly equivalent.

Proof. Take arbitrary ξ̂ = [x1, . . . , xn] and η̂ = [y1, . . . , yn] enumerated in such way
that

dn(ξ̂, η̂) =
∑

d(xi, yi)

and denote R = max{d(xi, yi) : i = 1, . . . , n}.
If R > 1, then

Dn(ξ̂, η̂)

n
≤ 1

n
≤ πn(ξ̂, η̂) ≤ n ≤ 2nDn(ξ̂, η̂),

where the first inequality is obvious due to Dn ≤ 1, the second comes by Lemma 2.8(b)
and the third is just inequality (2.2). The last inequality is an effect of assumption

R > 1, in which case dn(ξ̂, η̂) ≥ 1, so that Dn(ξ̂, η̂) ≥ 1
2 .

If R ≤ 1, then

Dn(ξ̂, η̂)

n
≤ dn(ξ̂, η̂)

n
≤ πn(ξ̂, η̂) ≤ R ≤ dn(ξ̂, η̂) ≤ (n+ 1)Dn(ξ̂, η̂) ≤ 2nDn(ξ̂, η̂).

The first inequality comes from the definition of Dn, the second holds true by Lemma
2.8(a). The third inequality is valid, as

ξ̂
( ⋃
y∈η̂

K(y,R)
)

= η̂
( ⋃
x∈ξ̂

K(x,R)
)

= n.

The fourth inequality comes just from our definition of R, the fifth from the definition
of Dn and the fact that dn(ξ̂, η̂) ≤ n if R ≤ 1. The last, sixth inequality is trivial, as
n ≥ 1.

Finally, merging both cases, we obtain 1
nDn(ξ̂, η̂) ≤ πn ≤ 2nDn(ξ̂, η̂). �

Definition 2.10. The space of finite configurations Γ0(X) is the family of all finite
subsets γ ⊂ X.

Notice that each nonempty γ ∈ Γ0(X) has its finite cardinality |γ| = n ∈ N and

therefore can be treated as an element of Γ(n)(X). It allows us to write

Γ0(X) = {∅} ∪
∞⋃
n=1

Γ(n)(X) (2.3)

and equip Γ0(X) with disjoint union topology. It can be metrized by

D(ξ, η) =

{
D|ξ|(ξ, η), |ξ| = |η|,
1, |ξ| 6= |η|,

where ξ, η ∈ Γ0(X) and D0 = 0. Of course, Γ0 with this metric is not complete. As
previously, we can also consider the space of all finite multi-configurations.

Definition 2.11. By
(

Γ̂0(X), D
)

we denote the completion of
(

Γ0(X), D
)

.

Notice that for each Cauchy sequence in Γ0(X), there exists n ∈ N for which

almost all of the elements of the given sequence belong to Γ(n)(X). It means that each

element of Γ̂0(X) can be identified with an element of a certain Γ̂(n)(X), so that

Γ̂0(X) = {∅} ∪
∞⋃
n=1

Γ̂(n)(X).
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Each element of Γ̂0(X) corresponds to a finite measure as in (2.1). Therefore, we can

consider also the Prohorov metric π on Γ̂0(X) given exactly as πn in Definition 2.6.

Namely, for ξ̂, η̂ ∈ Γ̂0(X)

π(ξ̂, η̂) = inf{ε ≥ 0 : ξ̂(F ) ≤ η̂(F ε) + ε and η̂(F ) ≤ ξ̂(F ε) + ε for all closed F ⊂ X}.
It is known (see e.g. [10], A2.5) that π generates the topology of weak convergence on

the space of finite measures M(X) on X and therefore also on Γ̂0(X), which can be
identified with a subset of M(X).

As shown in [13], the same topology can be generated by metric DBL, where for

ξ̂, η̂ ∈ Γ̂0(X) we define

DBL(ξ̂, η̂) = sup
f :||f ||BL≤1

∣∣∣ξ̂(f)− η̂(f)
∣∣∣ ,

where f : X → R are bounded Lipschitzian functions and

||f ||BL = ||f ||L + ||f ||∞
with

||f ||∞ = sup
x∈X
|f(x)|

and

||f ||L = sup
x,y∈X,x 6=y

|f(x)− f(y)|
d(x, y)

.

We will show that the metric D generates the topology of weak convergence as
well.

Lemma 2.12. Topologies on Γ̂0(X) generated by metrics D and DBL are equal.

Proof. First, we will show that convergence in D implies convergence in DBL. Take
an arbitrary η̂ = [y1, . . . , yN ] ∈ Γ̂0 and suppose that

D(η̂n, η̂)
n→∞−−−→ 0.

Then η̂n has N elements for sufficiently big n ∈ N and for such n also

dN (η̂n, η̂)
n→∞−−−→ 0.

For arbitrary ε > 0 pick n0 ∈ N such that for n > n0 cardinality of η̂n is N and

dN (η̂n, η̂) <
ε

N
.

For n > n0 denote η̂n = [x̃n,1, . . . , x̃n,N ]. Let xn,i = x̃n,σn(i), where σn ∈ ΣN is such
that

dN (η̂n, η̂) =
N∑
i=1

d(x̃n,σn(i), yi).

It immediately follows that d(xn,i, yi) <
ε
N for n > n0 and each i = 1, . . . , N . Now for

arbitrary f : X → R such that ||f ||BL ≤ 1 (and therefore ||f ||L ≤ 1) we have

|η̂n(f)− η̂(f)| ≤
N∑
i=1

|f(xn,i)− f(yi)| ≤
N∑
i=1

d(xn,i, yi) ≤ N
ε

N
= ε

Therefore DBL(η̂n, η̂) ≤ ε. As ε was picked arbitrarily, it means that

DBL(η̂n, η̂)
n→∞−−−→ 0.

To show the implication in the opposite direction, again take an arbitrary η̂ and
assume that DBL(η̂n, η̂) converges to 0 with n→∞.
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If η̂ = ∅, it follows that for almost all n ∈ N also η̂n = ∅. If only there exists an
element y of η̂n we take

f(x) =
1

2
max

(
0, 1− d(x, y)

)
,

for which ||f ||BL = 1 but |η̂n(f)− 0| ≥ 1
2 , which is contrary to our assumption. If η̂n

and η̂ are empty configurations, then trivially D(η̂n, η̂) = 0.
Suppose now that η̂ = [y1, . . . , yN ] is non-empty and let x1, . . . , xM denote all its

distinct elements and Ni = η̂({xi}) their multiplicity. If M = 1, then let R = 1.
Otherwise, denote

r = min
i 6=j

d(xi, xj) > 0

and take R = min( r3 , 1). Introduce for y ∈ X function fy : X → R by

fy(x) =
1

2
max

(
0, R− d(x, y)

)
.

Then, as R ≤ 1, each such fy satisfies ||fy||∞, ||fy||L ≤ 1
2 and therefore ||fy||BL ≤ 1.

Additionally, it is non-negative, takes positive values only inside the ball B(y,R) and
the maximum value R

2 at y.
Take an arbitrary 0 < ε < NR and n0 such that for n > n0

DBL(η̂n, η̂) <
ε

2N
<
R

2
.

Denote η̂n = [ỹn,1, . . . , ỹn,kn ]. Each ỹn,j lies inside one of the balls Bi = B(xi, R), where
i = 1, . . . ,M . Indeed, suppose that one of them, say y, does not belong to any Bi.
Then for fy we have η̂n(fy) ≥ R

2 but η̂(fy) = 0 which is contrary to DBL(η̂n, η̂) < R
2 .

Now, consider functions gy : X → R, y ∈ R, given by

gy(x) =
1

2
max

(
0,min

(
R, 2R− d(x, y)

))
.

Clearly, ||gy||BL ≤ 1. Additionally, it is non-negative, takes positive values only inside

the ball B(y, 2R) and the maximum value R
2 uniformly on the closed ball K(y,R).

Notice that for i 6= j balls B(xi, 2R) and Bj = B(xj , R) are disjoint, as R ≤ r
3 .

For i = 1, . . . ,M we have

|η̂n(gxi)− η̂(gxi)| =
∣∣∣∣(η̂n(Bi)−Ni

)R
2

∣∣∣∣ < ε

2N
,

from which we conclude that η̂n(Bi) = Ni. Therefore, there exists σ ∈ ΣN such that
yn,i = ỹn,σ(i) ∈ B(yi, R) for all i = 1, . . . , N .

For i = 1, . . . ,M we have

|η̂n(fxi)− η̂(fxi)| =
∣∣∣∣∣∑
y

fxi(y)−Ni
R

2

∣∣∣∣∣ =
∑
y

∣∣∣∣fxi(y)− R

2

∣∣∣∣ < ε

2N
,

where the sum is taken over all Ni elements y of η̂n lying inside Bi. In particular, for
each such y = yn,j we have∣∣∣∣fxi(yn,j)− R

2

∣∣∣∣ = |fxi(yn,j)− fxi(yj)| <
ε

2N
,

which, taking into account the form of fxi means that

d(yn,j , yj) <
ε

N
,
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holding for each j = 1, . . . , N . This, in turn, gives

dN (η̂n, η̂) ≤
N∑
j=1

d(yn,j , yj) < ε,

which implies D(η̂n, η̂) < ε. As ε can be chosen arbitrarily small, we conclude that

D(η̂n, η̂)
n→∞−−−→ 0.

�

Definition 2.13. The configuration space Γ(X) consists of all subsets γ ⊂ X
which are locally finite, i.e. γ ∩ Λ ∈ Γ0(X) for any compact Λ ⊂ X.

We can equip Γ(X) with vague (or locally-weak) topology.

Definition 2.14. The vague topology is the weakest topology on Γ(X) that makes
continuous the mappings

Γ(X) 3 γ 7→
∑
x∈γ

f(x) ∈ R.

for all continuous, compactly supported functions f : X → R.

The vague topology is metrizable, e.g. by

π#(µ, ν) =

∞∫
0

e−r
π(µ ∩Br, ν ∩Br)

1 + π(µ ∩Br, ν ∩Br)
dr,

see [10, A2.6], where Br denotes an open ball centered at the origin (some fixed point
of X) with radius r.

As metrics D and π are topologically equivalent (and D ≤ 1), the vague topology
can be metrized also by

D#(µ, ν) =

∞∫
0

e−rD(µ ∩Br, ν ∩Br)dr,

with Br as above.
Γ(X) with metric π# (or D#) is not complete, see Example 1 and Lemma 2.9.

By (Γ̂(X), D#) we denote the completion of (Γ(X), D#). Its elements γ̂ ∈ Γ̂(X)

satisfy γ̂ ∩ Λ ∈ Γ̂0(X) for any compact Λ ⊂ X and therefore can be identified with
locally finite multisets.

It is known, see [26], [37] that the corresponding topological space is a Polish space
and that the vague topology on Γ(X) can be completely metrized as well.

2.2. Measures on configuration spaces. From now on, we restrict our consid-
erations to the case of simple configurations Γ. It is justified by the fact that measures
we deal with, ignore multi-configurations, see (2.15).

By B(Γ) we will denote the σ-field generated by the vague topology on Γ.
For a compact set Λ ⊂ Rd, by ΓΛ we denote the family of all configurations

contained within Λ, i.e.

ΓΛ = {γ ∩ Λ : γ ∈ Γ}.
These sets of spatially bounded configurations can be equipped with topologies induced
from the vague topology of Γ, so that

B(ΓΛ) = {A ∩ ΓΛ : A ∈ B(Γ)}.
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The set of finite configurations can be equipped with the weak-hash topology in-
duced from Γ. In the case of finite configurations, it is equal to the weak topology.
Borel σ-field defined by this topology will be denoted B(Γ0). From the fact that
Γ0 ∈ B(Γ) we have

B(Γ0) = {A ∩ Γ0 : A ∈ B(Γ)} = {A ∈ B(Γ) : A ⊂ Γ0}.
The set of finite configurations Γ0 can be written down as the union of sets of

n-element configurations, recall (2.3), that allows one to endow it with the disjoint
union topology and corresponding Borel σ-field.

In view of the above, each function G : Γ0 → R can be represented by a collection
of G(n) indexed by n ∈ N, such that G(0) is a real constant G(0) = G(∅) and for n ∈ N
its elements are symmetric real-valued functions with n arguments, each in Rd, i.e.
G(n) : (Rd)n → R such that

G(n)(x1, . . . , xn) = G({x1, . . . , xn}), xi 6= xj if i 6= j. (2.4)

Each such sequence determines the unique function G : Γ0 → R, but not vice-versa,
as G(n) may take arbitrary values whenever xi = xj for some i 6= j. This fact will be

negligible, as the set of arguments on which G(n) is not uniquely determined by G is a
zero-measure set with respect to the n-dimensional Lebesgue measure l(n), see (2.15).

It can be shown, cf. [14], that a function G : Γ0 → R is measurable if and only

if there exists a collection of symmetric and measurable functions G(n) : (Rd)n → R

satisfying (2.4) for any n ∈ N.

Definition 2.15. We say that a function G : Γ0 → R has a bounded support if
there exist a compact set Λ ⊂ Rd (spatial support) and an integer N ∈ N (quantitative
bound) such that

G(η) = 0 whenever η ∩ Λc 6= ∅ or |η| > N.

By Bbs we denote the set of all bounded and measurable functions G : Γ0 → R with
bounded supports.

It is worth noting that Bbs is a measure-defining set of functions, which means that
two measures defined on (Γ0,B(Γ0)), say µ and ν, are equal if and only if for every
G ∈ Bbs the equality for corresponding integrals holds:∫

Γ0

G(η)µ(dη) =

∫
Γ0

G(η)ν(dη).

Consider as an example a function, which will further play an important role:

e(f, η) =
∏
x∈η

f(x), (2.5)

where f : Rd → R is given. Considering e : Γ0 → R, we can easily make it spatially
bounded by picking f to have compact support Λ ⊂ Rd. However it is not quantita-
tively bounded, as for any N ∈ N we can choose η ∈ Γ0 which is a subset of Λ but
have more than N elements. Therefore, even for compactly supported functions f , in
general e does not have bounded support.

Let us introduce the following transformation, called K-transform, see [19] for a
broader discussion around it.

Definition 2.16. K-transform is defined by the formula

(KG)(γ) =
∑
ηbγ

G(η),
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where η ∈ Γ0, γ ∈ Γ and G : Γ0 → R.

Symbol ”b” used above means that the sum is taken over all finite subsets η of
γ. Obviously, the K−transform is linear. It acts to the set of all measurable cylinder
functions F : Γ→ R, that is satisfying F (γ) = F (γΛ) for some compact Λ ⊂ Rd, where
γΛ = γ ∩ Λ, see [19] for more details. For G1, G2 ∈ Bbs, it is known that

(KG1) · (KG2) = K(G1 ? G2), (2.6)

where the ’convolution’ G1 ? G2 is defined as

(G1 ? G2)(η) =
∑
ξ⊂η

G1(ξ)
∑
ζ⊂ξ

G2(η\ξ ∪ ζ) ∈ Bbs. (2.7)

One of the important properties of the K-transform is that

(Ke(f, ·))(γ) = e(1 + f, γ), (2.8)

recall (2.5).
We will use the following combinatorial fact for changing the order of summation

for G,H : Γ0 → R ∑
ηbγ

∑
ξbγ\η

H(η)G(ξ) =
∑
ξbγ

∑
η⊂ξ

H(η)G(ξ\η), (2.9)

where γ ∈ Γ. Actually, it holds true even if we limit η to be element of Γ(n) for a given
n ∈ N, for example in the case n = 1 with G : Γ0 → R, H : Rd → R we have∑

x∈γ

∑
ξbγ\x

H(x)G(ξ) =
∑
ξbγ

∑
x∈ξ

H(x)G(ξ\x) (2.10)

or in the case n = 2 with G : Γ0 → R and symmetric H : Rd ×Rd → R we obtain∑
{x,y}⊂γ

∑
ξbγ\{x,y}

H(x, y)G(ξ) =
∑
ξbγ

∑
{x,y}⊂ξ

H(x, y)G(ξ\{x, y}) (2.11)

Consider a projection pΛ : Γ → ΓΛ given by formula pΛ(γ) = γ ∩ Λ. For any
measure µ on (Γ,B(Γ)), using pΛ we can define projection µΛ of µ on (ΓΛ,B(ΓΛ)) by

µΛ(A) = µ(p−1
Λ (A)), A ∈ B(ΓΛ). (2.12)

The set of all probability measures on (Γ,B(Γ)) will be denoted by P(Γ). For a
measure µ ∈ P(Γ) define a Bogoliubov functional as

Bµ(θ) =

∫
Γ

Fθ(γ)µ(dγ), (2.13)

where

Fθ(γ) =
∏
x∈γ

(1 + θ(x))

and θ ∈ Θ with Θ being a convenient set of real-valued functions defined on Γ. For
example, we can choose Θ to be the set of all compactly supported, continuous func-
tions θ : Rd → (−1, 0]. Then the above functional is bounded by 1 for any probability
measure µ.

An important role for us will play the Poisson measure, see e.g. [15]. It distributes
points independently over Rd with given density and corresponds to the most chaotic
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state in the system. For the homogeneous Poisson measure πρ (i.e. with constant
density ρ ∈ R), the Bogoliubov functional takes the form

Bπρ(θ) = exp
(
ρ

∫
Rd

θ(x)dx
)
.

In the case of Poisson measure, the above functional can be naturally extended to
L1(Rd). We define Pexp ⊂ P(Γ) as the set of all probability measures µ ∈ P(Γ) for
which it is possible to extend the Bogoliubov functional (2.13) to an exponential type
entire function on L1(Rd), which means that it can be written as

Bµ(θ) = 1 +

∞∑
n=1

1

n!

∫
(Rd)n

k(n)
µ (x1, . . . , xn)

n∏
i=1

θ(xi)dx1 . . . dxn (2.14)

with symmetric k
(n)
µ ∈ L∞

(
(Rd)n

)
, which for every n ∈ N undergoes the estimation

||k(n)
µ || ≤ Cn for some constant C > 0. The elements of Pexp are called sub-Poissonian

measures. In view of (2.4) we introduce the correlation function of measure µ ∈ Pexp

as follows.

Definition 2.17. The correlation function of measure µ ∈ Pexp is a function

kµ : Γ0 → R such that kµ(∅) = 1 and kµ(η) = k
(n)
µ (x1, . . . , xn) for η = {x1, . . . , xn},

where k
(n)
µ is as in (2.14).

One can define the Lebesgue-Poisson measure, a correlation measure of a homoge-
neous Poisson measure with density ρ ≡ 1 (see [19] for details) in terms of integrals
for functions from Bbs, recall Definition 2.15.

Definition 2.18. The Lebesgue-Poisson measure λ on (Γ0,B(Γ0)) is defined as a
measure satisfying∫

Γ0

G(η)λ(dη) = G(∅) +
∞∑
n=1

1

n!

∫
(Rd)n

G(n)(x1, x2, . . . , xn)dx1dx2 . . . dxn

for all G ∈ Bbs.

Note that for the n-dimensional Lebesgue measure l(n) we have

ln({(x1, . . . , xn) : xi = xj for some i 6= j}) = 0, (2.15)

which justifies the restriction we made at the beginning of this section.
One can rewrite (2.14) in terms of the Lebesgue-Poisson integral

Bµ(θ) =

∫
Γ0

kµ(η)
∏
x∈η

θ(x)λ(dη), θ ∈ L1(Rd),

obtaining a dependency, recall (2.13),∫
Γ

Fθ(γ)µ(dγ) =

∫
Γ0

kµ(η)
∏
x∈η

θ(x)λ(dη). (2.16)

For µ ∈ Pexp and bounded Λ ∈ B(Rd), the projection µΛ given by (2.12) is abso-
lutely continuous with respect to Lebesgue-Poisson measure λ, recall Definition 2.18.
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We write RΛ
µ for density (Radon-Nikodym derivative) of µΛ w.r.t. λ. It is connected

with the restriction of correlation function kµ to ΓΛ by the relation

kµ(η) =

∫
ΓΛ

RΛ
µ (η ∪ ξ)λ(dξ), η ∈ ΓΛ. (2.17)

For each sub-Poissonian measure µ ∈ Pexp and G ∈ Bbs the following very useful
equality holds, see e.g. [4] equation (2.13):∫

Γ

(KG)(γ)µ(dγ) =

∫
Γ0

kµ(η)G(η)λ(dη), (2.18)

recall Definitions 2.16, 2.17 and 2.18.
The following fact (see e.g. Proposition 2.3 in [4]) allows to show that a given

function is a correlation function. It is the basis of the proof of Theorem 3.3, one of
the main results presented in this work.

Proposition 2.19. A function k : Γ0 → R is the correlation function of a unique
measure µ ∈ Pexp if it satisfies the conditions:

k(∅) = 1,

k(η) ≤ C |η| for a constant C > 0,∫
Γ0

Gk dλ ≥ 0 for all G ∈ B∗bs,

where B∗bs = {G ∈ Bbs : (KG)(γ) ≥ 0, γ ∈ Γ}, recall Definition 2.16 of K-transform.

A technical lemma repeatedly used throughout this work is so-called Minlos lemma
(see e.g. [14] for a more general version).

Lemma 2.20. For measurable G : Γ0 → R, H : Γ0 × Γ0 → R∫
Γ0

∫
Γ0

G(η ∪ ξ)H(η, ξ)λ(dη)λ(dξ) =

∫
Γ0

G(η)
∑
ξ⊂η

H(ξ, η\ξ)λ(dη).

Proof. By the basic properties of integral, it is enough to consider positive functions
G,H. By Definition 2.18 we have

RHS =

∞∑
n=0

1

n!

∫
(Rd)n

G({x1, . . . , xn})
∑

ξ⊂{x1,...,xn}

H(ξ, {x1, . . . , xn}\ξ)dx1 . . . dxn =

∞∑
n=0

1

n!

n∑
k=0

(
n

k

) ∫
(Rd)n−k

∫
(Rd)k

G({x1, . . . , xn})H({x1, . . . , xk}, {xk+1, . . . , xn})dx1 . . . dxn.

Reordering the obtained double sum, we get

∞∑
n=0

∞∑
k=0

(
n+k
k

)
(n+ k)!

∫
(Rd)n

∫
(Rd)k

G({x1, . . . , xn+k})H({x1, . . . , xk}, {xk+1, . . . , xn+k})dx1 . . . dxn+k =

∞∑
n=0

1

n!

∫
(Rd)n

∞∑
k=0

1

k!

∫
(Rd)k

G({x1, . . . , xn+k})H({x1, . . . , xk}, {xk+1, . . . , xn+k})dx1 . . . dxn+k

which is exactly the LHS. �
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We will also use two special cases of Lemma 2.20, which can be proven in a straight-
forward way by taking

H(η1, η2) =

{
H(x, η2), η1 = {x}
0, |η1| 6= 1

and

H(η1, η2, η3) =

{
H(x, y, η3), η1 = {x}, η2 = {y}
0, |η1| 6= 1 or |η2| 6= 1,

respectively, combined with the use of Definition 2.18.

