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ABSTRACT

Axial and nonaxial hexadecapole and quadrupole deformations of Nilsson potential 
are investigated. Potential energies, quadrupole and hexadecapole electric moments are 
studied for actinide and transfermium nuclei and compared to old theoretical values.
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1. INTRODUCTION

It is known that the fissioning nuclei acquire the nonaxial shapes along the path to 
fission [1,2]. Up to now, only the nonaxial quadrupole component of the deformed shape 
has been investigated [3] and only this component has been taken into account in the 
study of properties of nuclei.

Recently more general parametrization of the quadrupole and hexadecapole defor­
mations for nonaxial shapes was introduced [4]. The aim of present paper is to examine 
the new parametrization. In particular we investigate the energy of deformation and 
quadrupole and hexadecapole electric moments of nuclei. We study the influence of the 
new hexadecapole degrees of freedom (74,5«) on the smooth part (liquid drop) as well as 
on the total energy.

At the end we compare our results to those obtained with old parametrization [5].

2. HEXADECAPOLE DEFORMATIONS FOR NONAXIAL SHAPES

An expansion of the nuclear radius R(6, ф) in spherical harmonics:

l + ÇaÀ^(ô,d) , (1)

is rotationaly invariant. Here axe'components of the spherical tensor of rank A.
The paramétra адд are not uniquely determined by the surface. They also depend on 
the designation of the intrinsic axes: x,y,z and on the choice of positive direction for 
them. There exist 24 different possibilities for designations and directions of the axes. 
Each of them may be obtained from another by superposition of three basic rotations 
Ri(i = 1,2,3) ( Rt = Я(т, r, 0), Ri = Я(0,0,т/2), Re = R(0,r/2,r/2)), where the 
arguments are the Euler angles. The rules of transformations of and under R, are 
rather complicated.

Defining the quadrupole shapes as the quadrupole part (A = 2) of the surface (1) 
and restricting ourselves to the surfaces which are symmetric with respect to reflections 
in three main planes of the system we obtain:

адд = ад-д,
адд = 0 for odd д, (2)

адд = 0 for odd А .

In this case the quadrupole part has two free parameters: азо and aa. For the quadrupole 
(A = 2) and hexadecapole (A = 4) shapes eq. (1) reads:

\
R(0,ÿ) = Äo{l + [oaolzo + ozzfF» + Fj-j)] (3)

+[в4о14О + <Чз(^4Э + Yi-z) + 044(^44 + Y4—4)]} •
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As it is seen the quadrupole and hexadecapole part has a five free parameters. It is con­
venient to express and in terms of parameters which have simpler transformation 
rales. For the quadrapole deformation one usually introduces the parameters ß and 7 [2]:

ощ cos7, >/2022 = ßeiny , (4)

when ß > 0 and —r < 7 < r.
The relations (4) may be interpreted as the transformation from the rectangular an, 

<233 to the polar ß, 7 coordinates. The parameter ß is an invariant of all possible rotations 
of the coordinate system, in particular of rotations Ri, and thus is uniquely determined 
by the surface. The parameter 7 transforms in the following way under the rotations R,:

Вг-Т*Т,  Rt :7-*-7!  Яз : 7 — 7 ~ ~ (5)

Due to this, to get uniqunees in the determination of 7 by the surface, it is sufficient to 
restrict the variation if 7 to the region 0 < 7 < y.

The hexadecapole part of the surface has been parametrized in a way similar to the 
quadrupole part. We define the quantities:

which have the same transformation rules under Ri as coordinates and а-n- Due to 
this, we parametrize them in the same way, Le.

Ц = лссвт*,  cł = płsin7ł, (7)

where p*  «s and it is invariant under А,- The 7« (— x < % < r) has the same
transformation rules as 7 (see eq.5).

One can prove that the quantity

is invariant under R, and

“4 + Ä4 + C4 = £4 • (9)

Eqs. (6-8) define a new sei d spherical coordinates (ßt, £*,  74) of a point specified by the 
rectangular coordinates a*,  64 and С4, i.e.

a4 = ßt cos 64 ,

64 = sin Ó4 cos 74 , ( 10)

С4 = /З4 sin 64 sin 74 .

According to the transformation rales (5), it is sufficient to restrict the region of 
variation 74to0<74<Jm order to get one-to-one correspondence between a surface 
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and the parameters (^4, £4,74) describing it. The deformation parameter Д is a close 
analogue of ß of the quadrupole deformation and the nonaxiality parameters £4 and 74 
are rather natural generalization of nonaxiality quadrupole deformation 7. More details 
on the presented parametrization are given in ref. [4J.

