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Dynamics of a Field-Sail Spaceship

ABSTRACT - The equation of motion of a spaceship powered by a field sail driven by an 
external particle beam is carried out. Although dynamics is independent of the particular 
field and beam, field-sail is meant to be a magnetic sail pushed by a plasma launched from 
an orbital device. Relativistic dynamics is considered. Major purposes of this paper are: (1) to 
compare the field-sail mode with the pure-rocket mode, (2) to demonstrate that the field-sail 
mode is equivalent, from a dynamics viewpoint, to either a photon-sail propulsion mode or a 
ram-braking mode. Numerical results are discussed.
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1 INTRODUCTION
In the course of the last two decades an impressively high number of propulsion system 

concepts have been proposed and analysed not only for interplanetary missions, but also for 
interstellar flight. One could group most basic concepts into three main categories or 
propulsion modes from a conceptual viewpoint, namely, without considering the enormous 
technological differences between the proposed propulsion devices: (a) the pure-rocket mode, 
(b) the photon-sail mode, (c) the ramjet mode. A fourth mode, that one may call a field-sail 
mode (although the effects of interest develop in a volume, not on a surface), would consist 
of a spaceship generating a low-magnitude extended magnetic field around its body, for 
instance by means of superconducting loops; charged particles entering the field from a "side” 
change their momentum so that a net momentum is ultimately transferred to the ship which 
the loops are anchored to. Depending on the direction of the relative velocity between the 
ship and the external particle beam, the space vehicle can acquire or loss energy. In Ref.-l is 
is suggested that the Alf ven Engine might be suitable for decelerating a starship instead of a 
rocket: a number of very thin conducting loops, spaced apart and arranged in a sort of sail, 
may generate a drag with the interstellar plasma through the produced magnetic field. In 
Ref.-2 an independent quantitative analysis of this problem is issued by considering one 
large superconducting wire about the ship body; the ship is pushed by the solar wind 
particles interacting with the loop’s magnetic field. A significant saving of propellant may be 
achieved by means of a magnetic sail, especially used as a decelerating device: the ship’s 
kinetic energy would be transferred to the particles of the interstellar medium in large 
volumes about the moving ship body.

It is possible to envisage a ship endowed with two or more propulsion modes working 
either simultaneously or sequentially. In ref.-3 a unified picture of the powered spaceship 
motion is presented. One of the problems to be dealt with is to characterise the fundamental 
propulsion modes. In other words, one has to model those propulsion modes which are 
conceptually different from a dynamics point of view; two propulsion modes are basically 
different when the vehicle’s mass and vector velocity histories (over a finite interval of the 
ship proper time) cannot be made equal for both modes.1 For it is important to investigate 
whether the field sail mode, in particular, may be made dynamically equivalent to some 
other mode. This is also of interest when a numerical code is implemented for computing the 
trajectory profiles coming from one or more propulsion modes.

In this paper we are interested in the dynamics of a field sail and we do not enter 
technological problems but those relevant to the motion equation. We first carry out the ship 
motion equation by means of the following general picture: a plasma beam (for instance, a 
high-intensity high-energy hydrogen plasma) is emitted from a controllable source orbiting a 
planet; it enters the "interaction volume" of the field sail after travelling a certain distance; 
the effect of the interaction between this plasma and the ship’s magnetic field is a 
momentum change of the vehicle.

