ANNALES
UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN - POLONIA

VOL. XLIII/XLIV, 16
SECTIO AAA

Z. LOJEWSKI, A. BARAN

Hexadecapole Deformations for Nonaxial Shapes*

Abstract

Arial and nonaxial heradecapole and quadrupole deformations of Nilsson potential are investigated. Potential energies, quadrupole and hexadecapole electric moments are sturied for actinide and transferminm nuclei and compared to old theoretical values.

[^0]
1. INTRODUCTION

It ia known that the fissioning nuclei acquire the nonarial shapes along the path to fission [1,2]. Up to now, only the nonaxial quadrupole component of the deformed shape has been investigated [3] and only thia component has been taben into account in the study of properties of naclei.

Recently more general parametrization of the quadrupole and hexadecapole deformations for nonaxial shapes was introduced [4]. The aim of present paper is to examine the new parametrization. In particular we investigate the energy of deformation and quadrupole and heradecapole electric moments of nuclei. We study the influence of the new hexadecapole degree of freedom $\left(\gamma_{4}, \delta_{4}\right)$ on the smooth part (liquid drop) 20 well as on the total energy.

At the end we compare our results to those obtained with old parametrisation [5].

2. HEXADECAPOLE DEFORMATIONS FOR NONAXIAL SHAPES

An expansion of the muclear radims $R(\theta, \phi)$ in spherical harmonica:

$$
\begin{equation*}
R(\theta, \phi)=R\left[1+\sum_{\psi_{\psi}} \alpha_{\lambda_{p}} Y_{\lambda_{p}}(\theta, \phi)\right], \tag{1}
\end{equation*}
$$

is rokationaly invariant. Here a_{1}, are componente of the spherical tensor of rank λ. The parametrs a_{y} are not oniqualy determined by the aurface. They abo depend on the deaignation of the intrinsic axer $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and on the choice of positive direction for them. There exist 24 different poasibilities for designations and directions of the axea Each of them may be obtained from another by superponition of three basic rotation $R_{i}(i=1,2,3) \quad\left(R_{1}=R(\pi, \pi, 0), R_{2}=R(0,0, \pi / 2), R_{0}=R(0, \pi / 2, \pi / 2)\right.$, where the arguments are the Euler angles. The rules of tranaformations of $\alpha_{2 p}$ and $\alpha_{4 p}$ under R_{1} are rather complicated.

Defining the quadrupole shapes as the quadrupole part $(\lambda=2)$ of the surface (1) and restricting ourselves to the surfaces which are symmetric with respect to reflections. in three main planes of the system we obtain:

$$
\begin{align*}
& a_{\lambda_{\mu}}=a_{\lambda-\mu}, \\
& a_{\lambda_{\mu}}=0 \tag{2}\\
& a_{\lambda_{\mu}}=0 \quad \text { for odd } \mu, \\
& \text { for odd } \lambda .
\end{align*}
$$

In this case the quadrupole part has two free parameters: a_{20} and a_{22}. For the quadrupole ($\lambda=2$) and heradecapote ($\lambda=4$) shapes eq. (1) reads:

$$
\begin{align*}
R(\theta, \phi)= & R_{0}\left\{1+\left[a_{20} Y_{20}+a_{20}\left(Y_{22}+Y_{2-2}\right)\right]\right. \tag{3}\\
& \left.+\left[a_{30} Y_{40}+a_{42}\left(Y_{40}+Y_{4-2}\right)+a_{42}\left(Y_{41}+Y_{4-1}\right)\right]\right\}
\end{align*}
$$

As it is soes the quadrupole and haradecapole part has a five free parameters. It is convenient to exprea $a_{2 p}$ and $a_{4 p}$ in term of parameters which have simpler transformation sule. For the quadrupole deformation ane usually introdnces the parameters β and γ [2]:

$$
\begin{equation*}
c_{0}=\beta \cos \gamma, \quad \sqrt{2} \sigma_{22}=\beta \sin \tau, \tag{4}
\end{equation*}
$$

