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1. INTRODUCTION

Usually, in the works on the electronic structure of the disordered alloys one 
concentrates on calculating the configuration average of the local density of states. 
Nevertheless, sites in a random alloys are not equivalent due to random fluctuations 
in the local atomic environment. Additionally, alloys generally have atomic short- 
range-order and for that reason the average value of the site’s occupation number 
can be different from the occupation number of any particular site. It seems, that 
the static fluctuations of electronic charge density in metallic binary alloys has been 
overlooked in literature on alloys properties and only in work by Ling and Gelatt [1] 
these problems were studied intensively. On the other hand, the similar problems 
(from mathematical point of view) Le. the magnetic moments fluctuations and its 
concentration dependence in ferromagnetic alloys were studied in detail by Hamada 
and Miwa [21. Also many experiments have studied the effect of the local atomic 
environment on the local magnetic moments (see References in Ref. [2]). Among 
the experimental probes available to check or investigate charge fluctuations in 
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metallic alloys are, for example, core-level energy shift using X-ray photoemission 
spectroscopy, Mössbauer isomer-shift measurements, the optical measurements of 
the defect states in the semiconductors and others.

In a work by Ling and Gelatt [1] the static charge fluctuations were investigated 
by means of three different calculational techniques. These techniques were a weak- 
scattering perturbation expansion, a dilute-alloy perturbation expansion and a 
coherent potential approximation — perturbation theory. We can see, that the 
results obtained from these calculations are valid only in a narrow range of some 
parameters and do not take into account the short-range-order. It should be 
noted that actual alloys generally have atomic short-range-order. For that reason 
it would be interesting and at the same time very important to investigate the 
influence of the atomic short-range-order on the static charge fluctuations in the 
binary metallic alloys. More exact calculations of the charge fluctuations can be 
also very useful in estimation of the broadening of a core—level linewidth observed 
in X-ray photoemission (see also for experimental evidence of a fluctuating charge 
state in cupric oxide extracted from the X-ray photoelectron spectroscop'c study 
[3]).

The paper is organized as follows. In the next section we give the general 
expression for static charge fluctuations. In Sec. Ill we present the method needed 
for calculation of the alloy electronic characteristics with the short-range-order 
included. The concrete evaluations of the different alloy’s electronic characteristics 
and charge fluctuations are performed in Sec. IV.

. 2. THEORY

2.1. Charge fluctuations . ,

In this section we present several basic relations concerning the charge fluctuations 
in alloys [1]. For each microscopic arrangement of a type-Л and type-ß atoms (here 
we consider the substitutional binary alloys), all information about the electronic 
structure is contained in the Green’s function

G(E) = (Е-Я)-1 (1)

where H is a model alloy’s Hamiltonian. This Green’s function depends on a 
specific arrangement of a constituent atoms. Having in hand G one can calculate 
the site-projected density of states according to the formula

Im Tr (|t >< »I С(Я+)) (2)
ir

where |i > is the Wannier state at t-th site and E+ = E + ie, e > 0. In order to 
calculate the site occupation number one have to integrate over energy the site- 
projected density of states

/ + ОО.
nF(E)Nt(E)dE (3)

■oo
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where np(E) is the Fermi distribution function. Usually, as a main quantity charac
terizing the charge distribution in an alloy, the average value of the site occupation 
number is calculated

nt(B) = [ ' <NĄE) dE (4)
J — oo

where < ... >;=x denotes a restricted configuration average, Le. a configuration- 
averaging process is performed only over those arrangement with A atom at the 
origin. Here we confined ourselves to the case of zero absolute temperature, 30'the 
chemical potential is replaced by the Fermi energy Ер - Of course, nA,x>' represents 
the charge distribution rather in a crude manner. For that reason we have to 
calculate another quantity which can better reflect the true charge distribution. 
In this paper we are going to investigate the mean-square fluctuations in the site 
occupation numbers and according to the formulas given in [1] we can write

△nA = ((ni- < m >i=A)2)i=A =

= [Er dE [ЕГ dE' ((Ni(E)- < Ni(E) >i=A) (Ni(E')- < NĄE') >,=a)),=a

(5) 
or

1 fE* fEp
&nA = ~5 № dE' < ( ImTr |t >< i|G(£) - ImTr |z >< i|Gi=x(^))

* J-oo J-oo

( ImTr |t >< i|G(jE') - ImTr |t >< t|Gi=A(E')) >i=A (6)

where G'~A(E) denotes the alloy Green’s function in a case for which the г-th site 
is occupied by A-atom.