1 For example; the velocity and mass profiles of a pure-rocket can in no way be made equal 
to those ones of a pure solar-sail ship, especially when a three-dimensional trajectory is 
considered.
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2 BASIC ASSUMPTIONS AND PRELIMINARY CALCULATIONS
Ignoring details of the plasma source technology, let us focus our attention on the 

interaction between plasma and sail in terms of dynamical output. For we picture a beam of 
collimated particles entering a three-dimensional interaction box representing the effective 
field volume. After a non-zero time a fraction of the incoming particles is reflected by the 
field at a certain angle, while the remaining fraction is transmitted through the box at a 
generally different angle (Fig. 1). We make the following assumptions:

(a) no particles are produced, destroyed and/or captured by the vehicle during the 
interaction between beam and field;

(b) although the ship velocity in the Galactic Frame (GF), say, V is three-dimensional, 
however the plasma beam velocity in GF (Vb) is parallel to V; therefore, the beam 
velocity in the Ship Frame (SF)   is z;-(v,-v)/(i-v,v) з (the superscript ’s’ denotes a 
ship frame quantity hereafter);

23

(c) both reflection and transmission of the beam particles develop in a cylindrical symmetry 
about the ship velocity V;

(d) transmitted and reflected particles have the same value of speed;

(e) the reflected beam does not interact with the incoming beam;

(f) in SF the incoming particles enter the interaction box and lag a time r. - the interaction 
time - before exiting;

(g) the emitted beam is continuous and generally distributed in speed (GF) according to: 
6Nt-Fbdv, where Fb is the number spectral density which we suppose to be 
independent of GF emission time t„ ; it is characteristic of the plasma source. If the 
plasma has several components of different mass, Vb is then considered the group 
velocity of a fictitious mass

(h) the beam is assumed to be all focused on the sail by some space-born focusing device 
which does not change the beam energy.

We can consider the surface of the interaction box as a control surface. In SF, from a generic 
time r and over ar, the four-momentum entering the control surface amounts to:

(1) = V^mbANb

2 Both GF and SF are defined in the usual way Relativity adopts; therefore, we do not 
repeat such definitions here.
3 Throughout this paper we use normalised units, namely, the speed of light is set to unity, 
the time unit is the sidereal year and the ship’s initial mass is set to one. All other units of 
interest follow. We use MKSA units on explicit specification.
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where the superscript {ranges from 1 to 4, the first three components referring to as the 
space-like part 4. z>N, is the number of incoming plasma particles corresponding to the SF 
and GF time intervals:

(2) dr = Jt/y AtQmh-v2vb/(vb-v]

where ydenotes the Lorentz factor related to the ship speed V. The equality on the left in (2) 
is obvious. The equality on the right requires a short proof. In fact, the number of particles 
emitted from the plasma source during the (arbitrary) GF time Jt.„is expressed, according to 
assumption (g), by:

1/
b, max

(3) Æ'Vb = J Fbdl/b Atem

]/
b. min

where the integration interval extends to the speed limits which the particles are emitted 
with. Let D(t) be the distance between the sail and the plasma source at time t when the 
fastest particles, out of those ones emitted at t,m, reach the sail; then, all particles given by 
Eq.-3 strike the field sail in a GF time interval at dilated, with respect to Jr,„, by both the 
relative speed of the beam with respect to the ship and the emission speed spread. By means 
of the world lines of the beam source, travelling beam and ship it is easy to carry out

(4) At =
(l-Hb.min/!/b.max)DU) +

V к - V v b. min k

' b . min - J em

Without entering technological considerations that would go well beyond the purposes of this 
paper, we further assume that both the plasma source is sufficiently monochromatic and the 
acceleration ship time sufficiently short that the space term of Eq.-4 is negligible. Then, the 
rightmost equality (2) follows. In addition, the function Fb reduces to the number flow rate:

(3a) AN b At em

With regard to the exiting particles, over the interval Jr starting at time т-r the following 
four-momentum exits the control volume:

(5) APe( = mb ÆVb[(ls

where the subscripts ’e’, ’t*  and ’r*  refer to as exiting, transmittei, and rs’lected particles, 
respectively (see Fig.-l). The sail reflection coefficient has been < -noted by a

4 We assume a metrics with the following signature [-1 -1 -1 +1]; thus, the invariant
magnitude of any four-velocity is +1.
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3 THE FIELD SAIL MOTION EQUATION
As a consequence of the beam-sail interaction, the whole ship will experience a 
four-momentum change, we denote by ar", over ar. The four-momentum conservation law 
can be then written by recalling Eq.-l and assumptions (e,h) s :

(6) -Vb( + XVr'( + +s s

ZlPs,f/(mbZ12Vb) = 0

Combining Eqs. 2 and 3a, one gets:

(7) mbANb = (mbFb) —t== At
vj\-v2

= &SbAT

Thus, the coefficient of the proper time in Eq.-7 is the beam mass flow rate as observed in 
SF. Note how it decreases as V increases.