Lemma 2.21. For positive and measurable G : Γ0 → R, H : Rd × Γ0 → R∫
Γ0

∫
Rd

G(η ∪ x)H(x, η)dxλ(dη) =

∫
Γ0

∑
x∈η

G(η)H(x, η\x)λ(dη).

Lemma 2.22. For positive and measurable G : Γ0 → R, H : Rd ×Rd × Γ0 → R

1

2

∫
Γ0

∫
Rd

∫
Rd

G(η ∪ {x, y})H(x, y, η)dxdyλ(dη) =

∫
Γ0

∑
{x,y}⊂η

G(η)H(x, y, η\{x, y})λ(dη).

2.3. Dynamics on the configuration space. In the approach we follow, the
states of the system are probabilistic measures on Γ, that is elements of P(Γ). The
dynamics of the system is described by the corresponding Fokker-Planck equation (or
Kolmogorov forward equation)

d

dt
µt = L∗µt, µt=0 = µ0, (2.19)

where µ0 is the initial state of the system. However, in many cases it is more convenient
to introduce the dynamics of the system by the means of corresponding (backward)
Kolmogorov equation

d

dt
Ft = LFt, Ft=0 = F0, (2.20)

which specifies the evolution µ0 → µt of states by the relation

µt(F0) = µ0(Ft),

where, by convention (that will be used also further in the work),

µ(F ) =

∫
Γ

F (γ)µ(γ).

The exact form of the operator L in (2.20) specifies the model. One can pass from the
Kolmogorov (2.20) to the Fokker-Planck (2.19) equation by relation∫

Γ

LFt dµ0 =

∫
Γ

F0 d(L∗µt). (2.21)

For infinite systems, it is difficult to deal directly with Kolmogorov equation (2.20)
or Fokker-Planck equation (2.19). In the case of studying sub-Poissonian states, to
avoid imposing artificial restrictions, we may pass to the problem for their correlation
functions, recall Definition 2.17. It is performed by passing action of operator L from
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(2.20) to operator L∆ acting on the level of correlation functions. Having in mind
(2.16), we can describe it by the duality∫

Γ

(LFθ)(γ)µ(dγ) =

∫
Γ0

(L∆kµ)(η)
∏
x∈η

θ(x)λ(dη), (2.22)

where Fθ is defined as previously:

Fθ(γ) =
∏
x∈γ

(1 + θ(x)).

Therefore, instead of (2.20) or (2.19), we can study a problem posed on the level
of correlation functions, namely

d

dt
kt(η) = L∆kt(η), kt=0 = k0, (2.23)

where k0 is the correlation function of the initial state of the system.
Due to the properties of correlation functions, the appropriate Banach spaces in

which we consider equation (2.23) are of L∞ type. We define the following scale of
Banach spaces.

Definition 2.23. For θ ∈ R, by Kθ we denote the Banach space

Kθ = {k : Γ0 → R : ||k||θ <∞}
with the norm

||k||θ = ess sup
η∈Γ0

(
e−θ|η||k(η)|

)
,

where ess sup is taken with respect to the Lebesgue-Poisson measure.

For θ′ > θ we have Kθ ↪→ Kθ′ , that is Kθ is continuously embedded in Kθ′ . Directly
from Definition 2.23, any k ∈ Kθ undergoes the estimate

|k(η)| ≤ eθ|η|||k||θ. (2.24)

3. Microscopic dynamics

In this section, the exact form of the studied model of coalescing random jumps is
given. The model is based on the one describing repulsive jumps, which was studied
e.g. in [7] or [4]. An additional term responsible for coalescence is considered, see
(3.1) below, that makes the analysis of the system dynamics more challenging. This
model in a slightly more general form was first introduced in [30]. Later, in the form
presented here, it was studied in more details in [23]. This section is devoted to the
presentation of the results published in the latter article.

3.1. The model. The discussed model is specified by the operator L = L1 + L2

involved in corresponding Kolmogorov equation (2.20). Its action on observable F :
Γ→ R is defined as

(L1F )(γ) =
∑
{x,y}⊂γ

∫
Rd

c1(x, y; z)
(
F
(
γ\{x, y} ∪ z

)
− F (γ)

)
dz (3.1)

(L2F )(γ) =
∑
x∈γ

∫
Rd

c̃2(x; y; γ)
(
F
(
γ\x ∪ y

)
− F (γ)

)
dy.

Function c1 denotes the intensity of coalescence – c1(x, y; z) is the intensity of action
in which x and y coalesce into z. Note that c1 does not depend on other (than x and y)
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elements of configuration γ. Function c̃2 describes the intensity of jumps – c̃2(x; y; γ) is
the intensity of action in which x change into y in the presence of configuration γ. The
intensity of jumps is lowered by the configuration with the jumping element excluded.
Therefore, we may express it in the form

c̃2(x; y; γ) = c2(x; y)
∏
u∈γ\x

e−φ(y−u),

where φ is the repulsion potential and c2 the jump kernel. We assume the following,
quite general, properties of the parameter functions involved in the model. The func-
tions c1, c2 and φ take real, non-negative values and additionally fulfill the following
integrability and boundedness conditions:∫

Rd

∫
Rd

c1(x1, x2;x3)dxidxj = 〈c1〉 <∞,

cmax
1 = sup

x,y∈Rd

∫
Rd

c1(x, y; z)dz <∞,

∫
Rd

c2(x; y)dx =

∫
Rd

c2(x; y)dy = 〈c2〉 <∞, (3.2)

〈φ〉 =

∫
Rd

φ(x)dx <∞,

|φ| = sup
x∈Rd

φ(x) <∞.

In view of duality relation (2.22), we pass to the corresponding operator acting on
the level of correlation functions. Let us start with L1.∫

Γ

(L1Fθ)(γ)µ(dγ) =

∫
Γ

∫
Rd

∑
{x,y}⊂γ

c1(x, y; z)
[
(1 + θ(z))− (1 + θ(x))(1 + θ(y))

] ∏
u∈γ\{x,y}

(1 + θ(u))dzµ(dγ).

Using (2.8) we can write the RHS in the form∫
Γ

∫
Rd

∑
{x,y}⊂γ

c1(x, y; z)
[
θ(z)− θ(x)− θ(y)− θ(x)θ(y)

] ∑
ηbγ\{x,y}

∏
u∈η

θ(u)dzµ(dγ).

Changing the order of summation (2.11) we get∫
Γ

∑
ηbγ

∫
Rd

∑
{x,y}⊂η

c1(x, y; z)
[
θ(z)− θ(x)− θ(y)− θ(x)θ(y)

] ∏
u∈η\{x,y}

θ(u)dzµ(dγ).

Then, by (2.18) we rewrite it as∫
Γ0

kµ(η)

∫
Rd

∑
{x,y}⊂η

c1(x, y; z)
[
θ(z)− θ(x)− θ(y)− θ(x)θ(y)

] ∏
u∈η\{x,y}

θ(u)dzλ(dη).

Finally, using Lemmas 2.21 and 2.22 we obtain∫
Γ

(L1Fθ)(γ)µ(dγ) =

∫
Γ0

(L∆
1 kµ)(η)

∏
u∈η

θ(u)λ(dη),
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where

L∆
1 = L∆

11 + L∆
12 + L∆

13 + L∆
14 (3.3)

consists of four summands

L∆
11k(η) =

1

2

∫
Rd

∫
Rd

∑
z∈η

c1(x, y; z)k(η\z ∪ {x, y})dxdy,

L∆
12k(η) = −1

2

∫
Rd

∫
Rd

∑
x∈η

c1(x, y; z)k(η ∪ y)dydz,

L∆
13k(η) = −1

2

∫
Rd

∫
Rd

∑
y∈η

c1(x, y; z)k(η ∪ x)dxdz,

L∆
14k(η) = −

∫
Rd

∑
{x,y}⊂η

c1(x, y; z)dz k(η).

In the case of L2, the procedure is similar. First, by (2.22) and (2.8)∫
Γ

(L2Fθ)(γ)µ(dγ) =

∫
Γ

∑
x∈γ

∫
Rd

c2(x; y)
∏
z∈γ\x

e−φ(y−z)
[
θ(y)−θ(x)

] ∑
ηbγ\x

∏
u∈η

θ(u)dyµ(dγ).

Then we split the product of repulsion terms∫
Γ

∑
x∈γ

∫
Rd

c2(x; y)
∑
ηbγ\x

∏
z∈γ\x\η

(
1+e−φ(y−z)−1

)∏
z∈η

e−φ(y−z)
[
θ(y)−θ(x)

]∏
u∈η

θ(u)dyµ(dγ).

Using (2.8) we obtain∫
Γ

∑
x∈γ

∫
Rd

c2(x; y)
∑
ηbγ\x

∑
ξbγ\x\η

∏
z∈ξ

(
e−φ(y−z)−1

)∏
z∈η

e−φ(y−z)
[
θ(y)−θ(x)

]∏
u∈η

θ(u)dyµ(dγ).

Next, by (2.9) we transform it into∫
Γ

∑
x∈γ

∫
Rd

c2(x; y)
∑
ξbγ\x

∑
η⊂ξ

∏
z∈ξ\η

(
e−φ(y−z)−1

)∏
z∈η

e−φ(y−z)
[
θ(y)−θ(x)

]∏
u∈η

θ(u)dyµ(dγ).

Changing the order of summation, recall (2.10), we get∫
Γ

∑
ξbγ

∑
x∈ξ

∫
Rd

c2(x; y)
∑
η⊂ξ\x

∏
z∈ξ\x\η

(
e−φ(y−z)−1

)∏
z∈η

e−φ(y−z)
[
θ(y)−θ(x)

]∏
u∈η

θ(u)dyµ(dγ).

Then, by (2.18)∫
Γ0

kµ(ξ)
∑
x∈ξ

∫
Rd

c2(x; y)
∑
η⊂ξ\x

∏
z∈ξ\x\η

(
e−φ(y−z)−1

)∏
z∈η

e−φ(y−z)
[
θ(y)−θ(x)

]∏
u∈η

θ(u)dyλ(dξ).

Changing the order of summation with the use of (2.10) again, we obtain∫
Γ0

∑
η⊂ξ

kµ(ξ)
∑
x∈η

∫
Rd

c2(x; y)
∏
z∈ξ\η

(
e−φ(y−z)−1

) ∏
z∈η\x

e−φ(y−z)
[
θ(y)−θ(x)

] ∏
u∈η\x

θ(u)dyλ(dξ)
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Finally, by Lemma 2.20 and then by Lemma 2.21∫
Γ

(L2Fθ)(γ)µ(dγ) =

∫
Γ0

∫
Γ0

∫
Rd

∑
x∈η

kµ(η ∪ ξ)c2(x; y)
∏
z∈ξ

(
e−φ(y−z) − 1

)
×

∏
z∈η\x

e−φ(y−z)
[
θ(y)− θ(x)

] ∏
u∈η\x

θ(u)dyλ(dξ)λ(dη) =

∫
Γ0

∏
u∈η

θ(u)(L∆
2 kµ)(η)λ(dη),

where

L∆
2 = L∆

21 + L∆
22 (3.4)

with

L∆
21k(η) =

∫
Rd

∑
y∈η

c2(x; y)
∏
u∈η\y

e−φ(y−u) (Qyk)(η\y ∪ x)dx,

L∆
22k(η) = −

∫
Rd

∑
x∈η

c2(x; y)
∏
u∈η\x

e−φ(y−u) (Qyk)(η)dy,

and

(Qyk)(η) =

∫
Γ0

k(η ∪ ξ)
∏
u∈ξ

(e−φ(y−u) − 1)λ(dξ). (3.5)

Therefore, we can try to study the dynamics of the system in the terms of cor-
relation functions of the states, instead of observables, recall (2.22). In the place of
problem (2.20), we consider (2.23).

3.2. Dynamics in Kθ. In this section we study the problem (2.23) in the scale
of Banach spaces Kθ, recall Definition 2.23. The equation of interest is

d

dt
kt(η) = L∆kt(η), kt=0 = k0 (3.6)

with L∆ = L∆
1 + L∆

2 specified in (3.3) and (3.4). The results of this section are
published in [23].

First, let us notice that operator L∆ : Kθ → Kθ′ is bounded, if θ′ > θ. Indeed, we
have

||L∆||θθ′ ≤
β(θ)

e(θ′ − θ) +
2cmax

1

e2(θ′ − θ)2
(3.7)

where || · ||θθ′ denotes the operator norm for operators acting from Kθ to Kθ′ and

β(θ) =
3

2
eθ〈c1〉+ 2 exp(〈φ〉eθ)〈c2〉,

recall (3.1) for definitions of 〈c1〉, 〈c2〉, 〈φ〉 and cmax
1 . The estimate follows directly by

the following lemma.

Lemma 3.1. Let θ′ > θ and L∆ : Kθ → Kθ′ be given as above. Then

||L∆
11||θθ′ , ||L∆

12||θθ′ , ||L∆
13||θθ′ ≤

eθ〈c1〉
2(θ′ − θ)e,

||L∆
14||θθ′ ≤

2cmax
1

(θ′ − θ)2e2
,

||L∆
21||θθ′ , ||L∆

22||θθ′ ≤
exp(〈φ〉eθ)〈c2〉
e(θ′ − θ) .



22

Proof. Using (3.3), (2.24) and (3.1) one obtains

|L∆
11k(η)| ≤ 1

2
||k||θeθ(|η|+1)|η|〈c1〉.

Next, by inequality

xe−ax ≤ 1

ae
, a > 0, (3.8)

we have

|L∆
11k(η)|e−θ′|η| ≤ eθ〈c1〉

2(θ′ − θ)e ||k||θ.

The latter gives

||L∆
11||θθ′ ≤

eθ〈c1〉
2(θ′ − θ)e

With the same arguments, one obtains identical estimates for L∆
12 and L∆

13. Similarly,
for L∆

14 by

x2e−ax ≤ 4

a2e2
, a > 0 (3.9)

we have

||L∆
14||θθ′ ≤

2cmax
1

(θ′ − θ)2e2
.

Working with L∆
21, notice that by Definition 2.18, (3.1) and inequality

1 + x ≤ ex

we can estimate ∫
Γ0

∏
u∈ξ

(1− e−φ(y−u))eθ|ξ|λ(dξ) = (3.10)

= 1 +

∞∑
n=1

eθn

n!

∫
(Rd)n

n∏
i=1

(1− e−φ(y−xi))dx1...dxn ≤ exp(〈φ〉eθ),

which together with (3.8), (2.24) and (3.1) again, yields

||L∆
21||θθ′ ≤

exp(〈φ〉eθ)〈c2〉
e(θ′ − θ) .

One can obtain the same estimate for L∆
22 reasoning analogously. �

Next, we show that (3.6) has the unique solution for a finite time horizon.

Theorem 3.2. If k0 ∈ Kα0 for a given α0 ∈ R, then for any α∗ > α0 equation
(3.6) has a unique classical solution kt ∈ Kα∗ on [0, T ) with

T = T (α∗, α0) =
α∗ − α0

3
2e
α∗〈c1〉+ 2 exp(〈φ〉eα∗)〈c2〉

.

Proof. The method used to obtain the result is a modification of Ovsyannikov’s
method, similar to one used in [18]. The ”standard” Ovsyannikov’s method requires
the operator to have its norm estimated by an expression like the first summand of
estimate (3.7), with θ′−θ in the first power. It is not the case for the second summand
and that is why a little more sophisticated method has to be used. Let us split the
operator L∆ into two parts:

A = L∆
14 and B = L∆

11 + L∆
12 + L∆

13 + L∆
21 + L∆

22.
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Note that A is a multiplication operator

Ak(η) = −Ψ(η)k(η)

with

Ψ(η) =

∫
Rd

∑
{x,y}⊂η

c1(x, y; z)dz,

see (3.3). When considered as operator acting from Kθ to Kθ′ , its norm can be esti-
mated by the second summand of (3.7) and the norm of B can be estimated by the
”convenient” first summand.

Now, for any θ′ > θ define Sθθ′(t) : Kθ → Kθ′ by

(Sθθ′(t)k)(η) = e−Ψ(η)tk(η).

It is continuous as a function of t, as for k ∈ Kθ

||Sθθ′(t)k − Sθθ′(0)k||θ′ ≤ t ·
2cmax

1 ||k||θ
(θ′ − θ)2e2

t→0−→ 0.

Additionally for any θ′′ ∈ (θ, θ′)

d

dt
Sθθ′(t) = Aθ′′θ′Sθθ′′(t). (3.11)

Obviously Sθθ′(t) is a bounded operator from Kθ to Kθ′ for any t ≥ 0 (which would be
also the case for Sθθ). In the case t = 0 it is an identity operator, embedding Kθ into
Kθ′ .

Now consider any α∗ > α0 and q > 1. Define the partition a0, . . . , a2n+1 of the
interval [α0, α∗] as follows:

a0 = α0

a2k+1 = a2k +
(q − 1)(α∗ − α0)

q(n+ 1)
, 0 ≤ k ≤ n

a2k = a2k−1 +
(α∗ − α0)

qn
, 1 ≤ k ≤ n,

that is

a2k+1 = α0 +

(
k + 1

n+ 1
· q − 1

q
+
k

n
· 1

q

)
(α∗ − α0)

a2k = α0 +

(
k

n+ 1
· q − 1

q
+
k

n
· 1

q

)
(α∗ − α0).

In particular a2n+1 = α∗.

For 0 ≤ tn ≤ tn−1 ≤ . . . ≤ t2 ≤ t1 ≤ t define the operator π
(n)
α0α∗(t, t1, ..., tn) :

Kα0 → Kα∗ as

π(n)
α0α∗(t, t1, ..., tn) = Sa2na2n+1(t− t1)Ba2n−1a2nSa2n−2a2n−1(t1 − t2)Ba2n−1a2n . . .

. . . Sa2a3(tn−1 − tn)Ba1a2Sa0a1(tn)

In view of (3.11) we have

d

dt
π(n)
α0α∗(t, t1, ..., tn) = Aαα∗π

(n)
α0α(t, t1, ..., tn)

for α ∈ (α0, α∗).
By Lemma 3.1, we obtain

||π(n)
α0α∗(t, t1, ..., tn)|| ≤

n∏
k=1

(
β(a2k−1)

qn

(α∗ − α0)e

)
≤
(n
e

)n
·
(

q

T (α∗, α0)

)n
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with

T (α∗, α0) =
α∗ − α0

β(α∗)
.

Now for n ∈ N consider

Q(n)
α0α∗(t) = Sα0α∗(t) +

n∑
k=1

t∫
0

t1∫
0

. . .

tk−1∫
0

π(k)
α0α∗(t, t1, ..., tk)dt1dt2 . . . dtk.

We have

Q(n)
α0α∗(t)−Q(n−1)

α0α∗ (t) =

t∫
0

t1∫
0

. . .

tn−1∫
0

π(n)
α0α∗(t, t1, ..., tn)dt1dt2 . . . dtn

and

||Q(n)
α0α∗(t)−Q(n−1)

α0α∗ (t)|| ≤
t∫

0

t1∫
0

. . .

tn−1∫
0

(n
e

)n
·
(

q

T (α∗, α0)

)n
dt1dt2 . . . dtn =

=
1

n!

(n
e

)n
·
(

qt

T (α∗, α0)

)n
.

For t < T (α∗, α0), we can pick q > 1 such that qt < T (α∗, α0), which by the above esti-

mate together with the Stirling’s formula makes Q
(n)
α0α∗(t) a Cauchy sequence. Denote

it’s limit by Qα0α∗(t).
For α ∈ (α0, α∗) we have

d

dt
Q(n)
α0α∗(t) = (Aαα∗ +Bαα∗)Q

(n)
α0α∗(t)−Bαα∗

t∫
0

t1∫
0

. . .

tn−1∫
0

π(n)
α0α(t, t1, . . . , tn)dt1 . . . dtn.

Taking t < T (α∗, α0) and α close enough to α∗

d

dt
Qα0α∗(t) = (Aαα∗ +Bαα∗)Qα0α(t).

Therefore we obtain for t < T (α∗, α0) the classical solution

kt = Qα0α∗(t)k0.

Remark
By the estimations used above we obtain

||Qα0α∗(t)|| ≤
T (α∗, α0)

T (α∗, α0)− t (3.12)

for t < T (α∗, α0).
To finish the proof we need to show the uniqueness of the solution. Suppose that

u, v ∈ Kα∗ are solutions of the problem. Denote w = u− v. Then

wt =

t∫
0

e−(t−s)ΨBwsds

and iterating n times

wt =

t∫
0

t1∫
0

. . .

tn−1∫
0

e−(t−t1)ΨB . . . e−(tn−1−tn)ΨBwtndt1 . . . dtn. (3.13)
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Take α∗ = 2α∗ − α0 > α∗ and for any q > 1 define partition b0, ... b2n of the interval
[α∗, α

∗]:

b2k = α∗ +
k

n
(α∗ − α∗), 0 ≤ k ≤ n

b2k+1 = α∗ +

(
k + 1

n
· 1

q
+
k

n
· q − 1

q

)
(α∗ − α∗), 0 ≤ k ≤ n− 1

with b2n being α∗. Consider operators in (3.13) as acting from Kbi to Kbi+1
, i =

0, ..., 2n − 1. Using estimates of norm of the operator B and noting that α∗ − α∗ =
α∗ − α0 we obtain for t < T (α∗, α0):

||wt||α∗ ≤
tn

n!
||B||b0b1 . . . ||B||bn−2bn−1 sup

s∈[0,t]
||ws||α∗

≤ 1

n!

(n
e

)n( qt

T (α∗, α0)

)n
sup

s∈[0,T (α∗,α0)]
||ws||α∗

and similarly as before, picking q close enough to 1

||wt||α∗ = 0, t < T (α∗, α0)

which implies
wt = 0, t < T (α∗, α0)

as an element of Kα∗ and being the zero vector, also of Kα∗ . Therefore u = v which
finishes the proof.

�

Assume that the inital state µ0 of our system is sub-Poissonian. Then we may
consider its correlation function k0 as the initial state of equation (2.23). Theorem
3.2 guarantees the existence and uniqueness of solution kt of this equation for some
finite time horizon. The question arises, whether this evolution may be related to the
evolution of states. That is, whether kt is a correlation function for a unique measure
µt ∈ Pexp. The next statement gives an answer to this question.

Theorem 3.3. Suppose that k0 is the correlation function of the initial state µ0 ∈
Pexp. Then for any α∗ > α0, kt discussed in Theorem 3.2 is again a correlation
function of a unique state µt ∈ Pexp for t < T = 1

2T (α∗, α0), where T (α∗, α0) is
defined as in Theorem 3.2.

This result gives us a weak solution µt to the Fokker-Planck equation (2.19) for a
finite time horizon T in the sense that

d

dt

∫
Γ

Fθ(γ)µt(dγ) =

∫
Γ

Fθ(γ)(L∗µt)(dγ), t < T, θ ∈ L1(Rd),

see (2.21) and (2.16).