2.2. Cluster-Bethe-lattice method

In order to calculate the influence of the short-range-order on the mean-square 
charge fluctuations (MSCF) according to the formula (6) we have to calculate a 
restricted average values of the product of two Green’s function.

In a study of disordered systems a widely accepted concept is that of an effective 
.medium. More specifically, a homogeneous medium is chosen in such a way that 
the average behaviour of an ensemble of disordered samples is reproduced in the 
behaviour of one homogeneous sample. A widely used example of such approach is 
the coherent potential approximation (CPA) [4], or its generalizations, for exam
ple, the homomorphic CPA [5), the self-consistent self-energy approximation [6], 
the molecular CPA [7], the travelling cluster approximation (see [8] and references 
therein), and others. Here we use thé cluster-Bethe-lattice method (CBL) con
nected with a single site CPA, which allows us to calculate in a relatively simple 
way the alloy Green’s function with short-range-order included. The Bethe-lattice 
approximation used, for example, for the calculation of the partition function of a 
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magnetic systems [9] and for which an exact analytic treatment is possible for sim
ple tight-binding Hamiltonians. It consists in substituting for the infinite periodic 
lattice an infinite system of connected atoms with the same coordination number 
as the lattice of interest, but without closed rings of bounds. This lattice has the 
property that the one-particle Green’s function at a given site can be expressed in 
terms of the Green’s function at the preceding site in the lattice. The Bethe-lattice 
approximation is exact in one-dimensional systems and is good in low coordination 
three-dimensional lattices. For a closed-packed structures one have use a better 
approximation, usually the Husimi cactus model which consists of an infinite sy
stem of connected tetrahedra [10, 11]. In the CBL approximation a small cluster of 
atoms is treated exactly and the remainder of the alloy is simulated by attaching 
Bethe-lattice of the same coordination number to the "dangling bounds” of the 
atoms at the surface of the cluster. The alloy Bethe-lattice can be, in a next step, 
replaced by the effective Bethe-lattice with the effective fields calculated within the 
single site approximation.

As was already mentioned, we shall use the CBL method for calculation of the 
Green’s function conditional average values appearing in Eq. (6). Let us consider 
a cluster of nine atoms (a smallest cluster of atoms for bcc lattice) which is descri
bed by the single-particle tight-binding (single-band) Hamiltonian with a hopping 
integrals Vjy taking values Vaa, Vbb, Vab, and Vba depending on whether the 
г-th and /-th atoms are both of class A, both of class В or one of each class, 
respectively. The short-range-order is introduced through the independent order 
parameter Pab (additional to the concentration of the one of a constituent atoms). 
This parameter denotes the possibility of finding a type—В atom as a nearest ne
ighbour to a type-A atom. Six parameters, x, у = 1 — x, Paa,' Рав, Pba and 
Pbb describing the concentration of the type-A and type—В atoms and the degree 
of correlation in the occupation of a neighbouring sites can be expressed (because 
of symmetry and normalization conditions) by two independent parameters. It 
is most convenient to choose these to be x and p, where p is introduced by the 
following relations (see, for comparison, [2, 12 - 17])

Paa — x + (1 - x)p

Pab = (l-x)(l-p)
(7)

Pba - x(1 - p)

Pbb = 1 - x(l - p) .