By inserting Eq.-7 into Eq.-6, noting that ae'-'-o by assumption (a) and recalling 
assumption (d), we can make the time-like part of Eq.-6 explicit as follows:

(8) y:ir+Ti+z - Kir+X = о X=[O,JT]

that is, in the current environments a finite interaction time does not alter the magnitude of 
the interacting-particle velocity. In practice, the value of r, could take on few milliseconds, 
at most, even for a very large interaction box. Equation 8 tells us that no energy is ultimately 
absorbed in SF. ,

With regard to the space-like part of Eq.-6, we use assumption (ć) also. Introducing the 
three-dimensional unit vector u-E.'/Hand the reflection and transmission angles (Fig.-l), we 
carry out the equation of the axial three-momentum balance as follows:

S considering any interaction over a finite time interval, one can always write down the 
energy-momentum conservation law by comparing quantities at the beginning and the end of 
the interaction interval, ignoring the details of the interaction fields.
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(9) = - <t>b Z1T [(Àcos ar +s

(i-À)cosat)p:.m-p:.m]

where: -

(9 a) P:.m = yseVseu = Psb,m

(9b) Psb,m = ysbVsbu

stand for the SF axial momenta per mass unit of the exiting and incoming particles, 
respectively. Equation 9 represents the momentum balance in the non-inertial ship-frame. 
The quantity jg’/war , where M is the ship’s rest mass, is sensed onboard as a 
three-dimensional inertial acceleration. Equation 9 is to be transformed to GF in order to get 
the ship motion equation. Such a transformation, applied indeed to the ship four-momen
tum, is performed by the well-known four-dimensional boost, say, /“.of Special Relativity as 
follows:

(10)
(yKAf) 

(уЛ/)

where the boost has been partitioned 6. By inserting Eqs.-9 into Eq.-10 and expanding the 
leftmost term, one can make the space-like and time-like parts explicit. A remark is in 
order. Although assumption (b) entails that the ship motion is rectilinear, however a 
three-dimensional calculation has been made in order to keep the ship velocity at any 
orientation in the galactic inertial frame. That forces us to consider first the time-like part 
of the motion equation and ,then substitute it into the space-like component. The former 
gives the behaviour of the velocity magnitude, whereas the latter one furnishes the behaviour 
of the three-dimensional velocity. We are going to report the final results:

(11) dV

6 The entries of the boost can be found in any good text about Relativity; therefore, we do 
not repeat them here. We only cite the following property: sv- vК that we use in the 
SF-to-GF transformation.
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(12) dV =
М^ьУь
MV ь

V 
— dr
I

where we have denoted the plasma source mass flow rate by *,and  defined the coefficient д 
as follows:

s 1 - [À cos ar + (l-À)cos at j

л/2< ar< л 0 < a( < л /2

it may be identified as the effective coefficient of the field sail for changing the ship 
momentum. Which values of the transmission and reflection angles translate the spread of the 
exiting particles depends on the sail’s field structure and the (time-varying) relative 
momentum of the incoming beam..

Équation 11 is easily integrated to give:

Equation 13 represents the motion equation of a field sail spaceship. It could be carried out 
more rapidly by equalling the proper acceleration to the relativistic dynamic pressure on the 
sail. However, we have preferred to show all the way starting from the underlying 
assumptions down to the motion equation through the balance of four-momenta. The current 
proof is strict.