4. Proof of Theorem 3.3

This section is devoted to the proof of Theorem 3.3, which can be found in [23] in
almost the same form. First, note that given a correlation function k0 of the initial sub-
Poissonian state µ0 we know, recall Definition 2.17, that k0(∅) = 1 and that there exists
α0 ∈ R such that k0 ∈ Kα0 . Therefore, by Theorem 3.2 we obtain for t < T a classical
solution kt of equation (2.23) in Kα∗ , where α∗ > α. Note that L∆ = L∆

1 + L∆
2 given

by (3.3) and (3.4) guarantees that for any k we have L∆k(∅) = 0. It means that kt(∅)
is constantly equal to 1. Because kt ∈ Kα∗ , there exists a constant C = eα∗+ln ||k||α∗

such that kt(η) ≤ C |η|. In view of Proposition 2.19, to show that kt is a correlation
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function of a unique measure µt ∈ Pexp it remains to prove that the positivity property
holds: ∫

Γ0

Gkt dλ ≥ 0 for all G ∈ B∗bs. (4.1)

In order to do that, we take several steps. First, in Subsection 4.1 we introduce an
auxiliary model with parameter σ with altered action of L (changed operator will be
denoted Lσ). For this new case, we obtain evolution in the scale of Kθ spaces similarly
as previously for the original model. Then we show convergence in a weak sense of
the auxiliary model solution to the original one (Subsection 4.3). For this purpose
we use the predual evolution (Subsection 4.2). To show that the required positivity
property holds for the auxiliary evolution, first we need to consider the local evolution
(Subsection 4.4), so that we can link our problem with the evolution of so-called local
correlation functions (see (4.26)), for which it is easy to show required positivity. Then,
in Subsection 4.4.6 we pass to the limit with parameters describing locality, obtaining
the desired result.

4.1. Auxiliary model. The auxiliary model will be introduced by the alteration

of operator L in (3.1). For given parameter σ > 0 define ψσ(x) = e−σ|x|
2
, x ∈ Rd.

Obviously ψσ(x) ∈ [0, 1] and ∫
Rd

e−σ|x|
2
dx =

(π
σ

)d/2
.

Introduce

LσF (γ) =
∑
{x,y}⊂γ

∫
Rd

ψσ(z)c1(x, y; z)
(
F
(
γ\{x, y} ∪ z

)
− F (γ)

)
dz

+
∑
x∈γ

∫
Rd

ψσ(y)c̃2(x; y; γ)
(
F
(
γ\x ∪ y

)
− F (γ)

)
dy. (4.2)

Similarly as before, we pass its action to the operator acting on functions k : Γ0 →
R and split it into parts L∆,σ = L∆,σ

1 + L∆,σ
2 with

L∆,σ
1 k(η) =

1

2

∫
(Rd)2

∑
z∈η

ψσ(z)c1(x, y; z)k(η\z ∪ {x, y})dxdy

− 1

2

∫
(Rd)2

ψσ(z)
∑
x∈η

c1(x, y; z)k(η ∪ y)dydz

− 1

2

∫
(Rd)2

ψσ(z)
∑
y∈η

c1(x, y; z)k(η ∪ x)dxdz

−
∫
Rd

ψσ(z)
∑
{x,y}⊂η

c1(x, y; z)dz k(η)

L∆,σ
2 k(η) =

∫
Rd

∑
y∈η

(Qyk)(η\y ∪ x)ψσ(y)c2(x; y)
∏
u∈η\y

e−φ(y−u)dx

−
∫
Rd

(Qyk)(η)ψσ(y)
∑
x∈η

c2(x; y)
∏
u∈η\x

e−φ(y−u)dy,
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recall (3.5) The respective summands of L∆,σ
1 we denote as L∆,σ

11 , L∆,σ
12 , L∆,σ

13 , L∆,σ
14 and

L∆,σ
21 , L∆,σ

22 in the case of L∆,σ
2 . Additionally, we denote

Aσk(η) = L∆,σ
14 = −

∫
Rd

ψσ(z)
∑
{x,y}⊂η

c1(x, y; z)dz k(η),

Bσ = L∆,σ −Aσ.
By ψσ ≤ 1 we obtain estimates in Kθ spaces identical to (3.7). It allows us to

show, just as in Theorem 3.2, the existence and uniqueness of classical solution kσt =
Qσα0α∗(t)k0 on interval [0, T (α∗, α0)) in the space Kα∗ , α∗ > α0 of problem

d

dt
kσt = L∆,σkσt , kσt=0 = kσ0 ∈ Kα0 . (4.3)

4.2. Pre-dual evolution. In this subsection we consider the pre-dual evolution.
It is derived by the duality∫

Γ0

G0(η)kt(η)λ(dη) =

∫
Γ0

Gt(η)k0(η)λ(dη).

In order to study the evolution of functions Gt, we need to establish a proper context
of Banach spaces, which is here L1-type Gθ (θ ∈ R) with the norm

|G|θ =

∫
Γ0

|G(η)|eθ|η|λ(dη). (4.4)

Obviously for θ′ > θ we have Gθ′ ⊂ Gθ.
Notice that G ∈ Bbs lies in Gθ with any θ ∈ R. Indeed, let M be upper bound of

G, N maximum number of particles of the support and Λ its spatial bound (recall the
definition 2.15 of Bbs). Then we have∫

Γ0

|G(η)|eθ|η| =
N∑
n=0

1

n!
eθn
∫

Λn

G(x1, . . . , xn)dx1 . . . dxn ≤Me|Λ|e
θ
<∞ (4.5)

Similarly to Qα0α∗(t) acting between Kα0 and Kα∗ , α∗ > α0, we can construct
pre-dual analogue Hα∗α0(t) from Gα∗ to Gα0 satisfying for G ∈ Gα∗ and k ∈ Kα0∫

Γ0

G(η)Qα0α∗(t)k(η)λ(dη) =

∫
Γ0

Hα∗α0(t)G(η)k(η)λ(dη). (4.6)

In order to do that, introduce L̂ given by the duality equation∫
Γ0

G(L∆k)dη =

∫
Γ0

(L̂G)kdη.

It can be shown, see Lemma 5.5, that it is of the form

L̂ = L̂1 + L̂2 (4.7)

with

L̂1G(η) =

∫
Rd

∑
{x,y}⊂η

c1(x, y; z)
(
G(η\{x, y} ∪ z)−G(η\y)−G(η\x)−G(η)

)
dz,

L̂2G(η) =

∫
Rd

∑
x∈η

c2(x; y)
∑
ξ⊂η\x

[
G(ξ ∪ y)−G(ξ ∪ x)

]∑
ζ⊂ξ

∏
u∈η\ξ\x∪ζ

(
e−φ(y−u) − 1

)
dy,
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where, as usual, each summand is denoted by L̂ij with adequate i and j. Denote

ÂG(η) = L̂14G(η) = −Ψ(η)G(η),

B̂G(η) = L̂G(η)− ÂG(η).

Now we repeat construction similar to one used in the proof of Theorem 3.2. In the

place of π
(n)
α0α∗(t, t1, . . . , tn) we take

ω(n)
α∗α0

(t, t1, . . . , tn) = Sa1a0(t− t1)B̂a2a1Sa3a2(t1 − t2)B̂a4a3 . . .

. . . Sa2n−1a2n−2(tn−1 − tn)B̂a2na2n−1Sa2n+1a2n(tn).

Note that Sθ′θ acting from Gθ′ to Gθ, θ′ > θ is continuous. Indeed,

|Sθ′θ(t)G− Sθ′θ(0)G|θ =

∫
Γ0

(1− e−Ψ(η)t)|G(η)|eθ|η|λ(dη) ≤

≤ t
∫
Γ0

Ψ(η)|G(η)|eθ|η|λ(dη) ≤ t 2cmax
1

(θ′ − θ)2e2
|G|θ′ t→0−→ 0.

Next, define

H(n)
α∗α0

(t) = Sα∗α0(t) +
n∑
k=1

t∫
0

t1∫
0

. . .

tk−1∫
0

ω(k)
α∗α0

(t, t1, ..., tk)dt1dt2 . . . dtk (4.8)

and the rest follows just as in the mentioned proof of Theorem 3.2. Indeed, ||L̂1||α∗α0 ,

||L̂2||α∗α0 , ||L̂14||α∗α0 – operator norms of operators acting between Gθ spaces – un-
dergo the same estimates as, respectively, ||L1||α0α∗ , ||L2||α0α∗ , ||L14||α0α∗ for operators
acting between Kθ spaces with interchanged indices. Therefore we may construct for
t < T (α∗, α0) a limit Hα∗α0(t) of (4.8) which produces the unique local classical solu-
tion Gt = Hα∗α0(t)G0 in Gα0 of the problem

d

dt
Gt = L̂Gt, Gt=0 = G0 ∈ Gα∗ . (4.9)

Additionally, an analogue of (3.12) holds true, i.e.

||Hα∗α0(t)|| ≤ T (α∗, α0)

T (α∗, α0)− t . (4.10)

for t < T (α∗, α0).
In order to obtain (4.6), we show that for each n ∈ N, G ∈ Gα∗ and k ∈ Kα0 the

equation ∫
Γ0

G(η)Q(n)
α0α∗(t)k(η)λ(dη) =

∫
Γ0

H(n)
α∗α0

(t)G(η)k(η)λ(dη), (4.11)

holds, which in the limit gives desired result.
We have ∫

Γ0

G(η)Q(n)
α0α∗(t)k(η)λ(dη) =

∫
Γ0

Sα∗α0(t)G(η)k(η)λ(dη)+

+

n∑
k=1

t∫
0

t1∫
0

. . .

tk−1∫
0

∫
Γ0

G(η)π(k)
α0α∗(t, t1, ..., tk)k(η)λ(dη)dt1dt2 . . . dtk
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and ∫
Γ0

G(η)π(k)
α0α∗(t, t1, ..., tk)λ(dη) =

=

∫
Γ0

G(η)Sa2ka2k+1
(t− t1)Ba2k−1a2k

Sa2k−2a2k−1
(t1 − t2)Ba2k−1a2k

. . .

. . . Sa2a3(tk−1 − tk)Ba1a2Sa0a1(tk)k(η)λ(dη) =

=

∫
Γ0

Sa1a0(t− t1)B̂a2a1Sa3a2(t1 − t2)B̂a4a3 . . .

. . . Sa2k−1a2k−2
(tk−1 − tk)B̂a2ka2k−1

Sa2k+1a2k
(tk)G(η)k(η)λ(dη) =

=

∫
Γ0

ω(k)
α∗α0

(t, t1, . . . , tk)G(η)k(η)λ(dη)

which results in (4.11) and therefore in (4.6).

4.3. Limit σ → 0. In this subsection we show for our initial k0 ∈ Kα0 the con-
vergence of Qσ(t)k0 = kσt to Q(t)k0 = kt with σ → 0 in the weak sense, i.e. for any
G ∈ Bbs

lim
σ→0

∫
Γ0

G(η)[Q(t)−Qσ(t)]k0(η)λ(dη) = 0. (4.12)

The above result will be shown for t < 1
2T (α∗α0), where both Q(t) and Qσ(t) act from

Kα0 to Kα∗ . First, notice that for arbitrarily chosen α1 and α2 satisfying α0 < α1 <
α2 < α∗ we can write

[Q(t)−Qσ(t)]α0,α∗k0 = −
∫ t

0

d

ds
[Q(t− s)Qσ(s)]α0,α∗k0ds =

=

∫ t

0
[Q(t− s)]α2α∗(A−Aσ)α1α2k

σ(s)ds+

∫ t

0
[Q(t− s)]α2α∗(B −Bσ)α1α2k

σ(s)ds,

(4.13)

as far, as t < min(T (α1, α0), T (α∗, α2)) – we have kσ(s) = [Qσ(s)]α0α1k0 ∈ Kα1 , recall
(4.3).

For the first summand we have∫
Γ0

G(η)

∫ t

0
Q(t− s)(A−Aσ)kσs (η)dsλ(dη) =

= −
∫ t

0

∫
Γ0

Gt−s(η)

∫
Rd

(1− ψσ(z))
∑
{x,y}⊂η

c1(x, y; z)dzkσs (η)λ(dη)ds

Because G ∈ Bbs, it lies in Gθ with any θ, see (4.5), in particular with θ = α∗.
Next, by (4.9) we have Gt−s ∈ Gα2 for t− s < T (α∗, α2). This gives us by (3.12) and
(4.10) estimates

||kσs ||α1 ≤
T (α1, α0)

T (α1, α0)− s ||k0||α0 , s < T (α1, α0),

|Gt−s|α2 ≤
T (α, α2)

T (α, α2)− (t− s) |G0|α, t− s < T (α, α2). (4.14)
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Denote

C(z, η) =
1

1 + |η|(|η|−1)
2

∑
{x,y}⊂η

c1(x, y; z)dz

g(z) = ess sup
η∈Γ0

C(z, η)

We have then ∫
Rd

g(z)dz ≤ cmax
1 .

Using above, we write∣∣∣∣∣∣
∫
Γ0

Gt−s(η)

∫
Rd

(1− ψσ(z))
∑
{x,y}⊂η

c1(x, y; z)dzkσs (η)λ(dη)

∣∣∣∣∣∣ ≤
≤
∫
Rd

(1− ψσ(z))g(z)dz

∫
Γ0

(
1 +
|η|(|η| − 1)

2

)
|Gt−s(η)kσs (η)|λ(dη).

Notice that ∫
Γ0

(
1 +
|η|(|η| − 1)

2

)
|Gt−s(η)kσs (η)|λ(dη) ≤

∫
Γ0

eα2|η||Gt−s(η)|
(

1 +
|η|(|η| − 1)

2

)
e(α1−α2)|η|||kσs ||α1λ(dη) ≤

≤
(

1 +
2

e2(α2 − α1)2

)
||kσs ||α1 |Gt−s|α2

≤
(

1 +
2

e2(α2 − α1)2

)
D(t),

where

D(t) =
T (α1, α0)

T (α1, α0)− t ||k0||α0

T (α, α2)

T (α, α2)− t |G0|α (4.15)

and the last estimate was performed by means of (4.14) for s ≤ t < min(T (α1, α0), T (α, α2)).
Finally by means of above estimates we obtain for t < min(T (α1, α0), T (α, α2))∣∣∣∣∣∣

∫ t

0

∫
Γ0

Gt−s(η)

∫
Rd

(1− ψσ(z))
∑
{x,y}⊂η

c1(x, y; z)dzkσs (η)λ(dη)ds

∣∣∣∣∣∣ ≤
≤
(

1 +
2

e2(α2 − α1)2

)
tD(t)

∫
Rd

(1− ψσ(z))g(z)dz ≤ tD(t)cmax
1 <∞

and by means of Lebesgue’s dominated convergence theorem

lim
σ→0

∣∣∣∣∣∣
∫ t

0

∫
Γ0

Gt−s(η)

∫
Rd

(1− ψσ(z))
∑
{x,y}⊂η

c1(x, y; z)dzkσs (η)λ(dη)ds

∣∣∣∣∣∣ ≤
≤
(

1 +
2

e2(α2 − α1)2

)
tD(t)

∫
Rd

lim
σ→0

(1− ψσ(z))g(z)dz = 0,



31

that is

lim
σ→0

∫ t

0

∫
Γ0

Gt−s(η)(A−Aσ)kσs (η)λ(dη)ds = 0 (4.16)

Now let us move on to the second summand of (4.3). Just like for the first one, we
write∫

Γ0

G(η)

∫ t

0
Q(t− s)(B −Bσ)kσs (η)dsλ(dη) =

∫ t

0

∫
Γ0

Gt−s(η)(B −Bσ)kσs (η)λ(dη)ds =

=

∫ t

0

∫
Γ0

Gt−s(η)(L∆
11 − L∆,σ

11 )kσs (η)λ(dη)ds+

∫ t

0

∫
Γ0

Gt−s(η)(L∆
12 − L∆,σ

12 )kσs (η)λ(dη)ds

+

∫ t

0

∫
Γ0

Gt−s(η)(L∆
13 − L∆,σ

13 )kσs (η)λ(dη)ds+

∫ t

0

∫
Γ0

Gt−s(η)(L∆
21 − L∆,σ

21 )kσs (η)λ(dη)ds

+

∫ t

0

∫
Γ0

Gt−s(η)(L∆
22 − L∆,σ

22 )kσs (η)λ(dη)ds (4.17)

and we deal with the convergence of each summand separately. By the Minlos lemma
in the form (2.21) and (2.22) we have

∣∣∣∣∣∣
∫
Γ0

Gt−s(η)(L∆
11 − L∆,σ

11 )kσs (η)λ(dη)

∣∣∣∣∣∣ ≤
≤ 1

2

∫
Γ0

|Gt−s(η)|
∫

(Rd)
2

∑
z∈η

(1− ψσ(z))c1(x, y; z)|kσs (η\z ∪ {x, y})|dxdyλ(dη) =

=

∫
Γ0

∫
Rd

∑
{x,y}⊂η

|Gt−s(η\{x, y} ∪ z)|(1− ψσ(z))c1(x, y; z)dz|kσs (η)|λ(dη) ≤

≤ ||kσs ||α1

∫
Rd

(1− ψσ(z))

∫
Γ0

∑
{x,y}⊂η

|Gt−s(η\{x, y} ∪ z)|c1(x, y; z)eα1|η|λ(dη)dz.

Therefore, we obtain

∣∣∣∣∣∣
∫ t

0

∫
Γ0

Gt−s(η)(L∆
11 − L∆,σ

11 )kσs (η)λ(dη)ds

∣∣∣∣∣∣ ≤
∫
Rd

(1− ψσ(z))g(z)dz

with

g(z) =

∫
Γ0

∫ t

0
||kσs ||α1

∑
{x,y}⊂η

|Gt−s(η\{x, y} ∪ z)|c1(x, y; z)eα1|η|λ(dη)ds
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Notice that, again by (2.21), (2.22) and (4.14) for s ≤ t < min(T (α1, α0), T (α, α2))
we obtain∫
Rd

g(z)dz =

∫ t

0
||kσs ||α1

∫
Rd

∫
Γ0

∑
{x,y}⊂η

|Gt−s(η\{x, y} ∪ z)|c1(x, y; z)eα1|η|λ(dη)dzds =

=
1

2
eα1

∫ t

0
||kσs ||α1

∫
Γ0

eα2|η||Gt−s(η)|e(α1−α2)|η|
∑
z∈η

∫
(Rd)2

c1(x, y; z)dxdyλ(dη)ds ≤

≤ eα1〈c1〉
1

2(α2 − α1)e

∫ t

0
||kσs ||α1

∫
Γ0

eα2|η||Gt−s(η)|λ(dη)ds =

= eα1〈c1〉
1

2(α2 − α1)e

∫ t

0
||kσs ||α1 |Gt−s|α2ds ≤ eα1〈c1〉

1

2(α2 − α1)e
tD(t) <∞,

where D(t) is as in (4.15). By the Lebesgue’s theorem, we have

lim
σ→0

∫
Rd

(1− ψσ(z))g(z)dz =

∫
Rd

lim
σ→0

(1− ψσ(z))g(z)dz = 0.

One can show by the direct repetition of above steps the required convergence of
the next two summands of (4.17). Let us move on to the fourth one, which we will
approach with the similar method. Again using Minlos lemma we obtain

∣∣∣∣∣∣
∫ t

0

∫
Γ0

Gt−s(η)(L∆
21 − L∆,σ

21 )kσs (η)λ(dη)ds

∣∣∣∣∣∣ ≤
≤
∫
Rd

(1− ψσ(y))

∫ t

0

∫
Γ0

∑
x∈η

c2(x; y)|Gt−s(η\x ∪ y)|

∫
Γ0

|kσs (η ∪ ξ)|
∏
u∈ξ

(
1− e−φ(y−u)

)
λ(dξ)λ(dη)dsdy.

Denote

g(y) =

∫ t

0

∫
Γ0

∑
x∈η

c2(x; y)|Gt−s(η\x∪ y)|
∫
Γ0

|kσs (η ∪ ξ)|
∏
u∈ξ

(
1− e−φ(y−u)

)
λ(dξ)λ(dη)ds.

We have by (3.10) and (2.21) for s ≤ t < min(T (α1, α0), T (α, α2))∫
Rd

g(y)dy ≤ exp(〈φ〉eα1)

∫ t

0
||kσs ||α1

∫
Γ0

eα1|η||Gt−s(η)|
∑
y∈η

∫
Rd

c2(x; y)dxλ(dη)ds ≤

≤ exp(〈φ〉eα1)〈c2〉
1

(α2 − α1)e
tD(t) <∞

with D(t) given by (4.15). Again, by dominated convergence theorem

lim
σ→0

∣∣∣∣∣∣
∫ t

0

∫
Γ0

Gt−s(η)(L∆
21 − L∆,σ

21 )kσs (η)λ(dη)ds

∣∣∣∣∣∣ = 0.
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The last summand of (4.17) can be dealt by the same method, which finally yields

lim
σ→0

∫ t

0

∫
Γ0

Gt−s(η)(B −Bσ)kσs (η)λ(dη)ds = 0

and together with (4.16) proves (4.12) for t < min(T (α1, α0), T (α∗, α2)). Now take
α1 = α∗+α0

2 and α2 = α∗+α0
2 + εβ(α∗) with ε > 0 small enough – such that α2 < α∗.

Then T (α1, α0) ≥ 1
2T (α∗, α0) and T (α∗, α2)) = T (α∗, α0)− ε, which in the limit ε→ 0

gives us the result for t < 1
2T (α∗, α0).

4.4. The local evolution. In this subsection we deal with the evolution described
by L∆,σ but with the localized initial condition kΛ,N

0 , which is precised below by
(4.19). The dynamics will be considered in spaces Kθ, recall Definition 2.23 and in
Gfac
θ , introduced in Subsection 4.4.1, where the positivity property (4.1) is easy to show,

as the evolution there is related to the evolution of densities of local states, see (4.26).
In order to connect these two cases, we introduce Uσθ , a subset of both Kθ and Gfac

θ′

(with appropriate θ′, see Subsection 4.4.1, in particular (4.24)) such that kΛ,N
0 ∈ Uσα0

.
By showing the existence and uniqueness of the solutions in each of the above spaces
with the same initial condition, we deduce that they describe the same evolution and
therefore obtain required positivity property for solution in Kθ, see Subsection 4.4.5.
To finish the proof of Theorem 3.3 it suffices to show that our solutions with increasing
Λ and N converge to kσt , which is performed in Subsection 4.4.6.