Note, that completely random disorder occurs when the short-range-order pa
rameter p is equal zero. For p = —1, x = 0.5 perfect long-range-order occurs and 
for p = 1 the alloy separates into pure-A and pure-B phases (segregation limit). It 
should be noted that the local order is extended only over a small region depending 
upon both x and p and usually extends to the fifth nearest-neighbours [18].
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In the Hamiltonian describing the Bethe-lattice alloy we have taken the average 
hopping matrix element in the form [14]

V = x(Paa ■ Vaa + Pab Vab) + (1 — x)(PBB ■ Vbb + Рва Vba) (8) 

and the diagonal self-energy <j(E) was introduced to replace the random diagonal 
elements by site independent value [4]. Following the transfer matrix method (see, 
for comparison, [19]) and coherent potential approximation [4] the self-energy can 
be calculated from following equations:

x(£a - cr(JS7))(l - (ex - a(-E))Goo)-1 +

(1 - x)(eB - ст(^))(1 - (eB - cr(-E))Goo)_1 = 0 (9)

' £*00 = z£*00 + (1 ~ x)^00 (1®)

G^^(E-eA-ZVT)-1 . (11)

= (E - eB - ZVT)-1 (11)

where the transfer matrix T reads as

т = Е-а(Е)±\/(Е-а(Е)У — 32 V2

14V

Here, Goo is a diagonal matrix element of the average Green’s function at site я0” 

and G^q is a diagonal matrix element of the average Green’s function at site я0” 
when this site is occupied by type-A atom.

In the next step we consider a cluster of atoms (in our case Z + 1 atoms, Z = 8) 
and to each of the surface atom in this cluster a Bethe-lattice is connected. From 
the Dyson equation for a Green’s function we have [14]

z
(E — £q)£*oo = 1 + VoiGio (14)

«=1

(E-Si)Gi0 = ViOGoo + (Z - IjViKp' , i = l,...,Z (15)

(E-a(E))K^ =ViGi0+(Z, i = l,...,Z (16)

(E - <t(E))k!2> = VK*1’ 4 (Z - l)Vtf‘3) , t = l,...,Z (17)

where is a Green’s function connecting the г-th atom in the j-th level of the 
Bethe lattice with the central atom, V,- — V A or Vв depending on a type of atom 
occupying the г-th lattice site and

Va = PaaVaa + PabVab
(18)

V в — PbbVbb + PbaVba



130 R. Taranko, E. Taranko, M. Piłat

Having in hand equations (7 - 18) and the expression for the average value of a 
Green’s function

ЫЕ))0=а{в} = É ( Д ) PnAr}PZABnA^G^'Z~nA}{E) (19) 

»=o ' A '

we are able to calculate the average values needed for calculation of the charge 
fluctuations. Eq. (6). Here, GA^n*'Z ~Пл\Е) denotes the diagonal matrix element 
of a Greens function G, Eq. (1), in a case when in the central site of a cluster 
is located a type-A atom surrounded by пд type-A atoms and (Z — пд) type- 
B atoms (first neighbours). Additionally, with each of these boundary atoms the 
effective Bethe-lattice is connected. The explicit expression for ”a’(E) is
as follows (cf. [14, 15]):

GA^'z~n^(E) = (E— eA) — (8-пд)Уд2в~
(20)

X=(E-eA)- 1VA
7V ’ 

E - a(E) - — 
s

(21)

Y = (E-eB)~
7V ’

E - <r(E)-------
s

(22)

E - a(E) ± \/(E-a(E))2 - 28V2

2V
(23)

To the end, the expression for the mean-square fluctuations in the site occupation 
numbers reads as [1]:.

1 ( ГЕг
^nA(B) = \ I ^E / ^E' < ^oo(E) - Im Goo(Æ</) >o=a(B) ~

K \J-OO J—oo

fE, \
-(/ dE< ImGoo(£)>o=x(B))2 , (24)

J —ob /
where the calculations of the conditional averages are performed according to the 
formula (19).