What one has to specify to get the speed profile are two parameters of the spaceship (mass 
and effective sail coefficient) and two parameters of the beam source (either the rest-mass 
flow rate and the beam particle Lorentz factor or the total-mass flow rate and the beam 
speed 7). Note that the speed values depend on the mass-flow-rate on ship-mass ratio, 
namely, on how much mass the source releases relatively to the mass (of the ship) to be 
accelerated. The spaceship’s speed gain is always asymptotically limited by i. -t„: the speed 
gain v-v„ decreases as increases (standing the other quantities).

7 Remember that i'u-vi-i/rb by definition.
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4 COMPARISON BETWEEN FIELD-SAIL MODE AND ROCKET-MODE

It is interesting to compare the performances of the field-sail propulsion mode and the 
pure-rocket mode. We are going to define the terms of comparison:

1: both ships start with the same speed;

2: the field-sail mode is characterised by a beam source and a sail ship with the parameters 
described above; in particular, the ship mass is thought to be composed of a net payload 
and the field-sail system: the thrusting lasts r in SF;

3: the rocket-mode is accomplished with an effective exhaust speed r , ; the ship mass rate 
equals ; the initial rocket mass amounts to M0-wt-vr-.v. ; the last term
accounts for the mass of the propulsion system, whereas the first two ones fix the net 
payload and the propellant to be exhausted away, respectively.

The above points aim at comparing a pure-rocket mode with a sail-mode conceived by 
envisaging of stripping the rocket-ship of both its rocket engines and propellant, but adding 
a field-generating sail system weighing as well as the engines. The original rocket propulsion 
system is then transformed into a plasma source system (with increased mass, if it is needed) 
orbiting a planet; it launches an equal amount of propellant at the same original ejection 
speed for an equal time interval (in SF). Such a "transformation" does not change the mass of 
the delivered net payload. Then, at least to within our current framework, the question about 
the propulsion performance comparison reduces to: which thrusting mode exhibits the highest 
final speed ?

According to points 1 through 3 the rocket-mode and field-sail mode final speeds are 
expressed, respectively, as follows:

(14) VR = tanh tanh X + Vb In —----------—-
Л/о- уьФьт J

(15) VFS = Иь

where the initial rocket mass is given in point 3. Figure 2 shows the final speeds as function 
of the SF time and for different values of the initial speed. The following parameters have 
been considered:

(16) Mo = 32

ML = 10 Mv = ML T f = 10

= 1.8- yb = 1.2 Фьт = \ L
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The above values are meant to emphasise a large payload fraction (> 30%) and an 
acceleration to achieve more than 20 percent the speed of light after 10 years. The plasma 
beam Lorentz factor corresponds to a particle kinetic energy of about 190 MeV for a 
hydrogen plasma. The related speed, about 0.55, is compatible with the effective exhaust 
speeds of currently envisaged beam-core matter-antimatter annihilation rocket engines [4], 
according to point 3. The first feature, which is apparent in Fig.-2, of the field-sail 
dynamics is to exhibit a speed curvature opposite to the rocket’s; a crossing point is 
eventually achieved as the propulsion time increases. Such point is shifted to lower speed 
values for higher initial speeds of the ship. Thus, the plasma-driven field-sail mode appears 
to be favourable with respect to the high-performance pure-rocket for accelerating the first 
stage of a multi-staged starship. Figure 2 shows that there is an optimum acceleration time 
for which, namely, the field sail provides the maximum gain of speed with respect to the 
rocket’s. Setting V0=0 and ignoring the hyperbolic tangent operator in the rocket equation it 
is possible to carry out an approximate value of the acceleration time:

M Л/(17) Tacce( =
yj 4[t M 0 + L + M j — 

2цФьУь

3\JML + Mv

Inserting the values (16) into Eq. 17, the acceleration time takes on 4.93 yr. In contrast, the 
numerical solution of the actual difference of speed between rocket and sail modes gives 4.47 
yr. (That is not excessively significant because the maximum is somewhat broad). The 
corresponding final speed amounts to 0.18. Such a starship would therefore exhibit a really 
high payload fraction, a not too long propulsion time and a significant final speed. Were the 
deceleration time equal to the acceleration’s, then a flight to the Barnard star would last 36.7 
yr in SF (about 37.3 yr in GF).