Recall that initial condition k0 is the correlation function of sub-Poissonian state
µ0. Consider its projection µΛ

0 on ΓΛ for bounded borel Λ ⊂ Rd, see (2.12). It is
absolutely continuous with respect to Lebesgue-Poisson measure λ. Denote by RΛ

0 its
density. Then by (2.17) for η ∈ ΓΛ we have

k0(η) =

∫
ΓΛ

RΛ
0 (η ∪ ξ)λ(dξ), η ∈ ΓΛ. (4.18)

Localized initial condition kΛ,N
0 is defined as

kΛ,N
0 (η) =

∫
ΓΛ

RΛ,N
0 (η ∪ ξ)λ(dξ), η ∈ Γ0, (4.19)

where

RΛ,N
0 (η) =

{
RΛ

0 (η) if |η| ≤ N,
0 otherwise.

(4.20)

Note that kΛ,N
0 ≤ k0 (both being positive) so that kΛ,N

0 ∈ Kα0 . Therefore by repeating

the procedure used in Theorem 3.2, kΛ,N
t = Qσα0α∗(t)k

Λ,N
0 ∈ Kα∗ with α∗ > α0 and

t < T (α∗, α0) is the unique classical solution of the problem

d

dt
kΛ,N
t = L∆,σkΛ,N

t , kΛ,N
t=0 = kΛ,N

0 ∈ Kα0 . (4.21)

4.4.1. Spaces Gfacθ and Uσθ . Before proceeding with the proof, let us introduce two
more spaces used therein and look closer at the dependencies mentioned at the begin-
ning of Subsection 4.4. The space Gfac

θ is L1-type space similar to Gθ, recall 4.4, but
with the norm given by

|G|fac,θ =

∫
Γ0

|G(η)|eθ|η||η|!λ(dη).
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Obviously, for θ′ > θ we have Gfac
θ′ ⊂ Gfac

θ .
The space Uσθ is L∞-type space with the norm

||u||σ,θ = ess sup
η∈Γ0

|u(η)|e−θ|η|
e(ψσ; η)

,

where e(ψσ; η) =
∏
x∈η

e−σ|x|
2
. We have an analogue of (2.24)

|u(η)| ≤ eθ|η|e(ψσ; η)||u||σ,θ. (4.22)

Notice that by ψσ ≤ 1 we immediately obtain Uσθ ⊂ Kθ. Additionally we have for
u ∈ Uσθ

|u|fac,θ′ ≤
∫
Γ0

e(ψσ; η)e(θ+θ′)|η||η|!||u||σ,θλ(dη) =

=
∞∑
n=0

eθ+θ′ ∫
Rd

ψσ(x)dx

n

||u||σ,θ =
∞∑
n=0

(
eθ+θ

′
(π
σ

)d/2)n
||u||σ,θ

and therefore

Uσθ ⊂ Gfac
θ′ , θ′ < −θ − d

2
(lnπ − lnσ). (4.23)

Notice that kΛ,N
0 ∈ Uσα0

, and therefore it belongs also to Gfac
β0

with

β0 < −α0 −
d

2
(lnπ − lnσ). (4.24)

Indeed, by (4.19) we get

ess sup
η∈Γ0

∫
Γ0

RΛ,N
0 (η ∪ ξ)λ(dξ)

e−α0|η|

e(ψσ; η)
≤ e

σ sup
y∈Λ
|y|2N
||kµ0 ||α0 <∞.

4.4.2. Evolution in spaces Uσθ . By (4.22) and (2.21) together with (2.22) we may
estimate for θ′ > θ

||L∆,σ
11 u||σ,θ′ ≤ ess sup

η∈Γ0

e−θ
′|η|

e(ψσ; η)
· 1

2

∫
(Rd)2

∑
z∈η

ψσ(z)c1(x, y; z)|u(η\z ∪ {x, y})|dxdy ≤

≤ ess sup
η∈Γ0

e−(θ′−θ)|η| · 1

2
eθ||u||σ,θ

∫
(Rd)2

∑
z∈η

c1(x, y; z)ψσ(x)ψσ(y)dxdy ≤

≤ eθ〈c1〉
2e(θ′ − θ) ||u||σ,θ

and therefore, when considering L∆,σ
11 : Uσθ → Uσθ′ we have

||L∆,σ
11 ||θθ′ ≤

eθ〈c1〉
2e(θ′ − θ) ,

which is the same as the corresponding part of (3.7). Analogously, one can obtain
the same for the other components of L∆,σ, which allows us to use the scheme of
Theorem 3.2 again and obtain the existence and uniqueness of the classical solution of
the problem

d

dt
ut = L∆,σut, ut=0 = u0 ∈ Uσα0

(4.25)

for t ∈ [0, T (α∗, α0)) in Uσα∗ where α∗ > α0.
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4.4.3. Evolution of densities RΛ
t (η). As mentioned before, recall (2.17), correla-

tion functions in the case of the local system are connected with respective measure
densities. We cannot claim that our initial state is finite, actually we want to deal
with infinite states. In order to use the mentioned dependence, we introduce the local
correlation functions,

qΛ,N
t (η) =

∫
Γ0

RΛ,N
t (η ∪ ξ)λ(dξ), t ≥ 0, (4.26)

where RΛ,N
t is the solution to the problem

d

dt
RΛ,N
t = L†,σRΛ,N

0 , RΛ,N
t=0 = RΛ,N

0 (4.27)

with L†,σ satisfying duality condition∫
Γ0

(LσF )(η)R(η)λ(dη) =

∫
Γ0

F (η)(L†,σR)(η)λ(dη).

By (4.2), (2.21) and (2.22), one obtains

(L†,σR)(η) =
1

2

∑
z∈η

∫
(Rd)2

ψσ(z)c1(x, y; z)R
(
η ∪ {x, y}\z

)
dxdy+

+
∑
y∈η

∫
Rd

ψσ(y)c2(x; y)
∏
u∈η\y

e−φ(y−u)R(η ∪ x\y)dx− Eσ(η)R(η)

with

Eσ(η) =
∑
{x,y}⊂η

∫
Rd

ψσ(z)c1(x, y; z)dz +
∑
x∈η

∫
Rd

ψσ(y)c̃2(x; y; η)dy.

Note that RΛ,N
0 ∈ Gfac

θ for any θ ∈ R, as

|RΛ,N
0 |fac,θ =

N∑
n=0

eθn
∫

Λn

RΛ
0 (x1, . . . , xn)dx1 . . . dxn <∞.

We show the existence and uniqueness of solution of (4.27) in Gfac
θ using Thieme-Voigt

perturbation theorem, see Theorem 2.7 in [36] or Proposition 3.2 in [20] for its usage
in a similar context.

Denote X = L1(Γ0, λ) and X̃ = Gfac
θ ⊂ X. Introduce functionals

f(R) =

∫
Γ0

R(η)λ(dη), f̃(R) =

∫
Γ0

|η|!eβ|η|R(η)λ(dη),

which have property f(R) = ||R||X for positive R ∈ X and respectively f̃(R) = ||R||X̃
for positive R ∈ X̃. Notice that X̃ ↪→ X, that is X̃ is continuously embedded in X.
In order to prove that, we show that there exists C > 0 such that ||R||X̃ ≥ C||R||X
for all R ∈ X̃. Indeed,

||R||X̃ =

∫
Γ0

|R(η)|eβ|η||η|!λ(dη) ≥ min
n∈N0

{
eβnn!

}
||R||X .

The minimum above exists, as eθnn!→∞. Denote

L†,σ = A†,σ0 +B†,σ,
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where (A†,σ0 R)(η) = −Eσ(η)R(η) is multiplication operator and −A†,σ0 is positive. The

remaining part B†,σ is also positive and will be treated as perturbation of A†,σ0 . Define
the natural domain

D(A†,σ0 ) = {R ∈ X :

∫
Γ0

|(A†,σ0 R)(η)|λ(dη) <∞}

and note that B†,σ : D(A†,σ0 )→ X as by Minlos lemma∫
Γ0

|(B†,σR)(η)|λ(dη) ≤
∫
Γ0

Eσ(η)|R(η)|λ(dη) <∞

if R ∈ D(A†,σ0 ). Therefore we can endow both A†,σ0 and B†,σ (and also L†,σ) with the

same domain D(A†,σ0 ) acting into X.

For the space X̃ we define

D̃(A†,σ0 ) = {R ∈ D(A†,σ0 ) ∩ X̃ : A†,σ0 R ∈ X̃}
with which also B†,σ : D̃(A†,σ0 )→ X̃.

Notice that both semigroups (Sσ0 (t)R)(η) = e−E
σ(η)tR(η) generated by (A†,σ0 ,D(A†,σ0 ))

and one generated by (A†,σ0 , D̃(A†,σ0 )) are C0-semigroups by the means of inequality
1− e−x ≤ x.

In order to show inequality f
(
(A†,σ0 +B†,σ)R

)
≤ 0 observe that

f
(
(A†,σ0 +B†,σ)R

)
=

∫
Γ0

1(η)(L†,σR)(η)λ(dη) =

∫
Γ0

(Lσ1)(η)R(η)λ(dη) = 0.

as (Lσ1(·))(η) = 0.
To fulfill all of the required conditions, we need to show existence of positive con-

stants c and ε such that for positive R ∈ D̃(A†,σ0 ) the following inequality holds:

f̃((A†,σ0 +B†,σ)R) ≤ c||R||X̃ − ε||A
†,σ
0 R||X . (4.28)

First, notice that

f̃
(

(A†,σ0 +B†,σ)R
)

=

∫
Γ0

(LσFθ)(η)R(η)

with Fθ(η) = |η|!eθ|η|. We also have

(LσFθ)(η) = Eσ1 (η)
(
(|η| − 1)!eθ(|η|−1) − |η|!eθ|η|

)
as Fθ depends only on the number of elements in configuration being its argument.

In order to show inequality (4.28), we prove for positive R

f̃((A†,σ0 +B†,σ)R)− c||R||X̃ + ε||A†,σ0 R||X =

=

∫
Γ0

[
Eσ1 (η)

(
(|η| − 1)!eθ(|η|−1) − |η|!eθ|η|

)
− ceθ|η||η|! + εEσ(η)

]
R(η)λ(dη) ≤ 0

for which it is enough to find positive c and ε such that

c ≥ hε,θ(η) (4.29)

where

hε,θ(η) =
e−θ|η|

|η|!
[
Eσ1 (η)

(
(|η| − 1)!eθ(|η|−1) − |η|!eθ|η|

)
+ εEσ(η)

]
.
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In order to do that, notice

Eσ(η) = Eσ1 (η) + Eσ2 (η) ≤ |η|2cmax
1 + |η|〈c2〉,

choose arbitrary ε > 0 and consider two cases. First, assume that |η| < e−θ. Then

(|η| − 1)!eθ(|η|−1) − |η|!eθ|η| ≥ 0

and therefore

hε,θ(η) ≤ m1

where

m1 = max
n∈N,n<e−θ

e−θn

n!

[
n2cmax

1

(
(n− 1)!eθ(n−1) − n!eθn

)
+ ε

(
n2cmax

1 + n〈c2〉
)]
.

In the second case, when |θ| ≥ e−β we have

hε,θ(η) ≤ m2

with

m2 = max
n∈N

εe−θn

n!

(
n2cmax

1 + n〈c2〉
)

which exists as m2 → 0 as n→ 0.
Therefore we choose c = max (m1,m2) proving (4.29) so that (4.28) holds.

We have shown that all of the conditions of the Thieme-Voigt theorem hold, so

that the closure of (A†,σ0 + B†,σ,D(A†,σ0 )) in X is a generator of substochastic (in our

case even stochastic) semigroup S†,σ in X that leaves X̃ invariant. Therefore equation

(4.27) posess the unique solution in X̃ = Gfac
θ for any θ ∈ R and all t > 0.

4.4.4. Evolution in spaces Gfacθ . Notice that the definition of localized initial con-

dition kΛ,N
0 given by (4.19) coincides with the definition (4.26) of local correlation

function qΛ,N
t with t = 0. Consider equation

d

dt
qΛ,N
t = L∆,σqΛ,N

t , qΛ,N
0 = kΛ,N

0 . (4.30)

It posess the unique classical solution in space Gfac
β0

for all t > 0 with β0 satisfying

(4.24). Indeed, recall that kΛ,N
0 lies in Gfac

β0
. Next, we show that qΛ,N

t given by (4.26) is

a solution to our problem (4.30). First, RΛ,N
t ∈ Gfac

β0
implies qΛ,N

t ∈ Gfac
β0

as by Minlos

lemma (2.20)

|qΛ,N
t |fac,β =

∫
Γ0

RΛ,N
t (η)

∑
ξ⊂η

eβ|ξ||ξ|!λ(dη) = (4.31)

=

∫
Γ0

RΛ,N
t (η)

|η|∑
k=0

|η|!
(|η| − k)!

eβkλ(dη) ≤ ee−β |RΛ,N
t |fac,β.
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Next, observe that for arbitrary G ∈ Bbs, again using Minlos lemma, we have∫
Γ0

d

dt
qΛ,N
t (η)G(η)λ(dη) =

=

∫
Γ0

∫
Γ0

L†,σRΛ,N
t (η ∪ ξ)G(η)λ(dξ)λ(dη) =

∫
Γ0

L†,σRΛ,N
t (η)

∑
ξ⊂η

G(ξ)λ(dη) =

=

∫
Γ0

(LσKG)(η)RΛ,N
t (η)λ(dη) =

∫
Γ0

(KL̂σG)(η)RΛ,N
t (η)λ(dη) =

=

∫
Γ0

∫
Γ0

(L̂σG)(η)RΛ,N
t (η ∪ ξ)λ(dξ)λ(dη) =

∫
Γ0

(L̂σG)(η)qΛ,N
t (η)λ(dη) =

=

∫
Γ0

G(η)(L∆,σqΛ,N
t )(η)λ(dη),

where L̂σ = K−1LσK (recall Definition 2.16) satisfies∫
Γ0

L̂σG(η)k(η)λ(dη) =

∫
Γ0

G(η)L∆,σk(η)λ(dη)

and is given by (cf. (4.7) and [30]) L̂σ = L̂σ1 + L̂σ2 with

L̂σ1G(η) =

∫
Rd

∑
{x,y}⊂η

ψσ(z)c1(x, y; z)
(
G(η\{x, y} ∪ z)−G(η\y)−G(η\x)−G(η)

)
dz,

L̂σ2G(η) =

∫
Rd

∑
x∈η

ψσ(y)c2(x; y)
∑
ξ⊂η\x

[
G(ξ ∪ y)−G(ξ ∪ x)

]∑
ζ⊂ξ

∏
u∈η\ξ\x∪ζ

(
e−φ(y−u) − 1

)
dy.

Because Bbs is a measure defining class on (Γ0,B(Γ0), it implies that qΛ,N
t is indeed a

solution to 4.30.
To prove that this solution is unique, follow the procedure used in Theorem 3.2.

Note that for any β < β0 by (2.21), (2.22) and (3.1) we have for L∆,σ : Gfac
β0
→ Gfac

β

||B∆,σ||β0β ≤
3
2c

max
1 e−β + 2ee

−β 〈c2〉
(β0 − β)e

||A∆,σ||β0β ≤
2cmax

1

(β0 − β)2e2

where L∆,σ = A∆,σ +B∆,σ and

A∆,σ(η) = −
∫
Rd

ψσ(z)
∑
{x,y}⊂η

c1(x, y; z)dz k(η).

By repeating steps taken in the proof of Theorem 3.2, one obtains uniqueness of the
solution for t < T2(β, β0) with

T2(β, β0) =
β0 − β

3
2c

max
1 e−β + 2 exp(e−β)〈c2〉

.

But by (4.31) we know that qΛ,N
t actually lies in Gfac

β0
, so we may repeat our procedure

taking in equation (4.30) as initial condition kT with T = 1
2T2(β, β0) and obtaining

uniqueness of our solution for longer interval. By this method we may prolong unique-
ness for all t > 0.
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4.4.5. Positivity property. We have shown that equations (4.21), (4.25) and (4.30)

with the same initial condition kΛ,N
0 have unique classical solutions for t < T (α∗, α0)

in spaces, respectively, Kα∗ , Uσα∗ and Gfac
β0

with any β0 satisfying (4.24). Taking β0 such

that (4.23) holds with θ′ = β0 and θ = α∗, for which obviously (4.24) also holds, we

have Uσα∗ ⊂ Kα∗ and Uσα∗ ⊂ Gfac
β0

. Therefore kΛ,N
t = uΛ,N

t and qΛ,N
t = uΛ,N

t , which leads
to

kΛ,N
t = qΛ,N

t .

By this equality, (4.26) and (2.20) we may write for G ∈ B∗bs∫
Γ0

G(η)kΛ,N
t (η)λ(dη) =

∫
Γ0

RΛ,N
t (η)

∑
ξ⊂η

G(ξ)λ(dη) ≥ 0,

which is desired positivity property, recall (4.1), for kΛ,N
t .

4.4.6. Convergence with respect to Λ and N . To finish the proof of Theorem 3.3 it
suffices to show that for increasing sequence {Λn}n∈N of bounded, measurable subsets
of Rd which is cofinal (that is ∀x∈Rd∃n∈N : x ∈ Λn) and G ∈ Bbs for t < T (α∗, α0) the
following holds

lim
n→∞

lim
N→∞

∫
Γ0

G(η)kΛn,N
t (η)λ(dη) =

∫
Γ0

G(η)kσt (η)λ(dη). (4.32)

We prove it in the similar manner, as it is done in the proof of (3.54) in appendix of
[7]. By (4.6) we have

lim
n→∞

lim
N→∞

∫
Γ0

G(η)kΛn,N
t (η)λ(dη) = lim

n→∞
lim
N→∞

∫
Γ0

Hα∗α0(t)G(η)kΛn,N
0 (η)λ(dη)

and ∫
Γ0

G(η)kσt (η)λ(dη) =

∫
Γ0

Hα∗α0(t)G(η)k0(η)λ(dη).

Next, denoting Gt = Hα∗α0(t)G,∫
Γ0

Gt(η)
(
k0(η)− kΛn,N

0 (η)
)
λ(dη) = J (1)

n + J
(2)
n,N

with

J (1)
n =

∫
Γ0

Gt(η)k0(η)
(
1− IΓΛn

(η)
)
λ(dη),

J
(2)
n,N =

∫
Γ0

Gt(η)
(
k0(η)IΓΛn

(η)− kΛn,N
0 (η)

)
λ(dη).

Take an arbitrary ε > 0.
We have

|J (1)
n | ≤

∞∑
k=1

1

k!

∫
(Rd)k

|G(k)
t (x1, . . . , xk)|k(k)

0 (x1, . . . , xk)

k∑
l=1

IΛcN
(xl)dx1 . . . dxk.

Because k0 ∈ Kα0 and G
(k)
t i k

(k)
0 are symmetric for all k, we may write

|J (1)
n | ≤ ||k0||α0

∞∑
k=1

k

k!
eα0k

∫
Λcn

∫
(Rd)k−1

|G(k)
t (x1, . . . , xk)|dx1 . . . dxk.
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Recall that G0 ∈ Bbs implies G0 ∈ Gθ for any θ ∈ R. In principle, we can take
θ = β0 > α∗. Then for β∗ ∈ (α0, α∗) for t < T (β0, β∗) we have Gt ∈ Gβ∗ , recall (4.9).
With such β∗ we estimate

|J (1)
n | ≤

||k0||α0

(β∗ − α0)e

∞∑
k=1

1

k!
eβ∗k

∫
Λcn

∫
(Rd)k−1

|G(k)
t (x1, . . . , xk)|dx1 . . . dxk.

Taking into account that by Gt ∈ Gβ∗ we have

∞∑
k=1

1

k!
eβ∗k

∫
(Rd)k

|G(k)
t (x1, . . . , xk)|dx1 . . . dxk = |Gt|β∗ <∞,

we can pick an integer M such that

||k0||α0

(β∗ − α0)e

∞∑
k=M+1

1

k!
eβ∗k

∫
(Rd)k

|G(k)
t (x1, . . . , xk)|dx1 . . . dxk <

ε

4
,

as it is a tail of convergent series. Next, as G
(k)
t ∈ L1

(
(Rd)k

)
and Λn is cofinal, there

exists n1 such that for n > n1

||k0||α0

(α′ − α0)e

M∑
k=1

1

k!
eα
′k

∫
Λcn

∫
(Rd)k−1

|G(k)
t (x1, . . . , xk)|dx1 . . . dxk <

ε

4
.

Therefore

|J (1)
n | <

ε

2
.

By (4.18), (4.19), (4.20) and (2.20), denoting

IN (η) =

{
1 if |η| ≤ N,
0 otherwise,

we have

J
(2)
n,N =

∫
Γ0

[
Gt(η)

∫
ΓΛn

RΛn
0 (η ∪ ξ)IΓΛn

(η) (1− IN (η ∪ ξ))λ(dξ)
]
λ(dη) =

=

∫
Γ0

Gt(η)

∫
Γ0

RΛn
0 (η ∪ ξ)IΓΛn

(η ∪ ξ) (1− IN (η ∪ ξ))λ(dξ)λ(dη) =

=

∫
ΓΛn

∑
ξ⊂η

Gt(ξ)R
Λn
0 (η) (1− IN (η))λ(dη) =

=

∞∑
m=N+1

1

m!

∫
(Λn)m

RΛn
0 ({x1, . . . , xm})

m∑
k=0

∑
{i1,...ik}⊂{1,...m}

G
(k)
t (xi1 , . . . , xik)dx1 . . . dxm.

Note that equation (4.18) may be rewritten for η = {y1, . . . , ys} ∈ ΓΛ in the form

k0({y1, . . . , ys}) = RΛ
0 ({y1, . . . , ys}) +

∞∑
k=1

1

k!

∫
Λk

RΛ
0 (y1, . . . , ys, x1, . . . , xk)dx1 . . . dxk,

which implies

RΛ
0 ({y1, . . . , ys}) ≤ k0({y1, . . . , ys}) ≤ eα0s||k0||α0
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as k0 ∈ Kα0 . Then, denoting by l(Λn) the Lebesgue’s measure of set Λn, we have

|J (2)
n,N | ≤ ||k0||α0

∞∑
m=N+1

1

m!
eα0m

∫
(Λn)m

m∑
k=0

∑
{i1,...ik}⊂{1,...m}

G
(k)
t (xi1 , . . . , xik)dx1 . . . dxm ≤

≤ ||k0||α0

∞∑
m=N+1

1

m!
eα0m

m∑
k=0

m!

k!(m− k)!
||G(k)

t ||L1((Rd)k)[l(Λn)]m−k.

For sufficiently big N we may estimate

|J (2)
n,N | <

ε

2

as above is a tail of convergent series

||k0||α0

∞∑
m=0

m∑
k=0

eα0k

k!
||G(k)

t ||L1((Rd)k)
eα0(m−k)

(m− k)!
[l(Λn)]m−k =

= ||k0||α0

∞∑
k=0

eα0k

k!
||G(k)

t ||L1((Rd)k)

∞∑
m=0

eα0m

m!
[l(Λn)]m =

= ||k0||α0 |Gt|α0 exp
(
eα0 l(Λn)

)
<∞.

Finally, because β0 > α∗ and β∗ ∈ (α0, α∗) are arbitrarily chosen (so we can pick
β∗ as close to α0 as we want and the same with β0 and α∗), we obtain (4.32) for
t < T (α∗, α0).