3. NUMERICAL RESULTS AND DISCUSSION

In this section we apply the method of Sec. 2 to study the charge fluctuation in 
an alloy with the diagonal, off-diagonal disorder and short-range-order included. 
We present also the density of states corresponding to a single type-A and type-В

7Vb

s =
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atoms located inside of a nine atoms cluster and surrounded by the effective Bethe- 
lattice. In order to better visualize the set of a short-range-order parameters p and 
a type-A atoms concentrations x, for which the calculations have been performed, 
we present its as a small circles in Fig. 1 in the region of (z, p) parameters (see for 
comparation, [12]). As one can see, we choose such values of the short-range-order

Fig. 1. Allowed range of the short-range-order parameter p vs. concentration of the type-A 
atoms X. The small circles denote points for which calculations of the charge fluctuations were 

done

parameters in order to investigate interesting for our study phenomena at various 
limiting cases, i.e. near the segregation limit (for constant value of x), at random 
disorder (for increasing values of x), for constant value of x and increasing values 
of p and in additional positions near the perfect order limit. In our calculations we 
have taken ед = —ев = 2.0, 1.0 or 0.5 eV and for Удд, Vab = Vba and for Vbb 
we have chosen the set of values (1.0, 1.1, 1.2) eV (see, for comparison [13, 18]). 
In all cases presented here we have only one energy band (without localized states 
outside of the band limits).

In Figs. (2-6) we have drawn the local density of states (LDOS) corresponding 
to the central type-A and type-B atoms of the nine-atoms cluster-Bethe-lattice 
system for all possible distributions of the atoms in a cluster. Additionally, we 
have presented also the average LDOS - the broken line. From Figs. (2, 3) one 
can observe the changes of LDOS for equal concentrations of the constituent atoms 
and for disorder parameter going from the value corresponding to the long-range- 
order to random disorder case. Note that in Fig. 2. one has Paa = Pbb — 0, 
Рав = Pba = 1 and in Fig. 3, PAA - Рав = Pba = Pbb = 0.5. In Fig. 2, for 
type-B atom in a centrum of the cluster constructed from type-B atoms only, we 
find a pronounced peak in lower part of the energy band. The strength of this peak
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Fig. 2. Local density of states corresponding to the central type-A atom (left-hand side) and 
type-5 atom (right-hand side) in the nine-atoms cluster surrounded by effective Bethe-lattice. 
The number of different atoms in the cluster is indicated as (пд, ng) for Пд = 0, 1,..., 8, 
where ng = Z — Пд, Z — 8. The broken curve denotes the average local density of states.

The concentration of type—A atoms X — 0.5 and short-range-order parameter p = — 1

gradually decreases as we move from long-range-order limit towards the random 
disorder. Also, the average LDOS changes significantly. For a long-range-order we 
have symmetrical LDOS which changes into rather structureless curve for random 
disordered alloys. Looking on Figs. (3-5), one can observe a continuous changes 
of LDOS with increasing value of a type-A atom concentration.

Here we have PAA = PAB - PgA = PgB = 0.5, x = 0.5 for Fig. (3), PAA = 
Pg A = 0.75, Pgg = PAB = 0.25, x = 0.75 for Fig. (4) and PAA = PBA = 0.825, 
PAB = Pgg = 0.125, x — 0.875 for Fig. (5). There is a noticeable change (with 
increasing value of x) of the LDOS curves corresponding to all types of the clusters. 
The average LDOS has a two-peaked structure in the vicinity of the binary-ordered 
limit.

In Fig. (6) we have shown the same characteristics but for x = 0.25 near 
the segregation limit, i.e. PAA = 0.8125, PBg = 0.9375, PAg = 0.1875 and 
Pba = 0.0625. In general, we observe most peaked structures in LDOS in a 
case of random disorder and more smooth LDOS curves when some value of the 
short-range-order is introduced. Having calculated LDOS for different clusters we 
proceed to computing the mean-square charge fluctuations in the site occupation 
numbers. Results are shown in Figs. (7 - 11).

We display the charge fluctuations versus the Fermi energy level. In Figs. (7 - 8) 
we have displayed MSCF for x = 0.25 and increasing value of a disorder parameter 
on type-A atoms (upper panel), here minority sites, and on type-5 atoms (lower 
panel), here majority sites. The site energies are eA = — eB = 0.5 eV and 2.0 eV for 
figures (7) and (8), respectively. We observe the largest fluctuations for a case with
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Fig. 3. The same as in Fig. (2) but for p = 0 (random disorder limit