S EQUIVALENCE BETWEEN PHOTON MODE AND FIELD SAIL MODE

Let us consider Eq.-13 again. If Vb approaches 1, then where W is recognised to
express a photon power constant in GF. In addition, a,-o a -n because the field-sail 
transforms into a material sail to reflect photons; thus, м-2л. Then, Eq.-.13 results in

(18) k(t) = 1 ’ 1

V м i - ( о j

Equation 18 describes the relativistic speed profile of a photon-sail ship pushed by a 
(collimated) beam originated from a GF source of constant power W, as one can easily verify 
by realising that the power» say, L in SF equals W(l-V)/(1+V). According to the current sail 
model, the amount (t-x)U'is transmitted through. There is a number of realistic options 
regarding the power not directly reflected by a photon sail [3]; however, this would bring us 
beyond the purposes of the current paper. To within the current framework, we can make 
the field-sail and photon sail speed profiles equal to one another by controlling the source of 
light according to the following equation:
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n 9, .,. JL ________________
2Л ( 1 - К0)[Л/1/ь( 1 - Го) + цФьуь[Уь - I/o)( 1 - l/Jr]

Equation 19 can be read in two ways:

1—if one is interested in getting equal speeds at some particular instant, say, Y then Eq. 19 
provides the constant power W(Y) of the light source. The speed profiles for times less 
than Y are 90t equal for the two modes;

2—if one wants to obtain the two speed profiles identical at any instant, then the photon 
power has to be modulated according to Eq. 19.

In the particular case of V0=0, that has been noted in sect. 4 to be the most efficient for a 
sail mode, one gets the following significant equation: 

M<pbybyb 
[м + цфьуь(\ -P'Jr]

________ Pl________  

[1 + ц(Еь-Р1}т/м]

Ц, 
(20) UZ = 

z к

2À

where the superscript * denotes differentiation with respect to GF time. Thus, the source 
power of the equivalent photon mode depends, in particular, on both the momentum and 
energy rates of the plasma source. Equation 20 also expresses that the photon-sail mode is 
more efficient than the field-sail mode. In fact, the photon power in GF, although starting at 
the same level of the plasma source intensity in GF, is to be decreased with time in order to 
get the same speed of the field sail ship 8. Equation 20 can be cast into a different form by 
means of Eq.-13 considered at some desired speed Vf:

(20a) V = ФЬУЬ(УЬ~У{)
z

One should not be mistaken when ' Vf approaches Vb; in fact, the thrusting time diverges in 
that case.

To summarise this section, Eq.-19 clearly establishes the equivalence between a field-sail 
mode and a photon-sail mode; in addition, the latter one represents the upper limit of the 
former from a ship dynamics viewpoint.

8 This feature may be viewed as the counterpart of the pure rocket one: standing the same 
mass-into-energy conversion rate, the photon rocket exhibits the highest exhaust speed and 
thrust out of all possible rocket jets.
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6 EQUIVALENCE BETWEEN RAM MODE AND FIELD SAIL MODE

In refs. [1-2] it is pointed out that a magnetic sail may find a high performance utilisation as 
decelerating stage instead of a rocket stage. In fact, a field-sail might be activated to interact 
with a plasma beam for accelerating the starship, switched off during a long coasting and, 
finąlly, activated again to reflect the interstellar plasma particles in order to decelerate. If we 
denote the effective sail surface by S 9 and the interstellar medium density by p„ , the sail 
sees a flux of mass coming from ahead equal to yi'p„s 10. One then writes down the 
four-momentum conservation in SF and, finally, transforms it into GF. One thus obtains the 
following equation:

(21) I/(r) = [цртЗт/М- 1/KO] K0>V

Equation 21 can be directly got from Eq.-13 by the following substitutions (in the order):

vb -+ -yb> vb -> 0

lim<#>byb/l^b = 
vb-o
SbPb Pm^

$ bP b

where pt. s, denote the density and the emission surface of the plasma source, respectively. 
The above steps transform a sail accelerated by particle beam into a sail decelerated by drag.

In Ref.-3 the general ramjet-mode equation has been carried out under assumptions 
regarding onboard interaction, loss and trapping of particles. By removing the jet component, 
retaining the particle reflection terms and considering the one-dimensional case, one obtains 
Eq.-21. Because the vehicle mass is constant, the equivalence between ram braking mode 
and field sail deceleration mode is proved. Figure 3 shows Eq.-21 for a deceleration starting 
from V0=0.2 and different S/M ratios. The deceleration is very slow because of the very low 
density of the interstellar plasma. Even in the case of ten protons per cubic centimetres a 

\ high value such as S/M = 50 KmA2/tonne would require about 35 years to reduce the final 
speed to one hundreth of the initial one. In general, the SF time necessary to brake the ship 
from VO to к VO (k < 1) is expressed by:

9 The effective area may include field extensions depending on the particle energy; 
therefore, it may be larger than the geometric area of the field-generating loop. See Ref.-2 
for examples.
10 In sects. 3-5 plasma beam and photon beam were supposed io be collimated toward the 
magnetic and photon sails, respectively. For this reason the effective area of such sails do not 
enter the field-sail and photon-sail motion equations explicitly. In the ramjet case, the 
effective area explicitly appears because the incoming flux is by effect of the ship motion. It 
is plain that such formal differences are of no matter for the starship dynamics: only the 
received flux intervenes in the momentum exchange, of course. In contrast, from a technology 
viewpoint, the plasma collimation device will depend on the sail size.
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(22) TbraJte(fc) =
1 -Æ

Лк I/o

where A n denotes the coefficient of the SF time in Eq.-21.

sp
ee

d

Fig. 3 FIELD-SAIL DECELERATION BY INTERSTELLAR DRAG

11 If we express the medium density and S/M in the same units of Fig.-3, than we must 
multiply by 63.2 to get the SF time of Eq.-22 in years.
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7 ADDITIONAL NUMERICAL RESULTS

In the previous sections we considered the field-sail motion relatively to one phase of flight, 
namely, either acceleration or deceleration. We shortly investigate how the field sail mode 
behaves in a two-boundary flight and with another propulsion mode too. For we examine a 
flight to Proxima Centauri.

A probe is accelerated by means of a magnetic-sail stage up to a certain speed to be optimised; 
then, the plasma source and the superconducting loops are deactivated. The ship coasts for a 
number of years; this phase gets most of the path to the target. Then, the superconducting coils 
are re-energised. The interaction between sail and interstellar plasma is such that the ensuing 
phase is actually a slow deceleration phase. This phase, which can be longer in time than the 
true coasting, is devoted mainly to lose speed as much as possible. In fact, because of its 
inefficiency at low speeds, the sail is jettisoned at a certain velocity and a retrorocket is 
switched on for inserting the payload into the target star system. The problem is to find the 
dynamical profile which minimises the flight time in SF, while the final mass is at a prefixed 
value. The trajectory is a straight line in the three-dimensional space. The control parameters are 
assumed to be the source plasma flow rate and the time intervals of the coasting and thrustings 
but the last one. In fact, in order to keep the payload high, we fix the time of the phase which 
consumes ship mass. Two equality constraints play a major role; the flight path and speed at 
destination. Although the path of a field-sail can be expressed in closed form, however the 
related expression, interfaced with the other equations of the current problem, gives rise to 
solving equations so complex to require a separate paper for presenting and discussing them 
appropriately. Rather, we solve our problem (a flight to Proxima) by means of the general code 
SMAC (Starship Mission Analysis Code). This code is written in FORTRAN-77 and currently 
runs in protected mode on a full 32-bit i80386-based work-station endowed with the 
co-processor Weitek 3167.