5. Mesoscopic dynamics

In this section we consider the case of the system with initial state µ0 being a
Poisson measure with density ρ0 ∈ L∞(Rd). It means that its correlation function is
of the product form

r0(η) =
∏
x∈η

ρ0(x).

In such case, instead of the precise dynamics of the system given with the use of
operator L, recall (3.1), or L∆, recall (4.2), one can consider an approximated scheme in
which the Poissonity of the state is preserved. We will call it the mesoscopic dynamics,
as its description is less precise than in the case of the original microscopic case (higher-
level correlations are neglected) but it is still not a macroscopic level at which the
detailed spatial structure of the system would be ignored. The idea here is to obtain
a description of the system by the means of densities of the corresponding Poisson
measures.

A slightly more general case can also be treated by the approach presented within
this section, where the initial state µ0 is not necessarily Poissonian, but sub-Poissonian
with its correlation function k0 ∈ Kα0 . We then assume being given a scale of functions
q0,ε ∈ Kα0 with ε ∈ [0, 1] such that

q0,1 = k0, q0,0(η) =
∏
x∈η

ρ0(x)

and the dependence on ε is continuous, i.e.

||q0,ε − q0,ε′ ||α0 → 0, ε′ → ε,

where || · ||α0 is the norm in Kα0 space, recall Definition 2.23.
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Remark 5.1. Note that the mentioned scale of functions always exists, one can
take any Poisson measure with its correlation function

r0 =
∏
x∈·

ρ0(x) ∈ Kα0

and consider

q0,ε = εk0 + (1− ε)r0.

The mesoscopic dynamics is given with the use of a Vlasov operator V , see (5.3)
below, which preserves the product form of the argument. It is obtained by a scaling
procedure described within this section, cf. e.g. Section 1.3 of [14] or Section 4 in
[5], see also [2], where multi-scale models are discussed. The performed scaling is
closely related to so-called moment closure, see e.g. [27]. Instead of the dynamics of
the functions from Kϑ spaces, one can consider evolution of L∞-type factors ρt, that
correspond to the densities of Poisson states. This evolution will be given by a kinetic
equation (5.5).

The mesoscopic description of the system, while being only an approximation of
the actual evolution, is worth investigating. One of its advantages is that it allows
one to employ numerical methods for finding approximated solution which are not
applicable at the microscopic level. An example of such approach is given in Section 6.

5.1. Vlasov Scaling. For the scale parameter ε ∈ (0, 1] we define operator L∆
ε

as L∆ with c1 substituted by εc1 and φ by εφ. That is, we can express it in the form
L∆
ε = L∆

ε,11 + L∆
ε,12 + L∆

ε,13 + L∆
ε,14 + L∆

ε,21 + L∆
ε,22 with

L∆
ε,11k(η) =

1

2

∫
(Rd)2

∑
z∈η

εc1(x, y; z)k(η\z ∪ {x, y})dxdy,

L∆
ε,12k(η) = −1

2

∫
(Rd)2

∑
x∈η

εc1(x, y; z)k(η ∪ y)dydz,

L∆
ε,13k(η) = −1

2

∫
(Rd)2

∑
y∈η

εc1(x, y; z)k(η ∪ x)dxdz,

L∆
ε,14k(η) = −

∫
Rd

∑
{x,y}⊂η

εc1(x, y; z)dz k(η)

and

L∆
ε,21k(η) =

∫
Rd

∑
y∈η

c2(x; y)
∏
u∈η\y

e−εφ(y−u) (Qεyk)(η\y ∪ x)dx,

L∆
ε,22k(η) = −

∫
Rd

∑
x∈η

c2(x; y)
∏
u∈η\x

e−εφ(y−u) (Qεyk)(η)dy,

where

(Qεyk)(η) =

∫
Γ0

k(η ∪ ξ)
∏
u∈ξ

(e−εφ(y−u) − 1)λ(dξ),

cf. (3.5).
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The performed alteration can be interpreted as weakening the interactions between
particles in the system. Then the renormed operator that corresponds to the ε-rescaled
evolution Lrenε given by formula

Lrenε k(η) = ε|η|L∆
ε (ε−|η|k(η)) (5.1)

consists of the following six summands

Lrenε,11 = L∆
11, L

ren
ε,12 = L∆

12, L
ren
ε,13 = L∆

13, L
ren
ε,14k(η) = εL∆

14,

Lrenε,21k(η) =

∫
Rd

∑
y∈η

c2(x; y)
∏
u∈η\y

e−εφ(y−u) (Qε,reny k)(η\y ∪ x)dx,

Lrenε,22k(η) = −
∫
Rd

∑
x∈η

c2(x; y)
∏
u∈η\x

e−εφ(y−u) (Qε,reny k)(η)dy,

where

(Qε,reny k)(η) =

∫
Γ0

k(η ∪ ξ)
∏
u∈ξ

1

ε
(e−εφ(y−u) − 1)λ(dξ)

This altered action can be interpreted as follows. First, the density of the system
is increased (with ε−|η|), then the weakened action of L∆ is performed (with L∆

ε ) and

finally the system’s density is decreased back with ε|η|.
As ε ≤ 1, Lrenε undergoes the same norm estimation (3.7) as L∆. Therefore, by

direct repetition of arguments used in Theorem 3.2, we can show the existence and
uniqueness of the solution qt,ε = Sεα0α∗(t)q0,ε ∈ Kα∗ of equation{

d
dtqt,ε = Lrenε qt,ε
qt,ε|t=0 = q0,ε ∈ Kα0

(5.2)

In the scaling limit ε→ 0, the corresponding Vlasov operator V = lim
ε→0

Lrenε can be

expressed as

V = L∆
11 + L∆

12 + L∆
13 + V21 + V22 (5.3)

with

V21k(η) =

∫
Rd

∑
y∈η

c2(x; y)

∫
Γ0

k(η\y ∪ ξ ∪ x)
∏
u∈ξ

(−φ(y − u))λ(dξ)dx

and

V22k(η) = −
∫
Rd

∑
x∈η

c2(x; y)

∫
Γ0

k(η ∪ ξ)
∏
u∈ξ

(−φ(y − u))λ(dξ)dy

Treating V as an operator acting between Kθ and Kθ′ with θ′ > θ one can estimate
its operator norm

||V ||θθ′ ≤
2〈c2〉 exp(〈φ〉eθ) + 3

2e
θ〈c1〉

(θ′ − θ)e .

Indeed, the second summand of nominator comes from the similar estimation for L∆

(Lemma 3.1) and the first summand comes from the following calculations.

e−θ
′|η||V21k(η)| ≤ e−(θ′−θ)|η|||k||θ

∑
y∈η

∫
Rd

∫
Γ0

c2(x; y)
∏
u∈ξ

eθ(φ(y − u))λ(dξ)dx

≤ 〈c2〉 exp(〈φ〉eθ)
(θ′ − θ)e ,
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as xe−(θ′−θ)x ≤ 1
(θ′−θ)e for all x > 0 and∫

Γ0

∏
u∈ξ

eθφ(y − u)λ(dξ) = exp(〈φ〉eθ)

The estimation for ||V22||θθ′ is analogical.
Therefore, using a method as in Theorem 3.2, one can show the existence and

uniqueness of the solution to the problem{
d
dtrt = V rt
rt|t=0 = r0 ∈ Kα0

(5.4)

with rt = S0
α0α∗(t)r0 ∈ Kα∗ for t < T (α∗, α0).

For rt(η) =
∏
x∈η

ρt(x) we can write, e.g. for V11,

V11rt(η) =
1

2

∫
(Rd)

2

∑
z∈η

c1(x, y; z)rt(η\z ∪ {x, y})dxdy

=
1

2

∑
x∈η

∫
(Rd)

2

c1(z, y;x)
∏
u∈η\x

ρt(u)ρt(z)ρt(y)dzdy =
∑
x∈η

∏
u∈η\x

v11(ρt, x),

with

v11(ρt, x) =
1

2

∫
(Rd)

2

c1(z, y;x)ρt(y)ρt(z)dydz.

In a similar way, one can rewrite the other summands of V as

Vijrt(η) =
∑
x∈η

∏
u∈η\x

vij(ρt, x),

where

v12(ρt, x) = −1

2

∫
(Rd)

2

c1(x, y; z)ρt(x)ρt(y)dydz

v13(ρt, x) = −1

2

∫
(Rd)

2

c1(y, x; z)ρt(x)ρt(y)dydz

v21(ρt, x) =

∫
Rd

c2(y;x) exp
(
−
∫
Rd

φ(x− u)ρt(u)du
)
ρt(y)dy

v22(ρt, x) = −
∫
Rd

c2(x; y) exp
(
−
∫
Rd

φ(y − u)ρt(u)du
)
ρt(x)dy

It allows us to consider the following problem – kinetic equation – for ρt instead
of (5.4) for rt: {

d
dtρt(x) = v(ρt, x)
ρt|t=0(x) = ρ0(x), ρ0 ∈ L∞(Rd),

(5.5)

where v = v11 + v12 + v13 + v21 + v22. One can show the existence and uniqueness of
the classical solution for a finite time horizon to this problem. It is done in a more
general case in Theorem 5.9.
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While equation (5.5) is complicated in general, it drastically simplifies in the spa-
tially homogeneous case, i.e. when ρ0(x) = ρ0 ∈ R for all x ∈ Rd. In this case, having
in mind (3.1) we can rewrite (5.5) as

dρt
dt

= −〈c1〉ρ2
t .

This can be easily solved leading to

ρt =
ρ0

1 + 〈c1〉ρ0t
.

In the preceding part, we analysed the problem for qt,ε (which is equal to kt for
ε = 1) with the scale parameter ε ∈ (0, 1] and the case in limit ε → 0 for rt. We
discussed the existence and uniqueness of the corresponding problems (5.2) and (5.4),
but we treated each ε separately. Let us look closer at the dependence on ε - it
appears that the scaling procedure described above is continuous w.r.t ε. This result
is described more precisely in Theorem 5.4. Let us start with two technical lemmas.

Lemma 5.2. Suppose that θ < θ′ and k ∈ Kθ. Then (Lrenε − V )k ∈ Kθ′ and

||Lrenε − V ||θθ′ → 0, ε→ 0.

Proof. Lrenε − V acting on k ∈ Kθ has the following form:

(Lrenε − V )k(η) = −ε
∫
Rd

∑
{x,y}⊂η

c1(x, y; z)dz k(η)

+

∫
Rd

∫
Γ0

∑
y∈η

k(η\y ∪ ξ ∪ y)c2(x; y)
[∏
u∈ξ

1

ε
(e−εφ(y−u) − 1)

∏
u∈η\y

e−εφ(y−u)

−
∏
u∈ξ

(−φ(y − u))
]
λ(dξ)dx

−
∫
Rd

∫
Γ0

k(η ∪ ξ)
∑
x∈η

c2(x; y)
[∏
u∈ξ

1

ε
(e−εφ(y−u) − 1)

∏
u∈η\x

e−εφ(y−u)

−
∏
u∈ξ

(−φ(y − u))
]
λ(dξ)dy.

Denote the above three summands as (Lrenε − V )i with i = 1, 2, 3. Then for k ∈ Kθ
and θ′ > θ we have

|(Lrenε − V )1k(η)| ≤ εcmax
1 ||k||θeθ|η|

|η|2
2
≤ εcmax

1 ||k||θ
2

(θ′ − θ)2e2
eθ
′|η|

Next,

|(Lrenε − V )2k(η)| ≤
∫
Rd

∫
Γ0

∑
y∈η
||k||θeθ(|η|+|ξ|)c2(x; y)

∣∣∣∏
u∈ξ

1

ε
(e−εφ(y−u) − 1)

∏
u∈η\y

e−εφ(y−u)

−
∏
u∈ξ

(−φ(y − u))
∣∣∣λ(dξ)dx.

Observe that ∣∣∣∏
u∈ξ

1

ε

(
e−εφ(y−u) − 1

) ∏
u∈η\y

e−εφ(y−u) −
∏
u∈ξ

(−φ(y − u))
∣∣∣

≤
∣∣∣∏
u∈ξ

1

ε

(
1− e−εφ(y−u)

)
−
∏
u∈ξ

φ(y − u)
∣∣∣+
(

1−
∏
u∈η\y

e−εφ(y−u)
)∏
u∈ξ

1

ε

(
1− e−εφ(y−u)

)
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By the means of inequality
n∏
i=1

bi −
n∏
i=1

ai ≤
n∑
i=1

bi−ai
bi

n∏
j=1

bj for bi ≥ ai > 0, cf. [7] p. 30

or [5] p. 27, we may further estimate the first summand of the above with∑
u∈ξ

[
φ(y − u)− 1

ε

(
1− e−εφ(y−u)

)] ∏
v∈ξ\u

φ(y − v)

and the second one with∑
u∈η\y

(
1− e−εφ(y−u)

)∏
u∈ξ

1

ε

(
1− e−εφ(y−u)

)
.

As for the first one, notice that

φ(y − u)− 1

ε

(
1− e−εφ(y−u)

)
= εφ2(y − u)

εφ(y − u)− 1 + e−εφ(y−u)

ε2φ2(y − u)
≤ ε

2
φ2(y − u),

as e−x−1+x
x2 ≤ 1

2 for x > 0. Therefore∣∣∣∏
u∈ξ

1

ε

(
1− e−εφ(y−u)

)
−
∏
u∈ξ

φ(y − u)
∣∣∣ ≤ ε

2

∑
u∈ξ

φ2(y − u)
∏
v∈ξ\u

φ(y − v).

In the second summand, we use 1− e−x ≤ x, which gives us estimation(
1−

∏
u∈η\y

e−εφ(y−u)
)∏
u∈ξ

1

ε

(
1− e−εφ(y−u)

)
≤ ε

∑
u∈η\y

φ(y − u)
∏
v∈ξ

φ(y − v).

Coming back to |(Lrenε − V )2k(η)|, we have, recall assumptions (3.1)∫
Rd

∫
Γ0

∑
y∈η
||k||θ eθ(|η|+|ξ|)c2(x; y)

ε

2

∑
u∈ξ

φ2(y − u)
∏
v∈ξ\u

φ(y − v)λ(dξ)dx

= ε
〈c2〉

2
eθ(|η|+1)||k||θ

∑
y∈η

∫
Γ0

∑
u∈ξ

φ2(y − u)
∏
v∈ξ\u

eθφ(y − v)λ(dξ)

Next, observe that by Lemma 2.21 and again by (3.1)∫
Γ0

∑
u∈ξ

φ2(y − u)
∏
v∈ξ\u

eθφ(y − v)λ(dξ) =

∫
Γ0

∫
Rd

φ2(y − u)
∏
v∈ξ

eθφ(y − v)duλ(dξ)

≤ |φ|〈φ〉
∫
Γ0

∏
v∈ξ

eθφ(y − v)λ(dξ) = |φ|〈φ〉 exp
(
〈φ〉eθ

)
which allows us to estimate the first part of |(Lrenε − V )2k(η)| by

ε
〈c2〉

2
|η|eθ(|η|+1)|φ|〈φ〉 exp

(
〈φ〉eθ

)
||k||θ

and for θ′ > θ by

ε
〈c2〉

2

eθ

e(θ′ − θ) |φ|〈φ〉 exp
(
〈φ〉eθ

)
eθ
′|η|||k||θ.

The second part of |(Lrenε − V )2k(η)| we can estimate by

ε

∫
Rd

∫
Γ0

∑
y∈η
||k||θeθ|η|c2(x; y)

∑
u∈η\y

φ(y − u)
∏
v∈ξ

eθφ(y − v)λ(dξ)dx

and this by

ε〈c2〉|φ| exp
(
eθ〈φ〉

)
|η|2eθ|η|||k||θ
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which, for θ′ > θ is less than or equal to

ε〈c2〉|φ| exp
(
eθ〈φ〉

) 4

(θ′ − θ)2e2
eθ
′|η|||k||θ

Summing up, we obtained for θ′ > θ and k ∈ Kθ

|(Lrenε − V )2k(η)| ≤ ε〈c2〉|φ| exp
(
eθ〈φ〉

)[ eθ〈φ〉
2e(θ′ − θ) +

4

(θ′ − θ)2e2

]
eθ
′|η|||k||θ.

By similar calculations one can obtain exactly the same estimate for |(Lrenε −V )3k(η)|,
which together with the estimate obtained for |(Lrenε −V )1k(η)| and the one just shown,
gives us finally

|(Lrenε −V )k(η)| ≤ ε
[ 2cmax

1

(θ′ − θ)2e2
+〈c2〉|φ| exp

(
eθ〈φ〉

)( eθ〈φ〉
e(θ′ − θ)+

8

(θ′ − θ)2e2

)]
eθ
′|η|||k||θ.

From the above, the statement of the lemma directly follows. �

Lemma 5.3. Suppose that θ < θ′ and k ∈ Kθ. Then (Lrenε − Lrenε′ )k ∈ Kθ′ and

||Lrenε − Lrenε′ ||θθ′ → 0, ε→ 0.

Proof. By (5.1) we have

Lrenε − Lrenε′ = (ε− ε′)L∆
14

+

∫
Rd

∑
y∈η

c2(x; y)
[ ∏
u∈η\y

e−εφ(y−u) (Qε,reny k)(η\y ∪ x)−
∏
u∈η\y

e−ε
′φ(y−u) (Qε

′,ren
y k)(η\y ∪ x)

]
dx

−
∫
Rd

∑
x∈η

c2(x; y)
[ ∏
u∈η\x

e−εφ(y−u) (Qε,reny k)(η)−
∏
u∈η\x

e−ε
′φ(y−u) (Qε

′,ren
y k)(η)

]
dy.

Denote the above three summands of (Lrenε − Lrenε′ ) as (Lrenε − Lrenε′ )1, (Lrenε − Lε′)2

and (Lrenε − Lrenε′ )3 respectively. For the first one we have

||(Lrenε − Lrenε′ )1||θθ′ ≤ |ε′ − ε| ||L∆
14||θθ′ .

For the next one, assuming that ε′ > ε, we may write

|(Lrenε − Lrenε′ )2k(η)| ≤
∫
Rd

∫
Γ0

∑
y∈η
||k||θeθ

′|η|c2(x; y)eθ|ξ|
[∏
u∈ξ

fy−u(ε)
∏
v∈η\y

e−εφ(y−v)

−
∏
u∈ξ

fy−u(ε′)
∏
v∈η\y

e−ε
′φ(y−v)

]
λ(dξ)dx,

where

fx(ε) =
1

ε

(
1− e−εφ(x)

)
.

Notice that both φ and ε are non-negative, so that

fx(ε) ≤ φ(x). (5.6)

Moreover, for ε′ > ε, by the means of inequality (ε′)n − εn ≤ (n + 1)(ε′ − ε) (both ε
and ε′ are from (0, 1]) we have

fx(ε)− fx(ε′) ≤
∞∑
n=1

φn+1(x)

(n+ 1)!

[
(ε′)n − εn

]
≤ (ε′ − ε)φ(x)

[φ(x)

2
+
∞∑
n=2

φn(x)

n!

]
≤ (ε′ − ε)φ(x)eφ(x). (5.7)
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By inequality
n∏
i=1

bi −
n∏
i=1

ai ≤
n∑
i=1

bi−ai
bi

n∏
j=1

bj for bi ≥ ai > 0 we may estimate further

|(Lrenε − Lrenε′ )2k(η)| by∫
Rd

∫
Γ0

∑
y∈η
||k||θeθ|η|c2(x; y)eθ|ξ|

∑
u∈ξ

[
fy−u(ε)

−fy−u(ε′)
∏
v∈η\y

e−(ε′−ε)φ(y−v)
] ∏
w∈ξ\u

fy−w(ε)λ(dξ)dx

=

∫
Rd

∫
Γ0

∑
y∈η
||k||θeθ|η|c2(x; y)eθ|ξ|

∑
u∈ξ

[
fy−u(ε)− fy−u(ε′)

+fy−u(ε′)
(

1−
∏
v∈η\y

e−(ε′−ε)φ(y−v)
)] ∏

w∈ξ\u

fy−w(ε)λ(dξ)dx

≤
∫
Rd

∫
Γ0

∑
y∈η
||k||θeθ|η|c2(x; y)eθ|ξ|

∑
u∈ξ

[
fy−u(ε)− fy−u(ε′)

+(ε′ − ε)fy−u(ε′)
∑
v∈η\y

fy−v(ε
′ − ε)

] ∏
w∈ξ\u

fy−w(ε)λ(dξ)dx.

Now, using (5.6) and (5.7) we obtain

|(Lrenε − Lrenε′ )2k(η)| ≤
∫
Rd

∫
Γ0

∑
y∈η
||k||θeθ|η|c2(x; y)eθ|ξ|

∑
u∈ξ

[
(ε′ − ε)φ(y − u)eφ(y−u)

+(ε′ − ε)φ(y − u)
∑
v∈η\y

φ(y − v)
] ∏
w∈ξ\u

fy−w(ε)λ(dξ)dx.

By Lemma 2.21 and model assumptions (3.1) we can estimate furtlher by

(ε′ − ε)||k||θeθ〈c2〉eθ|η|
(
e|φ| + (|η| − 1)|φ|

)∫
Γ0

∑
y∈η

∫
Rd

φ(y − u)
∏
w∈ξ

eθφ(y − w)duλ(dξ).

Finally, by (3.8) and (3.9) we obtain

|(Lrenε − Lrenε′ )2k(η)| ≤ (ε′ − ε)||k||θeθ〈c2〉eθ|η|
(
|η|e|φ| + |η|2|φ|

)
〈φ〉 exp

(
eθ〈φ〉

)
≤ (ε′ − ε)||k||θeθ

′|η|eθ〈c2〉〈φ〉 exp
(
eθ〈φ〉

)( e|φ|

(θ′ − θ)e +
4|φ|

(θ′ − θ)2e2

)
so that

||(Lrenε − Lrenε′ )2||θθ′ ≤ (ε′ − ε)eθ〈c2〉〈φ〉 exp
(
eθ〈φ〉

)( e|φ|

(θ′ − θ)e +
4|φ|

(θ′ − θ)2e2

)
Analogical calculations lead to the same norm estimate for the third part of Lrenε −

Lrenε′ , i.e.

||(Lrenε − Lrenε′ )3||θθ′ ≤ (ε′ − ε)eθ〈c2〉〈φ〉 exp
(
eθ〈φ〉

)( e|φ|

(θ′ − θ)e +
4|φ|

(θ′ − θ)2e2

)
.

Therefore

||Lrenε − Lrenε′ ||θθ′ → 0, ε′ → ε.

�



49

Theorem 5.4. For α0 < α∗ and t < T (α∗,
α0+α∗

2 ) the scaling is continuous, i.e.

||qt,ε − qt,ε′ ||α∗ → 0, ε′ → ε.

and

||qt,ε − rt||α∗ → 0, ε→ 0,

where rt is solution to equation (5.4) and qt,ε, qt,ε′ to equations (5.2).