largest disorder, i.e. for points which lie relatively close to the random disorder 
limit. We also observe, that for a greater scattering strength (SS) the MSCF are 
greater than for smaller values of SS. In addition, for small value of SS the MSCF 
has a form of the two peaked structure, without third maximum in upper part of 
the energy band. For greater SS the largest fluctuations appear in the middle and 
upper part of the band. In Fig. 9 we present MSCF for points on (x,p) plane 
(see Fig. (1)) lying along the line of a constant concentration of a type-A atoms, 
x — 0.5 and varying disorder parameter p (from nearly long-range-order limit to 
a random disorder case). For a point x — 0.5, p = —1 we have obtained MSCF a 
few order smaller than this one for greater values of the parameter p and we do not 
displayed it in this figure. The greatest MMSCF are observed for p = 0 and when 
we move towards smaller values of the parameter p (p < 0) then the fluctuations 
are decreased. Only in a lower part of the energy band (for the fluctuations on 
a type-5 atoms) one can observe another sequence of peaks (in comparison with 
MSCF on a type-A atom) but differences are rather small. In Figs. (10, 11) we 
present MSCF for p = — | and x = 0.5, x = 0.75. The site energy ед is 1.0 eV in 

Fig. (10) and 2.0 eV in Fig. 11. First of all, we observe the general feature that 
with increasing value of the scattering strength the charge fluctuations increase. 
Additionally, for smaller values of SS and far away from the random disorder limit, 
the MSCF has a structure with two maxima (and not with three, as usual), without 
the maximum placed for Fermi energies lying in higher part of the energy band.

In conclusion, we have presented a theory of the static charge fluctuations in 
alloys with a short-range-order included. -The charge fluctuations, as well as the 
local density of states was calculated within the method which treats part of the 
system exactly as a cluster of atoms and simulates the rest of a lattice by con
necting to each cluster’s surface atom a Bethe-lattice. Generally, the mean-square 
charge fluctuations calculated for a system with the short-range-order included are
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EleV) EleV)

Fig. 4. The same as in Fig. (2) bût for X — 0.75 and p = 0

reduced in comparison with fluctuations obtained for completely random disorder 
alloy. The results presented in this paper indicate, that the charge fluctuations for 
a long-range-order limit are a few orders smaller than for other values of the para
meter describing the alloy’s disorder. Also, for points (x,p) lying near the binary 
ordered limit the fluctuations are enhanced on majority sites, whereas on minority 
sites are depressed. Finally, the influence of the short-range-order on the charge 
fluctuations in alloys is significant, so any theoretical description of the experimen
tal study of the real alloys systems for which the amount of a valence charge on an 
atom can be important, have to take this fact into account.
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Fig. 5. The same as in Fig. (2) but for I = 0.875 and p = 0

Fig. 6. The same as in Fig. (2) but for X — 0.25 and p = 0.75
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Fig. 7 Mean-Square charge fluctuation, on type-A atoms (upper panel) and on type-B atoms 
(lower panel) as a function of Fermi energy calculated for three different values of the 

short-range-order parameter p = 0.5, 0.75 and 0.875 (curves A, В and C. rrspectively) for 
x - 0,25 and ел = -eB ~ 0.5 eV

Fig. 8. The same as in Fig. (7) but for = — Sß = 2.0 eV
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Fig. 9. The same as in Fig. (7) but for X — 0.5 and p =
2 1
—---- and 0.0 (curves A, В and
3 3

C, respectively) for Ед — ~Sp — 1-0 eV
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Fig.10. The same as in Fig. (7) but for p —---- , X — 0.5 and 0.75 (curves A, and B.
' . 3

respectively) for = —£ß = 0.5 eV. The charge fluctuations on minority atoms (i.e. on 
type-B.atoms, lower panel) are a few orders smaller and not displayed here
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Fig. 11. The same as in Fig. (10) but for = — £ß — 1.0 eV