When $\beta \geq 0$ and $-\quad \leq \quad \leq \pi$.
The refations (4) may be interpreted an the tranformation from the rectangular a_{20}, $a_{\text {an }}$ to the poler β, γ cooncinates. The parameter β is an invariant of all posaible rotations of the coordinate aystem, is particular of rotations B_{i}, and thos is uniquely determined by the ausfres. The parameter γ transforms in the following way under the rotations R_{1} :

$$
\begin{equation*}
B_{1}: \gamma \rightarrow \gamma ; \quad R_{2}: \gamma \rightarrow-\gamma ; \quad R_{3}: \gamma \rightarrow \gamma-\frac{2 \pi}{3} . \tag{5}
\end{equation*}
$$

Dre to this, to get amiqueess in the determination of γ by the suriace, it is sufficient to restrict the maintion if γ to the region $0 \leq \gamma \leq \frac{\pi}{3}$.

The herrdecapole part of the surface has been parametrized in a way similar to the quadrapole part. We define the quantities:

$$
\begin{equation*}
b_{4}=\sqrt{\frac{5}{12}} a_{40}-\sqrt{\frac{7}{6}} a_{46}, \quad a_{4}=-\sqrt{2} a_{42}, \tag{6}
\end{equation*}
$$

Wint have tho same tranufomation rules under R_{i} as coordinates a_{20} and a_{22}. Due to thin, we parathise thom in the satme way, i.e.

$$
\begin{equation*}
b_{4}=\rho_{4} \cos \gamma_{H}, \quad c_{4}=\rho_{4} \sin \gamma_{4}, \tag{7}
\end{equation*}
$$

where $\rho_{4}=\beta_{4} \sin \delta_{4}$ and it in invariant under R_{4}. The $\gamma_{4}\left(-\pi \leq \gamma_{4} \leq \pi\right)$ has the same tramearrration reles as γ (soe eq.5).

One can prove that the quantity

$$
\begin{equation*}
a_{4}=\sqrt{\frac{7}{12}} a_{00}+\sqrt{\frac{5}{6}} a_{n 0} \tag{8}
\end{equation*}
$$

is invariant ander \boldsymbol{R}_{8} and

$$
\begin{equation*}
\alpha_{4}^{2}+b_{4}^{2}+c_{4}^{2} \equiv \beta_{4}^{2} . \tag{9}
\end{equation*}
$$

Eq. ($6-8$) define a new set of spherical coordinates $\left(\rho_{4}, \delta_{4}, \gamma_{4}\right)$ of a point specified by the rectangular coordinates a_{4}, b_{4} and c_{4}, i.e.

$$
\begin{align*}
& a_{4}=\beta_{4} \cos \delta_{4}, \\
& b_{4}=\beta_{4} \sin \delta_{1} \cos \gamma_{4}, \tag{10}\\
& c_{4}=\beta_{4} \sin \delta_{4} \sin \gamma_{4} .
\end{align*}
$$

According to the transformation roles (5), it is sufficient to reatrict the region of variation γ_{4} to $0<\mu_{4} \leq \frac{\pi}{3}$ in order to get one-to-one correapondence between a surface
and the parameters $\left(\beta_{4}, \delta_{4}, \gamma_{4}\right)$ describing it. The deformation parameter β_{4} is a close analogue of β of the quadrupole deformation and the nonariality parameters δ_{4} and γ_{4} are rather natural generalization of nonaxiality quadrupole deformation γ. More details on the presented parametrization are given in ref [4].

3. METHOD OF CALCULATIONS

According to the Strutinsky prescription the deformation energy was composed of a shell and a pairing correction parts and the amooth average energy was identified with the energy of the liquid drop model of Myers and Swiatecki [6].