Proof. For ε, ε′ ∈ (0, 1] we have

qt,ε − qt,ε′ = Sεt q0,ε − Sε
′
t q0,ε′ = Sεt

(
q0,ε − q0,ε′

)
+
(
Sεt − Sε

′
t

)
q0,ε′ .

Estimating the norm of the above in Kα∗ , the first summand either zeroes out if the
initial state is Poisson measure, so that q0,ε = q0 for all ε ∈ [0, 1], or

||Sεt
(
q0,ε − q0,ε′

)
||α∗ → 0, ε′ → ε.

It comes from the fact that ||Sεt ||α0α∗ ≤ T (α∗,α0)
T (α∗,α0)−t and ||q0,ε − q0,ε′ ||α0 → 0 as ε′ → ε.

The second summand can be rewritten as

t∫
0

Sεs

(
Lrenε − Lrenε′

)
Sε
′
t−sq0,ε′ds

so that∣∣∣∣∣∣(Sεt − Sε′t ) q0,ε′

∣∣∣∣∣∣
α∗
≤

t∫
0

T (α∗, α2)

T (α∗, α2)− s ·
T (α1, α0)

T (α1, α0)− (t− s)ds ||L
ren
ε − Lrenε′ ||α1α2 ||q0,ε′ ||α0

≤ t T (α∗, α2)

T (α∗, α2)− t ·
T (α1, α0)

T (α1, α0)− t ||L
ren
ε − Lrenε′ ||α1α2 ||q0,ε′ ||α0

for α0 < α1 < α2 < α∗.
By Lemma 5.3 it means that∣∣∣∣∣∣(Sεt − Sε′t )∣∣∣∣∣∣

α0α∗
→ 0, ε′ → ε.

for t < min(T (α∗, α2), T (α1, α0)). In particular, we can choose α1 and α2 in such a
way, that the above convergence holds true for t < T (α∗,

α0+α∗
2 ).

Therefore for t < T (α∗,
α0+α∗

2 ) we have

||qt,ε − qt,ε′ ||α∗ → 0, ε→ 0,

i.e. the first statement of the theorem holds true. Now, let us investigate the case
ε→ 0.

qt,ε − rt = (qt,ε − Sεt r0) + (Sεt r0 − S0
t r0) = Sεt (q0,ε − r0) +

t∫
0

Sεs(L
ren
ε − V )rt−sds,

so that by the means of Lemma 5.2 below and ||q0,ε − r0||α0 → 0 as ε→ 0 (recall the
assumptions given at the beginning of this section), we obtain

||qt,ε − rt||α∗ → 0, ε→ 0

for t < T (α∗,
α0+α∗

2 ). �
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5.2. Repulsive coalescence. The analog of kinetic equation (5.5) can be ob-
tained using the same scaling technique for a more general model, where coalescence
is also repulsive. As the microscopic theory for this model is not developed, the conti-
nuity of the scale is not discussed. In Theorem 5.9, the main result of this section, we
show that obtained kinetic equation (5.14) has the unique classical solution for some
finite time horizon. The results presented in this section were published in [30]. Within
this more general model, the operator L, cf. (3.1), has the form

LF (γ) =
∑
{x,y}⊂γ

∫
Rd

c̃1(x, y; z; γ)
(
F
(
γ\{x, y} ∪ z

)
− F (γ)

)
dz

+
∑
x∈γ

∫
Rd

c̃2(x; y; γ)
(
F
(
γ\x ∪ y

)
− F (γ)

)
dy,

where c̃2 is as previously (with φ denoted by φ2 now)

c̃2(x; y; γ) = c2(x; y)
∏
u∈γ\x

e−φ2(y−u)

and c̃1 is defined similarly as

c̃1(x, y; z; γ) = c1(x, y; z)
∏

u∈γ\{x,y}

e−φ2(z−u),

where c1, c2, φ1, φ2 are non-negative real functions that satisfy, analogously as in the
original model,

c1(x, y; z) = c1(y, x; z),∫
(Rd)2

c1(x1, x2;x3)dxidxj = 〈c1〉 <∞, i, j = 1, 2, 3, i 6= j,

∫
Rd

c2(x; y)dx =

∫
Rd

c2(x; y)dy = 〈c2〉 <∞,

∫
Rd

φ1(x)dx = 〈φ1〉 <∞,
∫
Rd

φ2(x)dx = 〈φ2〉 <∞.

Let

c̃1(x, y; z; γ) = (KC1
x,y;z)(γ\{x, y}),

c̃2(x; y; γ) = (KC2
x;y)(γ\x) (5.8)

for some C1
x,y;z and C2

x;y.

Suppose that F = KG, where G : Γ0 → R. Then, by writing KL̂G = LF , we
define

L̂ = K−1LK. (5.9)

By the properties of the K-transform we derive an explicit formula for L̂.

Lemma 5.5. L̂ defined as above has the following form

L̂G(η) =

∫
Rd

∑
{x,y}⊂η

[
C1
x,y;z ? H

1
x,y;z

]
(η\{x, y})dz

+

∫
Rd

∑
x∈η

[
C2
x;y ? H

2
x;y

]
(η\x)dy,
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where

H1
x,y;z(η) = G(η ∪ z)−G(η ∪ x)−G(η ∪ y)−G(η ∪ {x, y}),
H2
x;y(η) = G(η ∪ y)−G(η ∪ x). (5.10)

Proof. First let us rewrite the operator L in a more convenient form. Using (5.8)
and taking into account that any configuration treated as a subset of Rd is Lebesgue
measure-zero, cf. (2.15), we have

L1F (γ) =
∑
{x,y}⊂γ

∫
Rd\γ

(
KC1

x,y;z(·)
[
KG

(
· ∪z

)
−KG

(
· ∪{x, y}

)])(
γ\{x, y}

)
dz.

Observe that for any ξ ∈ Γ, x, y, z /∈ ξ we have

KG(ξ ∪ z) =
∑

η⊂⊂ξ∪z
G(η) =

∑
η⊂⊂ξ

[
G(η) +G(η ∪ z)

]
= K

[
G(·) +G(· ∪ z)

]
(ξ)

and analogously

KG(ξ ∪ {x, y}) = K
[
G(·) +G(· ∪ x) +G(· ∪ y) +G(· ∪ {x, y})

]
(ξ).

Using linearity of the K-transform and above observations, we obtain

L1F (γ) =
∑
{x,y}⊂γ

∫
Rd

(
KC1

x,y;z(·)K
[
G(· ∪ z)−G(· ∪ x)

−G(· ∪ y)−G(· ∪ {x, y})
]
(·)
)

(γ\{x, y})dz.

Considering the second part of the operator, we have

L2F (γ) =
∑
x∈γ

∫
Rd

KC2
x;y(γ\x)

[
KG(γ\x ∪ y)−KG(γ)

]
dy

=
∑
x∈γ

∫
Rd

(
KC2

x;y(·)K
[
G(· ∪ y)−G(· ∪ x)

]
(·)
)

(γ\x)dy.

Using notion (5.10) and property (2.6) of the product of K-transforms, we derive

L1F (γ) =
∑
{x,y}⊂γ

∫
Rd

K
[
C1
x,y;z ? H

1
x,y;z

]
(γ\{x, y})dz,

L2F (γ) =
∑
x∈γ

∫
Rd

K
[
C2
x;y ? H

2
x;y

]
(γ\x)dy.

Therefore

LF (γ) =
∑
{x,y}⊂γ

∫
Rd

K
[
C1
x,y;z ? H

1
x,y;z

]
(γ\{x, y})dz

+
∑
x∈γ

∫
Rd

K
[
C2
x;y ? H

2
x;y

]
(γ\x)dy.

Recalling the definition (5.9) of the operator L̂ and denoting

L̂1G(η) = K−1L1F (η), L̂2G(η) = K−1L2F (η)
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we obtain

L̂1G(η) =
∑
ξ⊂η

(−1)|η\ξ|
∑
{x,y}⊂ξ

∫
Rd

K
[
C1
x,y;z ? H

1
x,y;z

]
(ξ\{x, y})dz

=

∫
Rd

∑
{x,y}⊂η

∑
ξ⊂η\{x,y}

(−1)|η\{x,y}\ξ|K
[
C1
x,y;z ? H

1
x,y;z

]
(ξ)dz

=

∫
Rd

∑
{x,y}⊂η

K−1K
[
C1
x,y;z ? H

1
x,y;z

]
(η\{x, y})dz

=

∫
Rd

∑
{x,y}⊂η

[
C1
x,y;z ? H

1
x,y;z

]
(η\{x, y})dz

and analogously

L̂2G(η) =
∑
ξ⊂η

(−1)|η\ξ|
∑
x∈ξ

∫
Rd

K
[
C2
x;y ? H

2
x;y

]
(ξ\x)dy

=

∫
Rd

∑
x∈η

∑
ξ⊂η\x

(−1)|η\x\ξ|K
[
C2
x;y ? H

2
x;y

]
(ξ)dy

=

∫
Rd

∑
x∈η

K−1K
[
C2
x;y ? H

2
x;y

]
(η\x)dy

=

∫
Rd

∑
x∈η

[
C2
x;y ? H

2
x;y

]
(η\x)dy.

Therefore

L̂G(η) =

∫
Rd

∑
{x,y}⊂η

[
C1
x,y;z ? H

1
x,y;z

]
(η\{x, y})dz +

∫
Rd

∑
x∈η

[
C2
x;y ? H

2
x;y

]
(η\x)dy.

�

The next step is to pass with the action of the operator L̂ to the correlation
functions, i.e. to obtain L∆, cf. (3.3) and (3.4). The latter can be derived from the

equation
∫
Γ0

(
L̂G
)
k(η)λ(dη) =

∫
Γ0

G
(
L∆k

)
(η)λ(dη).

Lemma 5.6. Operator L∆ for the repulsive coalescence model is of the form

L∆ = L∆
1 + L∆

2 ,

where

L∆
1 k(η) =

1

2

∫
(Rd)2

∫
Γ0

∑
z∈η

c1(x, y; z)k(η\z ∪ ξ ∪ {x, y})e(t(1)
z − 1, ξ)e(t(1)

z , η\z)λ(dξ)dxdy

− 1

2

∫
(Rd)2

∫
Γ0

∑
x∈η

c1(x, y; z)k(η ∪ ξ ∪ y)e(t(1)
z − 1, ξ)e(t(1)

z , η\x)λ(dξ)dydz

− 1

2

∫
(Rd)2

∫
Γ0

∑
y∈η

c1(x, y; z)k(η ∪ ξ ∪ x)e(t(1)
z − 1, ξ)e(t(1)

z , η\y)λ(dξ)dxdz
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−
∫
Rd

∫
Γ0

∑
{x,y}⊂η

c1(x, y; z)k(η ∪ ξ)e(t(1)
z − 1, ξ)e(t(1)

z , η\{x, y})λ(dξ)dz

and

L∆
2 k(η) =

∫
Rd

∫
Γ0

∑
y∈η

k(η\y ∪ ξ ∪ x)c2(x; y)e(t(2)
y − 1, ξ)e(t(2)

y − 1, η\y)λ(dξ)dx

−
∫
Rd

∫
Γ0

k(η ∪ ξ)
∑
x∈η

c2(x; y)
∏
u∈ξ

e(t(2)
y − 1, ξ)e(t(2)

y − 1, η\x)λ(dξ)dy.

with

t(1)
z (u) = e−φ1(z−u), t(2)

y (u) = e−φ2(y−u),

see (2.5) for definition of e(f, η).

Proof. Using Lemmas 2.22 and 5.5 we get∫
Γ0

(L̂1G)(η)k(η)λ(dη) =

∫
Γ0

∫
Rd

∑
{x,y}⊂η

[
C1
x,y;z ? H

1
x,y;z

]
(η\{x, y})k(η)dzλ(dη)

=
1

2

∫
(Rd)3

∫
Γ0

[
C1
x,y;z ? H

1
x,y;z

]
(η)k(η ∪ {x, y})λ(dη)dxdydz.

Recalling the definition (2.7) of the convolution ? and using Lemma 2.20 twice, we
obtain∫
Γ0

(L̂1G)(η)k(η)λ(dη)

=
1

2

∫
(Rd)3

∫
Γ0

∑
ξ⊂η

C1
x,y;z(ξ)

∑
ζ⊂ξ

H1
x,y;z(η\ξ ∪ ζ)k(η ∪ {x, y})λ(dη)dxdydz

=
1

2

∫
(Rd)3

∫
Γ0

∫
Γ0

C1
x,y;z(ξ)

∑
ζ⊂ξ

H1
x,y;z(η ∪ ζ)k(η ∪ ξ ∪ {x, y})λ(dη)λ(dξ)dxdydz

=
1

2

∫
(Rd)3

∫
Γ0

∫
Γ0

∫
Γ0

C1
x,y;z(ξ ∪ ζ)H1

x,y;z(η ∪ ζ)k(η ∪ ξ ∪ ζ ∪ {x, y})λ(dη)λ(dξ)λ(dζ)dxdydz.

Using again Lemma 2.20, but in the opposite direction, we have∫
Γ0

(L̂1G)(η)k(η)λ(dη)

=
1

2

∫
(Rd)3

∫
Γ0

∫
Γ0

∑
ζ⊂η

C1
x,y;z(ξ ∪ ζ)H1

x,y;z(η)k(η ∪ ξ ∪ {x, y})λ(dη)λ(dξ)dxdydz

=
1

2

∫
(Rd)3

∫
Γ0

H1
x,y;z(η)

[ ∫
Γ0

k(η ∪ ξ ∪ {x, y})
∑
ζ⊂η

C1
x,y;z(ξ ∪ ζ)λ(dξ)

]
λ(dη)dxdydz.
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Let us rewrite above using the notion (5.10) of H1
x,y;z(η).∫

Γ0

(L̂1G)(η)k(η)λ(dη) =
1

2

∫
(Rd)3

∫
Γ0

[
G(η ∪ z)−G(η ∪ x)−G(η ∪ y)−G(η ∪ {x, y})

]
[ ∫

Γ0

k(η ∪ ξ ∪ {x, y})
∑
ζ⊂η

C1
x,y;z(ξ ∪ ζ)λ(dξ)

]
λ(dη)dxdydz

Using Lemas 2.21 and 2.22 we can rewrite RHS of the above as∫
Γ0

G(η)
[1

2

∫
(Rd)2

∫
Γ0

∑
z∈η

k(η\z ∪ ξ ∪ {x, y})
∑
ζ⊂η\z

C1
x,y;z(ξ ∪ ζ)λ(dξ)dxdy

−1

2

∫
(Rd)2

∫
Γ0

∑
x∈η

k(η ∪ ξ ∪ y)
∑
ζ⊂η\x

C1
x,y;z(ξ ∪ ζ)λ(dξ)dydz

−1

2

∫
(Rd)2

∫
Γ0

∑
y∈η

k(η ∪ ξ ∪ x)
∑
ζ⊂η\y

C1
x,y;z(ξ ∪ ζ)λ(dξ)dxdz

−
∫
Rd

∫
Γ0

∑
{x,y}⊂η

k(η ∪ ξ)
∑

ζ⊂η\{x,y}

C1
x,y;z(ξ ∪ ζ)λ(dξ)dz

]
λ(dη).

Employing the same technique to the second part of the operator L̂, we derive∫
Γ0

(L̂2G)(η)k(η)λ(dη)

=

∫
(Rd)2

∫
Γ0

∫
Γ0

∑
ζ⊂η

C2
x;y(ξ ∪ ζ)H2

x;y(η)k(η ∪ ξ ∪ x)λ(dη)λ(dξ)dxdy

=

∫
Γ0

G(η)

[ ∫
Rd

∫
Γ0

∑
y∈η

k(η\y ∪ ξ ∪ x)
∑
ζ⊂η\y

C2
x;y(ξ ∪ ζ)λ(dξ)dx

−
∫
Rd

∫
Γ0

k(η ∪ ξ)
∑
x∈η

∑
ζ⊂η\x

C2
x;y(ξ ∪ ζ)λ(dξ)dy

]
λ(dη)

Therefore, we obtain

L∆k(η) =
1

2

∫
(Rd)2

∫
Γ0

∑
z∈η

k(η\z ∪ ξ ∪ {x, y})
∑
ζ⊂η\z

C1
x,y;z(ξ ∪ ζ)λ(dξ)dxdy

− 1

2

∫
(Rd)2

∫
Γ0

∑
x∈η

k(η ∪ ξ ∪ y)
∑
ζ⊂η\x

C1
x,y;z(ξ ∪ ζ)λ(dξ)dydz

− 1

2

∫
(Rd)2

∫
Γ0

∑
y∈η

k(η ∪ ξ ∪ x)
∑
ζ⊂η\y

C1
x,y;z(ξ ∪ ζ)λ(dξ)dxdz

−
∫
Rd

∫
Γ0

∑
{x,y}⊂η

k(η ∪ ξ)
∑

ζ⊂η\{x,y}

C1
x,y;z(ξ ∪ ζ)λ(dξ)dz

+

∫
Rd

∫
Γ0

∑
y∈η

k(η\y ∪ ξ ∪ x)
∑
ζ⊂η\y

C2
x;y(ξ ∪ ζ)λ(dξ)dx
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−
∫
Rd

∫
Γ0

∑
x∈η

k(η ∪ ξ)
∑
ζ⊂η\x

C2
x;y(ξ ∪ ζ)λ(dξ)dy. (5.11)

Note that so far we have not used any assumption about coefficients c̃1 and c̃2 apart
from that they can be written as results of action of the K-transform on corresponding
functions C1

x,y;z and C2
x;y. Let us calculate explicit forms of these functions. Recall

that

c̃1(x, y; z; γ) = c1(x, y; z)
∏

u∈γ\{x,y}

e−φ1(z−u),

c̃2(x; y; γ) = c2(x; y)
∏
u∈γ\x

e−φ2(y−u).

We have

KC1
x,y;z = c1(x, y; z)e(t(1)

z , ·),
that is

C1
x,y;z = K−1c1(x, y; z)e(1 + t(1)

z − 1, ·) = c1(x, y; z)K−1
∑
ξ⊂·

e(t(1)
z − 1, ξ)

= c1(x, y; z)K−1Ke(t(1)
z − 1, ·) = c1(x, y; z)e(t(1)

z − 1, ·).
Therefore

C1
x,y;z(η) = c1(x, y; z)e(t(1)

z − 1, η). (5.12)

Analogously we can derive

C2
x;y(η) = c2(x; y)e(t(2)

y − 1, η). (5.13)

We use the above to rewrite the operator L∆. For convenience let us denote as
previously for the original model: part corresponding to the coalescence, that is the
first four terms of (5.11), as L∆

1 and the part corresponding to the jumps, that is the
last two terms of (5.11), as L∆

2 . Substituting (5.12) we derive

L∆
1 k(η) =

1

2

∫
(Rd)2

∫
Γ0

∑
z∈η

k(η\z ∪ ξ ∪ {x, y})
∑
ζ⊂η\z

c1(x, y; z)

e(t(1)
z − 1, ξ ∪ ζ)λ(dξ)dxdy

−1

2

∫
(Rd)2

∫
Γ0

∑
x∈η

k(η ∪ ξ ∪ y)
∑
ζ⊂η\x

c1(x, y; z)e(t(1)
z − 1, ξ ∪ ζ)λ(dξ)dydz

−1

2

∫
(Rd)2

∫
Γ0

∑
y∈η

k(η ∪ ξ ∪ x)
∑
ζ⊂η\y

c1(x, y; z)e(t(1)
z − 1, ξ ∪ ζ)λ(dξ)dxdz

−
∫
Rd

∫
Γ0

∑
{x,y}⊂η

k(η ∪ ξ)
∑

ζ⊂η\{x,y}

c1(x, y; z)e(t(1)
z − 1, ξ ∪ ζ)λ(dξ)dz

and analogously using (5.13) we obtain

L∆
2 k(η) =

∫
Rd

∫
Γ0

∑
y∈η

k(η\y ∪ ξ ∪ x)
∑
ζ⊂η\y

c2(x; y)e(t(2)
y − 1, ξ ∪ ζ)λ(dξ)dx

−
∫
Rd

∫
Γ0

k(η ∪ ξ)
∑
x∈η

∑
ζ⊂η\x

c2(x; y)e(t(2)
y − 1, ξ ∪ ζ)λ(dξ)dy.
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Consider the first component L∆
11 of L∆

1 , i.e.

L∆
11k(η) =

1

2

∫
(Rd)2

∫
Γ0

∑
z∈η

k(η\z ∪ ξ ∪ {x, y})

∑
ζ⊂η\z

c1(x, y; z)e(t(1)
z − 1, ξ ∪ ζ)λ(dξ)dxdy.

For a given η let us introduce C(η) = {ξ ∈ Γ0 : ξ ∩ η 6= ∅}. Then, because any
configuration treated as a measurable subset of Rd is of Lebesgue measure 0 and the
empty configuration does not belong to C(η) for any η ∈ Γ0, we have λ(C(η)) = 0 for
every η ∈ Γ0. Indeed, using the Definition 2.18 of the Lebesgue-Poisson integral, we
obtain

λ(C(η)) =

∫
Γ0

IC(η)(ξ)λ(dξ) = I
(0)
C(η) +

∞∑
n=1

1

n!

∫
(Rd)n

I
(n)
C(η)(x1, ..., xn)dx1...dxn.

First, notice that I
(0)
C(η) = 0, as empty configuration is disjoint with any configuration.

Then, because

I
(n)
C(η)(x1, ..., xn) ≤ I(1)

C(η)(x1) + I
(1)
C(η)(x2) + ...+ I

(1)
C(η)(xn),

we have for every n ∈ N∫
(Rd)n

I
(n)
C(η)(x1, ..., xn)dx1...dxn ≤ n

∫
(Rd)n−1

[ ∫
Rd

I
(1)
C(η)(x)dx

]
dx1...dxn−1.

Taking into account that∫
Rd

I
(1)
C(η)(x)dx =

∫
Rd

Iη(x)dx = l(η) = 0,

where l denotes the Lebesgue measure, one can clearly see that λ(C(η)) = 0.
Therefore, when integrating over Γ0\C(η) instead of Γ0, the result is the same.

However, all subconfigurations ζ of η are disjoint with any ξ ∈ Γ0\C(η), which allows
us to separate the product taken over ξ ∪ ζ into one taken over ξ and another taken
over ζ. Thus we can write

L∆
11k(η) =

1

2

∫
(Rd)2

∫
Γ0

∑
z∈η

c1(x, y; z)k(η\z ∪ ξ ∪ {x, y})

e(t(1)
z − 1, ξ)

∑
ζ⊂η\z

e(t(1)
z − 1, ζ)λ(dξ)dxdy.

Recalling the Definition 2.16 of the K-transform and its property (2.8) we have∑
ζ⊂η\z

e(t(1)
z − 1, ζ) = K

(
e(t(1)

z − 1, ·)
)
(η\z) = e(t(1)

z , η\z).