140 R. Taranko, E. Taranko, M. Piłat

REFERENCES

[1] Ling D.D., Gelatt C.D., Phys. Rev. B26, 2819 (1982)
[2] Hamada N., Miwa H., Progr. Theoret. Phys. Vol. 59, 1045 (1978)
[3] Parmigiani F., Samoggia G., Europhys. Lett. 7, 543 (1988)
[4] Velicky B., Kirkpatrick S., Ehrenreich H. Phys. Rev. 175, 747 (1968)
[5] Yonezawa F., Odagaki T., J. Phys. Soc. Jpn 47, 379 (1979); 47, 388 (1979)
[6] Montgomery C.G., Phys. Rev. B25, 7773 (1983)
[7] Tsukada M., J. Phys. Soc. Jpn. 26, 684 (1969); 32, 1475 (1972)
[8] Mills R., Ratanavararaksa R., Phys. Rev. B18, 5291 (1978)
[9] Katsura S., Takizawa M., Progr. Theor. Phys. 51, 82 (1974)

[10] Falicov L.M., Yndurain F., Phys. Rev. B12, 5664 (1975)
[11] Verges J.A., Yndurain F., J. Phys. F.: Metal Phys., Vol. 8, 873 (1978)
[12] Robbins M.O., Falicov L.M., Phys. Rev. B25, 2343 (1982); B29, 1333 (1984)
[13] Chaudhuri P., Moitra R.K., Phys. Rev. B18, 6694 (1978)
[14] Chaudhuri P., Moitra R.K., J. Phys. C9, L455 (1976)
[15] Falicov L.M., Yndurain F., Phys. Rev. B12, 5664 (1975)

■ [16] Gômez - Santos G., J. Phys. C16, L453, (1983)
[17] Yndurain F., Phys. Rev. B18, 2876 (1978) *
[18] Andriotis A.N., Lowther J.E., J. Phys. F: Met. Phys. 16, 1189 (1986)
[19] Sen P.N., Yndurain F., Phys. Rev. B13, 4387 (1976)

STRESZCZENIE

i ' _
W praçy przedstawiono teorię fluktuacji ładunkowych w stopach dwuskładnikowych, chara

kteryzujących się istnieniem uporządkowania bliskiego zasięgu. Uporządkowanie to uwzględniono 
przy pomocy dokładnego rozważenia małej grupy atomów, natomiast wpływ’ pozostałej części kry
ształu opisany jest efektywną siecią krystaliczną typu drzewa Cayley’a. Przeprowadzono obliczenia 
numeryczne lokalnej gęstości stanów dla klasterów dziewięcioatomowych (o różnej konfiguracji 
atomów) oraz fluktuacji ładunku dla szerokiego zakresu parametrów charakteryzujących stopy. 
Fluktuacje ładunku są największe w przypadku stopów, które nie wykazują uporządkowania bli
skiego zasięgu i znacznie maleją w miarę jego wzrostu. Duże fluktuacje ładunku zaobserwowano 
również w stopach wykazujących duże uporządkowanie typu A-B-A-B

W świetle uzyskanych wyników należy sądzie, że teoretyczny opis zjawósk fizycznych, w 
których wielkość ładunku zlokalizowanego na atomach stopu ma zasadnicze znaczenie, musi 
uwzględniać W’pływ uporządkowania bliskiego zasięgu na wielkość tego ładunku.

РЕЗЮ ME

В работе представлено теорию флуктуации заряда в бинарных сплавах харак
теризующихся существованием ближнего порядка. Упорядочение вто учтено с 
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помощью точного описания малой группы атомов, а влияние остальной части 
кристалла описано аффективной кристаллической решёткой типа дерева Кейлея. 
Проведено машинные расчёты локальной плотности состояний для 9-ти атом
ных кластеров (о различной конфигурации атомов)и флуктуации заряда в случае 
широкого предела параметров описывающих сплавы. Флуктуации заряда самые 
большие для сплавов, в которых не существует ближний порядок и значительно 
уменьшаются по мере его возрастания. Большие флуктуации наблюдают

' рм цыдот ся тоже в сплавах, которые характеризуются большим упорядочением 
типа А-В-А-В.

Из наших результатов следует, что теоретическое описание физических яв
лений, в которых величина эффективного заряда локализованного на атомах 
сплава играет существенную роль, должно учитивать влияние ближнего поры- 
адка на величину этого заряда.

Złożono 13. I. 1989.
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