We do not consider the gravitational fields of the departure and arrival star systems, here. 
They are important for the initial and final transition phases. Although SMAC can take such 
fields into account, nevertheless that would bring us far from the current aim here. Some of 
major features of SMAC are described in Ref.-3.

In order to solve the current problem elegantly, we make use of the theory developed in sects. 
2-3. We also assume that the field-sail mass come largely from the superconducting loops. For 
we model the mass of the field-sail consisting of (few) n coils, all of radius R, as:

D 2 о
(23) MFS = (Hh)nlO7 - (MKSA]

J / a

where J/d denotes the current density on mass density ratio [A m/Kg], Bmax being the 
maximum magnetic induction at the coil centre line. The factor h accounts for the field 
generator and the physical connection of the coils to the ship body. Note that the field-sail mass 
scales as R, as Bmax is proportional to 1/R, standing the other parameters.
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With regard to modelling the rocket system mass, we force the sophisticated model of SMAC 
to a simplified mass breakdown. We write: » .

(24) MR — a + Ma + (l+q)A/é

where Ma represents the active mass (which releases energy), Mi is the inert mass which receives 
part of that energy, Wk denotes the jet kinetic power, q is the tankage factor. By a we denote 
the overall specific mass of the rocket system. Because the rocket is to be activated after tens of 
years after departure, it is hard to think of antimatter rocket propulsion. We consider a very 
advanced Nuclear Propulsion system. In general, both jet speed and kinetic power of the rocket 
can be expressed in terms of only three key parameters which have a basic physical meaning [3]. 
We do not repeat them here for the sake of simplicity; in contrast, we will report only the 
engineering quantities of Eq.-24.

The ultimate performances of nuclear electric propulsion have been examined in [5,6]. Those 
engines do not fit the current example essentially because of their specific mass, too high with 
respect to a light-mass fast-mission such as the current one (see Tab. 1). Possibly, advanced 
Fusion propulsion [2] or direct Fission propulsion [7] might offer a specific mass of 1 Kg/MW 
like that assumed here. However, the important point to grasp in our example is the strong 
"interaction” between the field sail and rocket technologies. Such a conflicting situation may be 
relaxed if the orbiter mission is transformed into a fly-by one.
Figure 4 shows the profiles of path and speed as function of the ship proper time. Figure 5 
shows thrust and kinetic beam power versus the beam speed as measured in SF for the envisaged 
flight to Proxima Centauri. Table 1 reports engineering and dynamical quantities. Table 1 and 
Fig.4-5 are self-explanatory. We note only that the magnetic sail is able to deliver a final mass 
fraction as high as 25 percent. That would imply a fly-by flight at 1500 Km/s, namely, 23 days 
of inertial flight to cover 20 AU around the star target. A small rocket system would be 
necessary for the final guidance. If we want an injection to the star system, the mission 
increases in performance, of course; however, the payload mass fraction falls down to 6 percent, 
because of a large rocket system. In any case a big problem is to keep the plasma beam on the 
sail for over 2600 AU, whereupon the need of considering sources of intensity significantly 
higher than 1 gramme per second, compatibly with the high acceleration resulting to the ship.