Therefore, we can rewrite the action of L∆
11 in the form

L∆
11k(η) =

1

2

∫
(Rd)2

∫
Γ0

∑
z∈η

c1(x, y; z)k(η\z ∪ ξ ∪ {x, y})

e(t(1)
z − 1, ξ)e(t(1)

z , η\z)λ(dξ)dxdy.
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Applying the same method for the rest of the L∆
1 and for the L∆

2 , we obtain the
result. �

Using the same scaling technique, as described for the original model (L∆
ε obtained

by substitutions c1 → εc1, φ1 → εφ1 and φ2 → εφ2), we obtain V = lim
ε→0

Lrenε of the

form

V k(η) =
1

2

∫
(Rd)2

∫
Γ0

∑
z∈η

c1(x, y; z)k(η\z ∪ ξ ∪ {x, y})
∏
u∈ξ

(−φ1(z − u))λ(dξ)dxdy

− 1

2

∫
(Rd)2

∫
Γ0

∑
x∈η

c1(x, y; z)k(η ∪ ξ ∪ y)
∏
u∈ξ

(−φ1(z − u))λ(dξ)dydz

− 1

2

∫
(Rd)2

∫
Γ0

∑
y∈η

c1(x, y; z)k(η ∪ ξ ∪ x)
∏
u∈ξ

(−φ1(z − u))λ(dξ)dxdz

+

∫
Rd

∫
Γ0

∑
y∈η

k(η\y ∪ ξ ∪ x)c2(x; y)
∏
u∈ξ

(−φ2(y − u))λ(dξ)dx

−
∫
Rd

∫
Γ0

k(η ∪ ξ)
∑
x∈η

c2(x; y)
∏
u∈ξ

(−φ2(y − u))λ(dξ)dy.

The corresponding kinetic equation can be written as

d

dt
ρt(x) = R1(ρt, x) +R2(ρt, x), ρt=0(x) = ρ0(x) ∈ L∞(Rd) (5.14)

where

R1(ρt, x) = −1

2
ρt(x)

∫
(Rd)2

(
c1(x, y; z) + c1(y, x; z)

)
ρt(y)dydz − h(ρt, x)

∫
Rd

c2(x; y)dy

= −ρt(x)h(ρt, x)

with

h(ρt, x) =
1

2

∫
(Rd)2

(
c1(x, y; z) + c1(y, x; z)

)
ρt(y)dydz + 〈c2〉

and

R2(ρt, x) =
1

2

∫
(Rd)2

c1(y, z;x) exp
(
−
∫
Rd

φ1(x− u)ρt(u)du
)
ρt(y)ρt(z)dydz

+
1

2

∫
(Rd)2

(
c1(x, y; z) + c1(y, x; z)

)
[
1− exp

(
−
∫
Rd

φ1(z − u)ρt(u)du
)]
ρt(x)ρt(y)dydz

+

∫
Rd

c2(y;x) exp
(
−
∫
Rd

φ2(x− u)ρt(u)du
)
ρt(y)dy

+

∫
Rd

c2(x; y)
[
1− exp

(
−
∫
Rd

φ2(y − u)ρt(u)du
)]
ρt(x)dy.
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Kinetic equation (5.14) can be written in the equivalent form of the integral equa-
tion

ρt(x) = ρ0(x) exp
(
−

t∫
0

h(ρs, x)ds
)

+

t∫
0

R2(ρs, x) exp
(
−

t∫
s

h(ρσ, x)dσ
)
ds. (5.15)

Now we will move to the main result of this section, the existence and uniqueness
of the local classical solution to equation (5.14). Before that, let us introduce some
additional notions and prove two technical lemmas: Lemma 5.7 and Lemma 5.8.

Consider XT = C([0, T ]→ L∞(Rd)), T > 0 with the norm

||ρ||T,γ = sup
t∈[0,T ]

e−γ〈c2〉t||ρt||L∞ .

Denote

BT,γ(r) = {ρ ∈ XT : ||ρ||T,γ ≤ r, ρt ≥ 0 ∀t ∈ [0, T ]},
BT,γ(r, ρ0) = {ψ ∈ BT,γ(r) : ψ0 = ρ0},

where ρ0 ∈ L∞(Rd), ρ0 ≥ 0, r ≥ ||ρ0||L∞ and T, γ > 0.

Lemma 5.7. Given r > 0, there exist γ, T̃ > 0 such that F defined by the RHS of
(5.15) with the domain BT ∗,γ(r) ⊂ XT ∗ acts again to the BT ∗,γ(r) for any T ∗ ∈ [0, T̃ ].

Proof of Lemma 5.7. Take arbitrary T, γ > 0 and ρ ∈ BT,γ(r). Note that

h(ρt, x) ≥ 〈c2〉,

R2(ρt, x) ≤ 3

2
||ρt||2L∞〈c1〉+ 2||ρt||L∞〈c2〉,

ρt(x) ≤ ||ρt||L∞ ≤ eγ〈c2〉t||ρ||T,γ . (5.16)

It is obvious that F preserves positiveness of ρ. Furthermore, using above estimates
and the definition of BT,γ(r), we derive

(
F (ρ)

)
t
(x) = ρ0(x) exp

(
−

t∫
0

h(ρs, x)ds
)

+

t∫
0

R2(ρs, x) exp
(
−

t∫
s

h(ρσ, x)dσ
)
ds

≤ ||ρ0||L∞e−t〈c2〉 +

t∫
0

R2(ρs, x)e(s−t)〈c2〉ds

≤ e−t〈c2〉
[
||ρ||T,γ +

t∫
0

(3

2
〈c1〉e(2γ+1)〈c2〉s||ρ||2T,γ + 2〈c2〉e(γ+1)〈c2〉s||ρ||T,γ

)
ds
]
.

Therefore we obtain∣∣∣∣∣∣(F (ρ)
)
t

∣∣∣∣∣∣
L∞
≤ e−t〈c2〉r

[
1 +

3〈c1〉r
2(2γ + 1)〈c2〉

(
e(2γ+1)〈c2〉t− 1

)
+

2

γ + 1

(
e(γ+1)〈c2〉t− 1

)]
.

Thus ∣∣∣∣∣∣(F (ρ)
)∣∣∣∣∣∣

T,γ
≤ r sup

t∈[0,T ]
f(t),

where

f(t) = e−(γ+1)〈c2〉t
[
1 +

3〈c1〉r
2(2γ + 1)〈c2〉

(
e(2γ+1)〈c2〉t − 1

)
+

2

γ + 1

(
e(γ+1)〈c2〉t − 1

)]
.



59

Note that f(0) = 1. Additionally

f ′(t) = −(γ + 1)〈c2〉e−(γ+1)〈c2〉t
[
1 +

3〈c1〉r
2(2γ + 1)〈c2〉

(
e(2γ+1)〈c2〉t − 1

)
+

2

(γ + 1)

(
e(γ+1)〈c2〉t − 1

)]
+ e−(γ+1)〈c2〉t

[3〈c1〉r
2

e(2γ+1)〈c2〉t + 2〈c2〉e(γ+1)〈c2〉t
]

and hence

f ′(0) = −(γ + 1)〈c2〉+
(3

2
〈c1〉r + 2〈c2〉

)
.

Choosing γ > 1 + 3〈c1〉r
2〈c2〉 we have f ′(0) < 0, which guarantees existence of T̃ such that

sup
t∈[0,T̃ ]

f(t) = 1. Taking T = T ∗ for T ∗ ∈ [0, T̃ ] yields

||F (ρ)||T ∗,γ ≤ r.
Therefore F (ρ) ∈ BT ∗,γ(r) for ρ ∈ BT ∗,γ(r). �

Lemma 5.8. Let ρ0 ∈ L∞(Rd), ρ0 ≥ 0 and r ≥ ||ρ0||L∞. Let T̃ , γ satisfy lemma 5.7

for this r. We can choose T ∗ ∈ [0, T̃ ] in such a way that for any ρ, ψ in BT ∗,γ(r, ρ0)
the inequality ||F (ρ)− F (ψ)||T ∗,γ ≤ C||ρ− ψ||T ∗,γ holds for some constant C < 1.

Proof. We have (
F (ρ)− F (ψ)

)
t
(x) = ρ0(x) exp

(
−

t∫
0

h(ρs, x)ds
)

+

t∫
0

R2(ρs, x) exp
(
−

t∫
s

h(ρσ, x)dσ
)
ds− ρ0(x) exp

(
−

t∫
0

h(ψs, x)ds
)

−
t∫

0

R2(ψs, x) exp
(
−

t∫
s

h(ψσ, x)dσ
)
ds = D1 +

t∫
0

D2ds, (5.17)

where

D1 = ρ0(x)
[

exp
(
−

t∫
0

h(ρs, x)ds
)
− exp

(
−

t∫
0

h(ψs, x)ds
)]

and

D2 =

t∫
0

[
R2(ρs, x) exp

(
−

t∫
s

h(ρσ, x)dσ
)

−R2(ψs, x) exp
(
−

t∫
s

h(ψσ, x)dσ
)]
ds.

Take an arbitrary T ∗ ∈ [0, T̃ ]. We have

|D1| ≤ ||ρ0||L∞〈c1〉
t∫

0

||ρs − ψs||L∞ds ≤ r〈c1〉teγ〈c2〉t||ρ− ψ||T ∗,γ . (5.18)
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In order to estimate |D2|, consider two cases. First, suppose that

t∫
s

(
h(ρσ, x)− h(ψσx)

)
dσ ≥ 0.

Then

|D2| ≤
∣∣∣R2(ρs, x) exp

[
−

t∫
s

(
h(ρσ, x)− h(ψσ, x)

)
dσ
]

−R2(ψs, x) exp
[
−

t∫
s

(
h(ρσ, x)− h(ψσ, x)

)
dσ
]∣∣∣

+
∣∣∣R2(ψs, x) exp

[
−

t∫
s

(
h(ρσ, x)− h(ψσ, x)

)
dσ
]
−R2(ψs, x)

∣∣∣
≤
∣∣∣R2(ρs, x)−R2(ψs, x)

∣∣∣+R2(ψs, x)
{

1− exp
[
−

t∫
s

(
h(ρσ, x)− h(ψσ, x)

)
dσ
]}
.

In the other case, when
t∫
s

(
h(ρσ, x)− h(ψσ, x)

)
dσ < 0, we have analogously

|D2| ≤
∣∣∣R2(ρs, x)−R2(ψs, x)

∣∣∣+R2(ρs, x)
{

1− exp
[
−

t∫
s

(
h(ψσ, x)− h(ρσ, x)

)
dσ
]}
.

Note that both R2(ρs, x) and R2(ψs, x), as both belong to BT ∗,γ(r), satisfy the same
estimate (cf (5.2))

R2(ρs, x), R2(ψs, x) ≤ 3

2
〈c1〉e2γ〈c2〉sr2 + 2〈c2〉eγ〈c2〉sr,

which allows us to write

|D2| ≤
∣∣∣R2(ρs, x)−R2(ψs, x)

∣∣∣+
(3

2
〈c1〉e2γ〈c2〉sr2 + 2〈c2〉eγ〈c2〉sr

)
{

1− exp
[
−

t∫
s

∣∣∣h(ψσ, x)− h(ρσ, x)
∣∣∣dσ]}. (5.19)

We have

1− exp
[
−

t∫
s

∣∣∣h(ψσ, x)− h(ρσ, x)
∣∣∣dσ] ≤ t∫

s

∣∣∣h(ψσ, x)− h(ρσ, x)
∣∣∣dσ

=
1

2

t∫
s

∣∣∣ ∫
(Rd)2

(
c1(x, y; z) + c1(y, x; z)

)(
ρσ(y)− ψσ(y)

)
dydz

∣∣∣dσ
≤

t∫
s

〈c1〉||ρσ − ψσ||L∞dσ ≤
t∫
s

〈c1〉eγ〈c2〉σ||ρ− ψ||T ∗,γdσ

≤ 〈c1〉eγ〈c2〉t(t− s)||ρ− ψ||T ∗,γ ,
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which yields

1− exp
[
−

t∫
s

∣∣∣h(ψσ, x)− h(ρσ, x)
∣∣∣dσ] ≤ 〈c1〉teγ〈c2〉t||ρ− ψ||T ∗,γ . (5.20)

Let us estimate∣∣∣R2(ρs, x)−R2(ψs, x)
∣∣∣ ≤ 1

2

∫
(Rd)2

c1(y, z;x)
∣∣∣ exp

(
−
∫
Rd

φ1(x− u)ρs(u)du
)
ρs(y)ρs(z)

− exp
(
−
∫
Rd

φ1(x− u)ψs(u)du
)
ψs(y)ψs(z)

∣∣∣dydz
+

1

2

∫
(Rd)2

(
c1(x, y; z) + c1(y, x; z)

) ∣∣∣[1− exp
(
−
∫
Rd

φ1(z − u)ρs(u)du
)]

ρs(x)ρs(y)−
[
1− exp

(
−
∫
Rd

φ1(z − u)ψs(u)du
)]
ψs(x)ψs(y)

∣∣∣dydz
+

∫
Rd

c2(y;x)
∣∣∣ exp

(
−
∫
Rd

φ2(x− u)ρs(u)du
)
ρs(y)

− exp
(
−
∫
Rd

φ2(x− u)ψs(u)du
)
ψs(y)

∣∣∣dy
+

∫
Rd

c2(x; y)
∣∣∣[1− exp

(
−
∫
Rd

φ2(y − u)ρs(u)du
)]
ρs(x)

−
[
1− exp

(
−
∫
Rd

φ2(y − u)ψs(u)du
)]
ψs(x)

∣∣∣dy.
Denote by Ii the i-th component of the RHS of the above inequality for i = 1, 2, 3, 4.
Then estimating analogously as above we derive

I3, I4 ≤ 〈c2〉
(
e2γ〈c2〉s〈φ2〉r + eγ〈c2〉s

)∣∣∣∣∣∣ρ− ψ∣∣∣∣∣∣
T ∗,γ

.

Moreover, noting that ∣∣∣ρs(y)ρs(z)− ψs(y)ψs(z)
∣∣∣

≤ 1

2

(
ρs(z) + ψs(z)

)∣∣∣ρs(y)− ψs(y)
∣∣∣+

1

2

(
ρs(y) + ψs(y)

)∣∣∣ρs(z)− ψs(z)∣∣∣,
we obtain

I1 ≤
1

2
〈c1〉

(
2e2γ〈c2〉sr + e3γ〈c2〉s〈φ1〉r2

)∣∣∣∣∣∣ρ− ψ∣∣∣∣∣∣
T ∗,γ

,

I2 ≤ 〈c1〉
(

2e2γ〈c2〉sr + e3γ〈c2〉s〈φ1〉r2
)∣∣∣∣∣∣ρ− ψ∣∣∣∣∣∣

T ∗,γ
.

Therefore ∣∣∣R2(ρs, x)−R2(ψs, x)
∣∣∣ ≤ [3

2
〈c1〉eγ〈c2〉s

(
2eγ〈c2〉sr + e2γ〈c2〉s〈φ1〉r2

)
+2〈c2〉eγ〈c2〉s

(
eγ〈c2〉s〈φ2〉r + 1

)]∣∣∣∣∣∣ρ− ψ∣∣∣∣∣∣
T ∗,γ

. (5.21)
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Substituting (5.20) and (5.2) into (5.2) and using it together with (5.18), we obtain
(cf 5.2) ∣∣∣(F (ρ)− F (ψ)

)
t
(x)
∣∣∣ ≤ eγ〈c2〉tf(t)

∣∣∣∣∣∣ρ− ψ∣∣∣∣∣∣
T ∗,γ

,

where

f(t) = t
[3

2
r2〈c1〉e2γ〈c2〉t

(
〈c1〉t+ 〈φ1〉

)
+reγ〈c2〉t

(
2〈c1〉〈c2〉t+ 3〈c1〉+ 2〈c2〉〈φ2〉

)
+ 2〈c2〉

]
.

Therefore ∣∣∣∣∣∣F (ρ)− F (ψ)
∣∣∣∣∣∣
T ∗,γ
≤ sup

t∈[0,T ∗]
f(t)

∣∣∣∣∣∣ρ− ψ∣∣∣∣∣∣
T ∗,γ

.

Note that f(t) is continuous, increasing function of t and f(0) = 0. Thus, there
exists T ∗∗ > 0 such that f(T ∗∗) < 1 and f(t) ∈ [0, f(T ∗∗)] for t ∈ [0, T ∗∗]. Choosing

T ∗ = min(T ∗∗, T̃ ), we obtain∣∣∣∣∣∣F (ρ)− F (ψ)
∣∣∣∣∣∣
T ∗,γ
≤ C

∣∣∣∣∣∣ρ− ψ∣∣∣∣∣∣
T ∗,γ

with C = f(T ∗) ≤ f(T ∗∗) < 1. �

Theorem 5.9. Problem (5.14) with the initial condition ρ0 ∈ L∞(Rd)),
ρ0 ≥ 0 has the unique local classical solution.

Proof. Choose r > ||ρ0||L∞ and take corresponding γ, T̃ from lemma 5.7. Take T ∗ as

in lemma 5.8. Define the sequence of Picard iterations (ρ(n))n∈N0 in the following way

ρ
(0)
t = ρ0 ∀t ∈ [0, T ∗],

ρ(n) = F (ρ(n−1)), n ∈ N. (5.22)

Obviously, ρ(0) ∈ BT ∗,γ(r). Therefore, by lemma 5.7, ρ(n) ∈ BT ∗,γ(r) for all n ∈ N and
from lemma 5.8 we obtain

||ρ(n+k) − ρ(n)||T ∗,γ ≤ ||ρ(1) − ρ(0)||T ∗,γ
k∑
i=1

Cn+i−1 ≤ ||ρ(1) − ρ(0)||T ∗,γ
Cn

1− C ,

where C < 1 is a positive constant. Therefore
(
ρ(n)

)
n∈N0

defined by (5.2) is a Cauchy

sequence. As BT ∗,γ(r) is a closed subset of a Banach space, there exists

lim
n→∞

ρ(n) = ρ ∈ BT ∗,γ(r).

Clearly F (ρ) = ρ and therefore ρt satisfies the integral equation (5.15) for t ∈ [0, T ∗].
Thus it is a local classical solution of (5.14).
Now suppose there is another local classical solution of this equation, say ψ. Then
ψ0 = ρ0 and for r, γ, T ∗ as above, there exists T ≤ T ∗ such that ψ ∈ BT,γ(r). However,
from lemma 5.8 we have

||ρ− ψ||T,γ = ||F (ρ)− F (ψ)||T,γ ≤ C||ρ− ψ||T,γ
for C < 1, which means that

||ρ− ψ||T,γ = 0

and thus ρ is the unique local classical solution. �
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6. Numerical simulations

This section is devoted to the numerical simulations of the studied system by
finding approximated solution to kinetic equation (5.5). Here, we consider only one-
dimensional system, i.e. d = 1. Most of the presented results were published in [22]
and [29]. Contents of this section are based mainly on the latter article, with some
editorial changes, additional examples coming from the other article and finally some
unpublished results.

First, we make additional assumptions regarding intensity coalescence c1 and jump
kernel c2. Namely, let

c1(x, y, z) = b(x− y)δ((x+ y)/2− z) (6.1)

and

c2(x, y) = a(x− y),

where a and b are non-negative, even functions and δ stands for the Dirac δ-function.
It means that both jumps and coalescence intensities depend on the distance between
involved particles and the target point. Moreover, the resulting point of the coalescence
of two particles in x and y is at the middle z = (x+ y)/2 of their locations.

The δ-function was used to simplify the calculations as it allows us to lower di-
mensionality of the integration. Indeed, integrating over z to eliminate δ-function, the
kinetic equation (5.5) transforms to

∂ρt(x)

∂t
=−

∫ ∞
−∞

a(x− y) exp

(
−
∫ ∞
−∞

ϕ(y − u)ρt(u)du

)
ρt(x)dy

+

∫ ∞
−∞

a(x− y) exp

(
−
∫ ∞
−∞

ϕ(x− u)ρt(u)du

)
ρt(y)dy

− 2

∫ ∞
−∞

(b(x− y)ρt(x)− b(2(x− y))ρt(2x− y)) ρt(y)dy, (6.2)

where the assumed properties of the kernels have been taken into account. Imposing an
initial condition ρ0(x), x ∈ R, (6.2) leads to a complicated partial integro-differential
equation. Because of the presence of spatial integrals and nonlinearity, we doubt it
can be solved analytically in general. That is why we develop a numerical approach
for solving this equation.

6.1. Numerical algorithm. In order to solve numerically the kinetic equation,
it is necessary, first of all, to perform its discretization in coordinate space. Let xi be
the grid points uniformly distributed over R with mesh h. Then the discrete analog of
(6.2) is

dni
dt

=h
∑
j

(
ai−j exp

[
− h

∑
k

ϕi−knk

]
nj − ai−j exp

[
− h

∑
k

ϕj−knk

]
ni

)
− 2h

∑
j

bi−jninj + 2h
∑
j

b2i−2jnjn2i−j , (6.3)

where ni = n(xi, t) and n(xi, 0) = ρ0(xi) with ai−j = a(xi − xj) = a((i − j)h),
bi−j = b(xi − xj) = b((i − j)h), ϕi−k = ϕ(xi − xk) = ϕ((i − k)h), and the infinite
sums over j and k correspond to the spatial integrals. It is obvious that in the limit
h → 0, the discretized kinetic equation (6.3) coincides with its original continuous
version (6.2). Replacing i− j by j, taking into account that the summation is carried
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out over the infinite number of terms, and introducing the auxiliary quantities

λi = exp
[
− h

∑
k

ϕi−knk

]
, (6.4)

one can rewrite (6.3) as

dni
dt

= h
∑
j

(
aj(λini−j − λi−jni)− 2bjnini−j + 2b2jni−jni+j

)
(6.5)

where aj = a(jh), bj = b(jh), and b2j = b(2jh).
In computer simulations we cannot operate with infinite-size samples leading to

the infinite summation over j in (6.3), (6.4), and (6.5). Because of this, we consider a
finite number N of grid points xi uniformly distributed over the area [−L/2, L/2] with
spacing h = L/N , where i = 1, 2, . . . , N . The finite length L should be sufficiently big
and the number N of grid points must be large enough to minimize the discretization
noise. Then h will be sufficiently small to provide a high accuracy of the spatial inte-
gration. The finite-size effects can be reduced by applying the corresponding boundary
conditions (BC) when mapping infinite range (−∞,∞) by finite area [−L/2, L/2]. In
view of the aforesaid, (6.5) represents a coupled system of N autonomous equations,
where i = 1, 2, . . . , N and summation over j is performed according to BC.