3. METHOD OF CALCULATIONS

According to the Strutinsky prescription the deformation energy was composed of 
a shell and a pairing correction parts and the smooth average energy was identified with 
the energy of the liquid drop model erf Myers and Swiatedd [6].

To generate the single-particle spectrum, we used the Nilsson potential. An applica­
tion of eqs. (3,4,10) to the Nilsson potential leads to the formulae [4]:

V(e,^,eĄ,6t,-u) = [c
J» 1 O f O [

+ 2 64' sin £4 cos 74 I У40

ÿ= sin £4 sin 74(^43 + 1<-з)

(Ум+Тг-ч)

(U)

where the radius p and the angles in the arguments of Yjq, are given in the stretched 
coordinate system. Parameters к and p of the Nilsson single-particle potential are cho­
sen to be ones called ”A=242” parameters [5]. The pairing correlations were included 
in the BCS model and the pairing strength constant G was equal to that given in [5]. 
AH the calculations were done for even-even nuclei within the region 92 < Z < 110 and 
140 < N < 170.

4. RESULTS

Results obtained in the present study are shown .in successive figures in which we 
plot different characteristics of nuclei. Among them there are energy surfaces Е(Д) as 
functions of special sets of deformation parameters, minima of the potential energy and 
nuclear multipole moments. The important is the deformation energy defined as Ejj = 
Enia - Eo, where E^, is the minimum value of E(/3) and Eg = E(0).

In order to obtain these plots for the considered nuclei we studied main effects of 
new degrees of freedom on the total energy. Fixing some of deformation parameters 
we looked at the behaviour of Е(Д). Figure 1 shows the effect of (£4,74) on the energy 
E(e°,eJ, St, 74) for 252Fm, where r°, 1° and 7® correspond to the approximate minimum 
of E(/J) in the case of 74 = 0, £4 = £J =: 40.2° (the old Nilsson potential). From figures 
like this one can see that the new degree of freedom 74, is close to zero in the considered 
region of nuclei. We have to say here that the axial asymmetry 7j is also equal to zero in
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Figure 1 : The energy surface £(£4,74) in the region of the first minimum for S2Fm. 
The left part gives total energy and the right part liquid drop model contribution.

ТЕ BAR(100.252) DE BAR,(100,252)

ISO? .so? Л ?

Figure 2 : The same as Fig.l. but for the barrier region.

the minimum of the potential energy E^„ {1,2]. On the right hand side of figure 1 the 
macroscopic part of the energy E for the same situation is plotted. We see from it that the 
nonzero contribution, which ’’deforms'’ the nucleus in direction of £4 degree of freedom, 
comes from the microscopic part The similar situation is registered in Fig.2. for 
the same nucleus (2s2Fm) but at the deformation point corresponding to the vindnity of 
the first barrier (e° = 0.4, = 0.0,= <5® and 7J = 0). As it was shown in many papers
[2] the deformation 73 is nonzero in the banier region and lowers the barrier energy on 1
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Figure 3 : Minima of potential energy surface far plutonium isotopes (circles). Old results 
are depicted by crosses.

to 2 MeV for the considered nuclei. Because we look only at the differences between 
results for old (<S4 = f4) and new potentials and the absolute energy is not important 
here, then the choice of tj = 0 dose not matter in our estimates. Looking at Fig.2 we 
can say that in the region of the first barrier the effect of the hexadecapole 74 degree 
of freedom is like in the first minimum of E, i.e 74 is dose to zero. The corresponding 
macroscopic contribution to the potential energy E is shown in Fig.2b.

On the basis of our calculations we can draw the following condusion: The 74 con­
tribution to the potential energy E(^) is negligible and even equal to zero in the case of 
minimum. At the first fission barrier this statement may not be correct and the tendency 
of decreasing the barrier on few tens of MeV for nonzero 74 is likely

From Fig. la one can see that the minimum of E appears at ó4 as 100° and 74 = 0. 
However in the barrier region (Fig.2.) the minimum with respect to -64 is dose to its 
Nilsson value f4 = 5° a 40.2°. The same figure shows the minimum of the macroscopic 
part of E. for which £4 equals to <54 value as well

After these introductory tests we can state that in the vicinity of the minimum point 
one has 7z = 0 and 74 = 0 and the only important deformation parameters are e, £4 and S4.
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Figure / : The same ал Fig.3. but for rutherfordium isotopes.

The minimization of the potential energy with respect to these deformation parameters 
was performed exactly. This minimization was carried out by calculating the E(z,x4,£4) 
in the following points:

e = 0.15 (0.05) 0.35 ,

«4 = 0(0.04)0.12, 

à, = 0° (45°) 180° .