TABLE 1 Field-Sail plus Rocket Minimum-Time Prefixed-Final-Mass Mission to Proxima 
Centauri: ship configuration. The field sail performance has been conservative (effect 
tive-area=geometric-area) for the acceleration phase because no simulation has been made for 
particles of 50 MeV impinging a magnetic sail. (In Ref.-2 a large effective area has been found 
out for particles in the 1.3-2.9 KeV range, typical of the interplanetary conditions). The same 
configuration has been kept for the deceleration phase where the current ship sees the incoming 
interstellar plasma decaying in energy from 14 MeV down to 12 KeV,
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** Initial Ship Mass ** 200 [tonne]
FULL ACCELERATION STAGE 
hydrogen plasma source: 
mass flow rate 0.010 [Kg/s]
particle kinetic energy 50 [MeV ]
magnetic sail:
current density/mass density 1.È7 [A m/Kg]
loop radius 100 [Km]
max magnetic induction l.E-5 [T]
field-generator+cables mass 50 [tonne]
sail reflection coefficient 
sail stage mass

1.8
150 [tonne]

acceleration time (SF) 143 [day]
acceleration time (GF) 144 [day]
path 2662 [AU]
COASTING 
coasting time (SF) 20.02 [year]
coasting time (GF) 20.31 [year]
cruise speed 0.170 [C]

COARSE DECELERATION STAGE 
interstellar mean density 1 [p/cmA3]
final speed 1515 [Km/s]
deceleration time (SF) 42.93 [yr]
deceleration time (GF) 42.95 [yr]
FINE DECELERATION STAGE 
jettisoned mass 150 [tonne]

** Probe Mass •* 50 [tonne]
retrorocket-.
overall specific mass 1 [Kg/MW]
propulsion system mass 6.2 [tonne]
propellant (active+inert) mass 28.9 [tonne]
tanks mass 2.9 [tonne]
true exhaust speed 2000 [Km/s]
thrust 5000 [N]
mass utilisation efficiency
energy efficiency
thrusting time (SF,GF), flight time (GF)

0.90
0.80

117-64 [day] [yr]
Final Orbit about Proxima: 
semimajor axis - eccentricity 0.15 - 0.38 [AU]

** Net Payload ** 12 [tonne]



390 G. Vulpetti

sh
ip

 tim
e [y

r]



Dynamics of a Field-Sail Spaceship 391



392 G. Vulpetti

8 FINAL CONSIDERATIONS
In this paper the dynamics of a field sail has been analysed. The relativistic equation of 

motion has been carried out under a number of assumptions realistic enough, at least as far 
as one can imagine today about a field sail. Substantially, the only approximation made here 
regarded the size of the interaction box, which has been assumed of constant size, namely, 
independent of the particle energy as seen in the ship frame. This is of no matter for a sail 
accelerated by a controllable beam which, in principle, could be focused on the effective sail 
area as the ship increases its speed. In contrast, if the sail were used for decelerating by 
interstellar drag which one cannot fully control, a time-varying effective area may result in a 
significant change of the ship speed profile. This depends on the details of the interaction 
between particles and field. This interaction could and should be simulated in a particle 
energy range from, say, 1 KeV to 100 MeV in order to cover an interval of speeds 
appropriate to an interstellar mission.

Other major aspects dealt with in this paper have been the comparisons of the field sail 
dynamics with the rocket, photon sail and ram-braking dynamics. It has been found that no 
equivalence between the speed profiles of the field sail mode and the rocket mode is 
possible. In contra,'t, it is possible to make the field sail dynamics equivalent to either an 
accelerating light sail’s or a decelerating ram’s. This last sentence can be reversed. All that, 
together with what is well-known in space dynamics, proves that one can control the 
evolution of the spaceship velocity by means of three fundamental propulsion modes, in spite 
of their vast range of technology realisations. Such practical designs, though, will determine 
the selection of the space vehicle for a certain mission.

A field sail mode, in its possible realisation as magnetic sail, may represent a valid 
alternative to or parallel the rocket mode in interstellar missions, as hinted in this paper by a 
numerical example. It also may be considered with success in some mission precursor to the 
first interstellar flight.
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