We consider three types of BC: Dirichlet (DBC), periodic (PBC), and asymptotic
(ABC) boundary conditions. The choice depends on initial function ρ0(x) and expected
properties of solution ρt(x). For example, if ρ0(x) takes nonzero values only within a
narrow interval [−l/2, l/2] with l� L, we can apply the DBC by letting nj = 0 for all
|xj | > L/2. This means that during the finite simulation time 0 ≤ t ≤ T , the non-zero
values of ni(t) do not approach the boundaries xB = ±(L/2−maxσ), where maxσ is
the maximal radius of the kernels (see Section 6.2). In numerical calculations this can
be expressed by the condition n(xB, t) < ε maxx n(x, t), where 0 < ε� 1 is the relative
tolerable level (a negligibly small quantity slightly exceeding machine zero). When the
propagation front becomes too close to the boundaries, i.e., n(xB, t) > ε maxx n(x, t),
we should enlarge L (e.g. gradually doubling it) until to satisfy the required first
condition, use DBC again, and continue the simulation for t > T . We also consider a
case (see Section 6.2.3) in which members of infinite configuration are initially absent
in one half-space. This requires a modified BC that combines DBC and ABC with an
addition of adjustable system-size approach.

If ρ0 and, thus, n(·, t) are periodic functions, it is necessary to apply PBC. Accord-
ing to PBC, the summation in (6.5) for each i = 1, 2, . . . , N is performed not only over
all j = 1, 2, . . . , N but also over all infinite number of images j′ of j. The images are
obtained by repeating the basic interval [−L/2, L/2] by the infinite number of times to
the left and to the right of it, so that xj′ = xj ±KL, where K = 1, 2, . . . and nj′ = nj .
This reproduces the periodicity n(x ±KL, 0) = n(x, 0), where x ∈ [−L/2, L/2]. The
solution n(x±KL, t) = n(x, t) will also be periodic for any time t > 0 with the same
(finite) period L. In such a way the infinite system can be handled by a finite-size
sample. Because the kernel values aj and bj decrease to zero with increasing the inter-
particle distance, the summation over j in (6.5) can be actually truncated to a finite
number of terms. The truncation radiuses Ra,b are chosen to satisfy the conditions
a(|x|) ≈ 0 and b(|x|) ≈ 0 for |x| > Ra and |x| > Rb, respectively.

In the spatially homogeneous case when n(x, t) = n(t), we should apply ABC,
i.e. nj′ = n(t) for all xj′ < −L/2 and nj′ = n(t) for all xj′ > L/2. For this case,
PBC and ABC lead to the same results. The ABC can also be used for spatially
inhomogeneous solutions n(x, t) which are flat for x < −L/2 and x > L/2 at a given



65

t where they take non-zero constant values. Then nj′ = n(−L/2, t) for all xj′ < −L/2
while nj′ = n(L/2, t) for all xj′ > L/2. If in the course of time the flatness is violated
at a current L, the basic length should be enlarged using the automatically adjustable
system-size approach mentioned above.

The uniform knot distribution over [−L/2, L/2] can be chosen in the form xi =
−L/2 + (i−1/2)h, where i = 1, 2, . . . , N with even N . This provides the symmetricity
of knot positions with respect to x = 0. Then according to PBC the calculations of
ni±j should be performed as

ni−j =

{
ni−j+N , i− j < 1
ni−j , 1 ≤ i− j ≤ N , ni+j =

{
ni+j−N i+ j > N
ni+j 1 ≤ i− j ≤ N . (6.6)

The application of DBC result in

ni−j =

{
0, i− j < 1
ni−j , 1 ≤ i− j ≤ N , ni+j =

{
0 i+ j > N
ni+j 1 ≤ i− j ≤ N . (6.7)

and and ABC in

ni−j =

{
n1, i− j < 1
ni−j , 1 ≤ i− j ≤ N , ni+j =

{
nN i+ j > N
ni+j 1 ≤ i− j ≤ N . (6.8)

respectively.
In order to solve the problem (6.5), we use Runge-Kutta scheme of the fourth order

(RK4) to calculate the values of ni(x, t) for increasing t.

6.2. Results of the performed simulations. In order to apply the algorithm
described in the preceeding section and numerically solve equation (5.5), we need to
precise initial population density and exact form of parameter functions involved. The
jump a(x), coalescence b(x), and repulsion ϕ(x) kernels were modelled by Gaussian

Gµ,σ(x) =
µ

σ
√

2π
exp

(
− x2

2σ2

)
(6.9)

or rectangle

Cµ,σ(x) =

{ µ
2σ , |x| ≤ σ
0, |x| > σ

(6.10)

functions, where µ = µa, µb, µϕ are the intensities and σ = σa, σb, σϕ the ranges of
the corresponding interactions. A symmetrical pair of shifted Gaussian or rectangle
functions was involved as well,

Fµ,σ,s(x) =
1

2

(
Fµ,σ(x− s) + Fµ,σ(x+ s)

)
, (6.11)

where F stands for G or C and s is the shifting interval.
In order to consistently analyze the influence of parameter functions on the dy-

namics, the following four situations were considered: (i) pure free jumps; (ii) repulsive
jumps; (iii) pure coalescence; and (iv) repulsive jumps with coalescence. The initial
conditions were chosen in the form of Gaussians (6.9), rectangles (6.10), trigonometric
or step functions.

6.2.1. Rectangle initial density. The first example relates to the initial condition in
the form of periodic rectangle function. The infinite system is reproduced by repeating
the single rectangle segment C1,1(x) at x ∈ [−L/2, L/2] with a period of L and applying
PBC (6.6). The jump a(x) = Gµa,σa(x), repulsion ϕ(x) = Gµϕ,σϕ(x), and coalescence
b(x) = Gµb,σb(x) kernels are modelled by the Gaussians.

First, let us consider the case of free jumps (i.e. b ≡ 0, ϕ ≡ 0) with jump kernel
a = G1,1. The discontinuity of initial density quickly dissipates, transforming the
initial density into a function resembling periodic Gaussian. With increasing time, the
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Figure 1. Free jumps without coalescence. Approximated density ρT
on [−10, 10] for periodic C1,1-type initial condition with period L = 40.
On the left: evolution in time with G1,1 jump kernel. On the right:
comparison at T = 20 with different choices of jump kernel. [22]

system tends to homogeneity, see left plot in Figure 1. Increase of the strength (µa)
or range (σa) parameter, as well as the shift of the jump kernel result in acceleration
of this process, see right plot in Figure 1.

Next, we consider addition of repulsion and/or coalescence. We consider corre-
sponding intensities to be either zero or µa = 1, µϕ = 20, and µb = 1. Three sets of
kernel ranges were taken into account, σa = σϕ = σb = 1, σa < σϕ < σb with σa = 0.5,
σϕ = 1, σb = 2 and vice versa, σa > σϕ > σb with σa = 2, σϕ = 1, σb = 0.5. The
corresponding time evolution of spatial structure n(x, t) is presented in Fig. 2 for the
cases of pure free jumps, repulsive jumps, pure coalescence, and repulsive jumps with
coalescence with σa = σϕ = σb = 1, parts (a), (b), (c), and (d), respectively, as well,
with σa < σϕ < σb and σa > σϕ > σb for coalescing repulsive jumps, parts (e) and (f).

In Fig. 2(a) we see the dynamics similar to one observed previously in Figure 1.
In the limit t→∞ we expect absolutely flat density limt→∞ ρt(x) = µa/L. In (b) we
see that addition of relatively strong repulsion to jumps results in the slowing down of
the process of homogenization. Additionally, we observe the emergence of two addi-
tional local maxima in the ranges x ≈ ±2 due to the repulsion between particles. We
believe that all the maxima disappear at t→∞ with the same asymptotic behaviour
limt→∞ ρt(x) = 1/L as for the free jumps. In contrast, for free coalescence, see part
(c), we expect decay of ρt(x) to zero at t → ∞. Moreover, here the particles remain
to be located exclusively within the initial intervals [−1, 1] ± kL, k ∈ Z and they are
absent outside of it at any t.

When the repulsive jumps are carried out in the presence of coalescence at equal
interaction ranges σa = σϕ = σb = 1, see part (d) of Figure 2, the pattern is somewhat
similar to that of part (b). However, the three-maximum structure dissipates now
much faster. For short-ranged jumps, where σa = 0.5, σϕ = 1, σb = 2, the central
peaks at x = 0 become sharper, while the secondary side maxima at x ≈ ±2 do not
seem to appear, see part (e) and compare it with (d). In the case of short-ranged
coalescence when σa = 2, σϕ = 1, σb = 0.5, the central peaks transform into a more
complicated structure with one central minimum at x = 0 and two side maxima at
x ≈ ±0.5, see part (f). The secondary maxima at x ≈ ±2 become more visible with
respect to those for equal-range interactions, cf. part (d). Thus, the influence of jumps
on the dynamics increases not only with increasing their intensity but range as well.
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Figure 2. Time evolution of population density at several moments
of time t for periodic C1,1-type initial condition (with period L = 20)
in the cases: (a) pure free jumps; (b) repulsive jumps; and (c) pure
coalescence; as well as repulsive jumps with coalescence for (d) equal
interaction ranges; (e) short-ranged jumps; and (f) short-ranged coa-
lescence. [29]

The same concerns the coalescence. Note also that the density profiles in Figures 2
(a)–(f) are symmetric, i.e., ρt(−x) = ρt(x), like the initial condition, ρ0(−x) = ρ0(x).
This follows from the symmetry of the kinetic equation.

As another example, consider asymmetric initial condition in the form of N0 shifted
single rectangle functions Cvk,σk(x+ sk) with intensities vk and ranges σk, namely,

ρ0(x) =

N0∑
k=1

Cvk,σk(x+ sk) (6.12)

where sk = −L/2 + (k − 1/2)L/N0 are shifting parameters. Repeating (6.12) with
period L, we should apply PBC to deal with the infinite system. We used a particular
case of (6.12) with N0 = 3 and L = 20 as well as three different amplitudes v1,2,3
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Figure 3. Time evolution of density for asymmetric initial condition
in the form of three rectangle functions with different amplitudes. [29]

generated at random in the interval (0, 1). The corresponding result is shown in Figure
3.

Looking at Figure 3 and comparing it with Figure 2 we see that the evolution of
density for short time interval can be approximately presented as a sum of independent
separate solutions obtained for single rectangle initial densities Cvk,σk(x + sk). With
time increment, it ceases to be the case. Again, in the absence of coalescence, see
parts (a) and (b), the density seems to tend with t → ∞ to the nonzero constant
(v1 + v2 + v3)/L. For µb > 0, the density seems to take its zeroth asymptotics at
t→∞, see parts (c)–(f), except special cases, see below. For populations with periodic
initial densities ρ0(x ± kL) = ρ0(x) with x ∈ [−L/2, L/2] and k ∈ Z, the solution ρt
will also be periodic for any time t > 0 with the same period L. We can observe this
in particular for −L/2 and L/2. Investigations show that the increase of the strength
µ and range σ of the jump and coalescence kernels accelerates the speed of density
evolution.
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Figure 4. Evolution of initial density in the form of two rectangle
functions C1,1,5,2 in the cases: (a) pure coalescence and (b) coalescence
with free jumps. The interactions are modelled by shifted pair rectangle
coalescence C1,1,8 and Gaussian jump G0.2,1 kernels. [29]

As visualized in Figures 2 and 3, the presence of coalescence seems to lead to the
zeroth asymptotic provided the kernels are single rectangle functions with positive
values around zero (the same concerns simple Gaussians). However, the coalescence
kernel can be chosen in the form b = Cµ,σ,s of a pair of shifted rectangle functions, recall
(6.11), with appropriate shifting parameter s to avoid the zeroth density limit. The
initial inhomogeneous density should also be chosen correspondingly. For instance, we
can consider ρ0 to be C1,1,5,2-type periodic function with period L = 20, recall (6.12).
In the absence of jumps and with coalescence intensity b = C1,1,8 the evolution of
density is depicted in Figure 4(a). We see that the initial rectangles soon transform
into triangle-shaped peaks centered at x = ±(5+kL). Additionally, new peaks appear
exactly in the middle of them at x = 0 ± kL. At long times the modification of the
density profile slows down to a level suggesting that the system approaches a non-trivial
stationary state.

Allowing particles to jump changes the situation radically, as is demonstrated in
Figure 4(b) for Gaussian jump kernel G0.2,1(x). Even for relatively small jump intensity
µa = 0.2 and range σa = 1, the density quickly decreases to zero everywhere, after
initial period of time, when new peaks are formed. It is interesting to remark that the
monotonic decrease of main maxima in x± 5 is accompanied by nonmonotonic change
of the magnitude of the newly formed peaks in x = 0 (and ±kL). This magnitude first
increases (cf. densities at t = 1 and t = 4) and then decreases.

6.2.2. Trigonometric initial density. Next example is the initial density in the form
of a trigonometric function

Tn0,µ0,k(x) = n0

(
1 + µ0 cos(2πkx/L)

)
,

where 0 < µ0 ≤ 1 is the coefficient of the modulation and k ≥ 1 defines the period L/k.
Then PBC should be used to reproduce the infinite system. The obtained solutions for
ρ0(x) = T1,1,3(x) with n0 = 1, µ0 = 1, k = 3, and L = 20 are plotted in Figure 5 when
jump, repulsion, and coalescence kernels are Gaussians a(x) = G1,1(x), ϕ(x) = G8,1(x),
and b(x) = G0.5,1(x), respectively.

From Figure 5(a) we see that pure free jumps do not change the form of density
profile which remains to be of the trigonometric shape with the same periodicity. In
particular, the density continues to oscillate around the same level n0(1+µ0)/2 = 1 for
any t. However, the amplitude of these oscillations decreases with increasing t, leading
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Figure 5. Evolution of density with trigonometric initial condition
T1,1,3(x). The jump (J), repulsion (R), and coalescence (C) kernels are
Gaussians G1,1(x), G8,1(x), and G0.25,1(x), as indicated above plots.
[29]

to homogeneity in long term. The addition of repulsion alters the simple trigonometric
form. Additional local maxima and minima emerge, see Figure 5(b). Moreover, the
homogeneity is being achieved here much slower than in the case of free jumps (compare
density at t = 5000 in Figure 5(b) versus for t = 10 in part (a)). This is caused by the
strong intensity of repulsion potential µϕ = 8.

For pure coalescence in Figure 5(c), the density decreases to zero at t → ∞. The
inclusion of jumps, see Figure 5(d), changes the behaviour of solution. It approaches
spatial homogeneity faster, as near minima density initially grows, contrary to the case
of pure coalescence, where these minima remain to be zero for all t.

An interesting case is a system with strongly repulsive jumps where kernels are
shifted (recall (6.11)). When repulsion is strong enough, with appropriate shift it
seems to lead to appearance of non-trivial stationary states. It is presented in Figure
6, where jump kernel was taken as G1,1,2 and repulsion intensity in the form of G8,1,2.5.
When the shift of kernels get reduced, the repulsion is no longer able to counteract the
process of homogenization. It makes it considerably slower though. In the Figure 7
similar forms of kernels as previously were utilized, but with reduced shift parameters.
For the jump kernel this parameter was changed from 2 to 0 and for repulsion intensity
from 2.5 to 1.5. When comparing Figure 6 with Figure 7, one can see that the alteration
of shift parameters changes drastically the behaviour of the system. In the first case,
where the range of repulsion is longer, initial peaks becomes higher and thinner and
the regions of small density between them get wider. When the repulsion range is
shorter, the amplitude of the initial trigonometric function gets smaller with time and
the system clearly tends to the spatial homogeneity.
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6.2.3. Step initial density. Another interesting case to study is the initial condition
in the form of the Heaviside step function

Hn0(x) =

{
n0, x ≤ 0
0, x > 0

.

Here, the density is not periodic, so a different approach should be used. The size of
the initial interval [−L/2, L/2] on which the simulations are performed is gradually
increased with increasing t, according to the automatically adjusted system-size ap-
proach. Additionally, a modified BC should be applied by combination of DBC and
ABC. The DBC (recall (6.7)) is used from the right, where limx→∞ ρt(x) = 0 for all
t. From the left, we must employ ABC (recall (6.8)). When nonzero values approach
the right boundary, the system size L is enlarged and the simulations are continued.
From the left, we measure the difference between the actual values of n(x, t) near
boundary and their homogeneous counterpart nhRK(t). When this difference exceeds

the predefined level εmaxx n(x, t), the system is enlarged. nhRK(t) is obtained by solv-
ing numerically the kinetic equation for the spatially homogeneous initial condition
ρ0 ≡ n0 in parallel to our spatially inhomogeneous case.

Time evolution of density for step initial condition ρ0(x) = H1(x) is presented in
Figure 8. Gaussian jump Gµa,σa , repulsion Gµϕ,σϕ , and coalescence Gµb,σb kernels were
employed. Respective intensities were set to µa = 1, µϕ = 8, and µb = 0.1. All range
parameters were set to equal value σ = 1 in parts (a)–(d). In part (e) coalescence
range was increased and jump range descreased, namely σa = 0.5, σϕ = 1, and σb = 2
and in part (f) vice-versa with σa = 2, σϕ = 1, and σb = 0.5.

As can be seen in Figure 8(a) for pure free jumps, the discontinuous step function
ρ0(x) = H1(x) with the flow of time transforms into a continuous S-shaped curve. The
density for negative x decrease and for positive increase. After obtaining continuous
shape, it remains unchanged in x = 0 and symmetric with respect to point (0, 0.5),
the value 0.5 being the arithmetic mean of two initial values – 1 to the left and 0 to
the right. The slope of these curves becomes smaller with increasing time and seem to
tend to the mid-value everywhere.

In part (b) of Figure 8, the repulsion effect is added. Here, density at x = 0 also
remains constant after initial discontinuity disappears, but it is lower than in the case
of free jumps. Additionally, the shape is more complicated, including the appearance of
local maximum for positive x, which becomes more and more flat with the flow of time
and eventually vanishes. In the long term, the density seems to approach homogeneity
as in (a), but this process is slower.

For pure coalescence we can observe in Figure 8(c) that the initial step function
H1 changes to a more complicated shape with a small peak to the left of the initial
discontinuity at x = 0. The density for positive x remains unchanged at zero level
and for negative arguments it tends to zero as well. Moreover, the initial discontinuity
does not vanish even for relatively long times.

The inclusion of repulsive jumps, see Figure 8(d–f), reduces the peak appearing to
the left from x = 0, making the density profile more homogeneous around initial dis-
continuity, when compared to (c). When jumps are stronger (longer range) compared
to coalescence, this effect is more visible (see Figure 8(f) and (d) vs (e)). Addition-
ally, in contrast to the case presented in (c), the density obtains positive values also
for x > 0 due to the jumps. Repulsion causes another peak to the right of the ini-
tial discontinuity point to appear, similarly as in case (b). Stronger jumps make it
more visible, compare Figure 8(f) to (d) and (e), where this peak is barely visible.
Ultimately, the system approaches zero everywhere like in (c).
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Figure 8. Time evolution of density for initial condition H1. The
jump, repulsion, and coalescence kernels are Gaussians with different
intensities and ranges (see the legends inside). Initially, the system is
considered on the finite interval [−10, 10] and further its size gradually
increases according to the automatically adjusted approach. [29]

Note that for the inverse initial step function ρ0(x) = Hn0(−x), the results n(x, t)
presented in Fig. 8 should be inversed to obtain solutions without resolving the kinetic
equation, i.e. n(x, t) = n∗(−x, t), where n∗ is obtained approximated solution in the
case of ρ0 = H1. This statement is quite general and remains in force not only for
step functions, but for any other asymmetric initial condition. This follows from the
structure of kinetic equation (6.2) and the symmetry of kernel functions.

A very interesting case is the dynamics of the initial step distribution H1 in the
presence of strongly repulsive jumps, when shifted Gaussian kernels are employed. In
Figure 9(a) the results of simulations are presented with shifting parameter s = 2 for
jump kernel in the form of G1,1,2 and s = 4 for repulsion intensity G10,1,4. It leads
to the emergence of self-propagating spatial inhomogeneity in the form of thin peaks.
They propagate to the left with increasing amplitude and to the right in the form
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Figure 9. Dynamics of the system starting from unit step function
H1 in the cases of pure repulsive jumps (a,c,d) and repulsive jumps
with presence of coalescence (b). The interactions are described by the
shifted Gaussian jump G1,1,s, repulsion G10,1,s′ and coalescence G0.05,1,2

kernels with different kernel shifts: (a) s = 2, s′ = 4; (b) s = 2,
s′ = 4 (c) s = 1, s′ = 2; and (d) s = 4, s′ = 8. Initially the system
is considered on the interval [−20, 20] and further its size gradually
increases according to the automatically adjusted system-size approach.
[29]

of damped oscillation. The inclusion of coalescence even with a slight intensity of
µb = 0.05 drastically changes the situation, see Fig. 9(b). Here, the oscillations are
much weaker, almost imperceptible for positive x and visibly reduced for negative x.
The spatial inhomogeneity persists until the density of the system gets reduced to a
very low level.

This case is presented in more details in Figure 10. Notice how the density drawn
for small times (T=0, T = 8) is truncated at x = −20 and x = −40 respectively. It
shows how the system size was gradually being enlarged. It should be understood that
the density for smaller x is equal to its value on the truncation. The oscillations are
getting visibly damped for longer times (compare T = 192 vs T = 256 and T = 320).

When shifting parameters are decreased, the process of inhomogeneity emergence is
much slower with amplitudes of peaks and distance between them reduced, see Figure
9(c). In contrast, in the presence of increased shift parameters, the density propagation
is accelerated, with high amplitude of the oscillations and the distance between peaks,
see Figure 9(d).

6.2.4. Preservation of mass. In this section we consider another form of coalescence
intensity c1. Recall that previously it was defined as (6.1), which guaranteed that the
result of two merging particles lies exactly in the middle between them. Here, we take
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Figure 10. Jumps with shifted repulsion kernel in the presence of
coalescence. Density on [-70, 10] for H1 initial condition. Jump kernel
G1,1,2 with repulsion potential G10;1;4 and G0.05,1,2 coalescence kernel.
[22]
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Figure 11. System with initial density in the form of inversed H1.
Coalescence in the mass-preserving form with kernel G0.02,0.2 with no
jumps. Emergence of propagating inhomogeneity. [22]

instead

c1(x, y, z) = b(x− y)δ(ln(ex + ey)− z). (6.13)

This modification can be interesting from the point of view of applications. It can
correspond to a system in which the coordinates of points are not related to their
spatial location, but with the logarithm of mass of the corresponding entities. It means
that element x has mass of ex. Then, the proposed form of the intensity ensures that
in the process of coalescence the mass of the two merging entities is preserved.

In Figure 11 an example of behaviour of the system with coalescence in the form
(6.13) is presented. One can see that even in the absence of jumps an interesting
inhomogeneous spatial structure can emerge, which propagates to the right. Due to
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the coalescence the density seems to tend to zero for every x, which may indicate
dishonesty of the system.

Addition of jumps prevents persistence of the observed irregular structure and
allows density for negative arguments to grow. Jumps can be interpreted here as
random fluctuation of mass of the described entities.
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