The results of the minimization procedure for each nuclei are minima shown in Fig.3 
and 4 for the case of isotopes Z=94 and Z=104 and N ranging from 140 to 162. In these 
figures crosses correspond to the old version of Nilsson parametrization with s and e4 only 
(negative values of e4 axe allowed). The new results axe represented by open circles. We 
see that for e4 > 0 new results nearly coincide with old ones. Parameters i4 minimizing 
the energy axe shown in the lower parts of Fig.3 and 4. Their values axe embraced by 
limits 45 and 130 degrees. The correspondence between the new and the old sj < 0 is not 
the case here because the new parametrization allows only positive values for *4. The 54 
parameter takes care about the sign of terms as well as its value in the single particle 
potential.
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Figure 5 : Deformation energies (in MeV) for plutonium isotopes.

Figure 6 : Deformation energies (in MeV) for rutherfordium isotopes.

The new and the old deformation energies Ed«f are shown in Figures 5 and 6 corre­
spondingly. Except of cases of light nuclei (Z=94, N < 148) one sees deepest first minima 
in the case of new parametrization (circles) as compared to the old ones (crosses). The 
fact that the potentiell energy minima of the light nuclei are higher in new parametrization 
of the single particle potential means that in this case the new degrees of freedom (i.e. 7« 
or/and 54) become important and they have to be taken into account accurately in the 
analysis of the deformation energy.
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Figure 7 ; Deformation energies far the whole actinide and transfermium region ( MeV ).

Figure 8 : Electric quadrupole (lower part) and hexadecapole (upper part) moments for 
plutonium isotopes.
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Figure : 9 The same as Fig.8. for rutherfordium isotopes.

For the sake of completeness we show the new deformation energies Еа.г of nuclei 
from the actinide-transfermium region in Fig.7.

It is a good practice to compare not the deformation parameters (which differs one of 
another e.g. and e}* ” from definition) but more physical nuclear shape characteristics 
as eg. electric multipole moments of the ground states of nuclei. Figures 8 and 9 show 
quadrupole and hexadecapole moments respectivelly for the selected Z=94 and Z=104 
isotopes. The comparison with the old values is given oh the same figures. One observes 
a small differences in recent quadrupole and hexadecapole moments as compared to the 
former ones. These differences are however very systematic. From these results we observe 
that both ways of parametrization of the single particle potential generate nearly the same 
sequence of the equilibrium nuclear shapes in the region of actinide and transfermium 
nuclei. For completeness, we present again both quadrupole Qj and hexadecapole Q< 
moments for the whole actinide-transfermium region of nuclei in the next Fig. 10 and 11.

The general conclusion from presented calculations is the following. Both parametriza­
tions the old and the new one give approximately the same results for the deformation 
energies (or masses which are directly connected to them) and to the shapes of even-even 
nuclei (quadrupole and hexadecapole electric moments) in their ground states. However,
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Figure : 10 Quadrupole electric nuclear moments (in eb units) for actinide and transfer­
mium nuclei.

Figure : 11 Hexadecapole electric nuclear moments (in eb2 units) for actinide and trans­
fermium nuclei.

the present parametrization of the hexadecapole part of the Nilsson potential has a greate 
advantage which we want to point here. As it is known from early papers on inclusion 
of partial axially asymmetric hexadecapole terms into single particle potential [7j, the 
following problem of discontinuity of the potential energy arises. In the case of zero 
degree of freedom, starting at a prolate (7 = 0) shape and passing the 7-region on the
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Figure : 10 Quadrupole electric nuclear moments (in eb units) for actinide and transfer- 
mium nuclei.

Figure : 11 Hexadecapole electric nuclear moments (in el? units) for actinide and trans­
fermium nuclei.

the present parametrization of the hexadecapole part of the Nilsson potential has a great 
advantage which we want to point here. As it is known from early papers on inclusion 
of partial axially asymmetric hexadecapole terms into single particle potential [7], the 
following problem of discontinuity of the potential energy arises. In the case of zero e4 
degree of freedom, starting at a prolate (7 = 0) shape and passing the 7-region on the 
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way to the oblate shape (7 = 60°), symmetry axis of the shape changes from x to z. If 
now one looks at shapes characterized by nonzero e< then this leades to the discontinuity 
in the energy with respect to 7 coordinate in the middle of 7-region because both prolate 
and oblate starting configurations do not lead to the same intermediate shape. Such a 
situation dose not allow the proper determination of the potential energy of the system. 
This very serious problem disappears in the case of the new set of deformation parameters 
and results in continuous and uniquely determined energy functions.
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