To generate the single-particle spectrum, we used the Nilsson potential. An application of eqs. $(3,4,10)$ to the Nilseon potential leads to the formulae $\{4\}$:

$$
\begin{align*}
V\left(c, \gamma, \varepsilon_{4}, \delta_{4}, \gamma_{4}\right)= & \frac{1}{\frac{2}{2}} h \omega_{0} \rho^{2}\left\{1-\frac{2}{3} \varepsilon \sqrt{\frac{4 \pi}{5}}\left[\cos \gamma Y_{20}+\frac{1}{\sqrt{2}} \sin \gamma\left(Y_{22}+Y_{2-2}\right)\right]\right. \\
& +2 \varepsilon_{4} \sqrt{\frac{4 \pi}{5}}\left[\left(\sqrt{\frac{7}{12}} \cos \delta_{4}+\sqrt{\frac{5}{12}} \sin \delta_{4} \cos \gamma_{4}\right) Y_{40}\right. \\
& -\frac{1}{\sqrt{2}} \sin \delta_{4} \sin \gamma_{4}\left(Y_{42}+Y_{4-2}\right) \tag{11}\\
& \left.\left.+\left(\sqrt{\frac{5}{24}} \cos \delta_{4}-\sqrt{\frac{7}{24}} \sin \delta_{4} \cos \gamma_{4}\right)\left(Y_{44}+Y_{4-1}\right)\right]\right\},
\end{align*}
$$

where the radius ρ and the angles in the arguments of $Y_{\nu_{\mu}}$ are given in the stretched coordinate system. Parameters κ and μ of the Nilsson single-particle potential are chosen to be ones called " $\mathrm{A}=242^{n}$ parameters [5]. The paining correlations were included in the BCS model and the pairing strength constant G was equal to that given in [5]. All the calculations were done for even-even nuclei within the region $92 \leq \mathrm{Z} \leq 110$ and $140 \leq \mathrm{N} \leq 170$.

4. RESULTS

Results obtained in the present study are shown in succeasive figures in which we plot different characteristics of nuclei. Among them there are energy surfaces $E(\bar{\beta})=3$ functions ofspecial sets of deformation parameters, minima of the potential energy and nuclear multipole moments. The important is the deformation energy defined as $\mathrm{E}_{\mathrm{de}}=$ $\mathrm{E}_{\text {win }}-\mathrm{E}_{0}$, where $\mathrm{E}_{\text {mis }}$ is the minimnin value of $\mathrm{E}(\bar{\beta})$ and $\mathrm{E}_{0}=\mathrm{E}(0)$.

In order to obtain these plots for the considered nuclei we studied main effects of new degrees of freedom on the total energy. Fixing some of deformation parameters we looked at the behaviour of $\mathrm{E}(\bar{\beta})$. Figure 1 shows the effect of $\left(\delta_{4}, \gamma_{4}\right)$ an the energy $\mathrm{E}\left(\varepsilon^{0}, \varepsilon_{4}^{0}, \gamma_{2}^{0} ; \delta_{4}, \gamma_{4}\right)$ for ${ }^{252} \mathrm{Fm}$, where $\varepsilon^{0}, s_{1}^{0}$ and γ_{2}^{0} correspond to the approximate minimum of $\mathrm{E}(\bar{\beta})$ in the case of $\gamma_{4}=0, \delta_{4}=\delta_{4}^{0} \approx 40.2^{\circ}$ (the old Nilsson potential). From figures like this one can see that the new degree of freedom γ_{4}, is close to zero in the considered region of nuclei. We have to say here that the axial asymmetry γ_{2} is also equal to zero in

Figure 1 : The energy surface $\mathrm{E}\left(\delta_{4}, \gamma_{4}\right)$ is the region of the first minimam for ${ }^{252}$ Fm. The left part gives total energy and the right part liquid drop madel contribution.

Figure 2 : The same as Fig.1. but for the barrier region
the minimum of the potential energy $\mathrm{F}_{\text {min }}[1,2]$ On the right hand side of figure 1 the macroscopic part of the energy E for the same situation is plotted. We see from it that the nonzero contribution, which "deforms" the nuclens in direction of ε_{4} degree of freedom, comes from the microscopic part $\delta \mathrm{E}_{\text {chall }}$. The similar situation is registered in Fig.2. for the same nuclens (${ }^{252} \mathrm{Fm}$) but at the deformation point corresponding to the vincinity of the first barrier ($\varepsilon^{0}=0.4, \varepsilon_{4}^{0}=0.0, \delta_{4}=\delta_{4}^{0}$ and $\gamma_{2}^{0}=0$). As it was shown in many papers [2] the deformation γ_{3} is nonzero in the barrier region and lowers the barrier energy on 1

Figure 3 : Minima of potential energy surface for phatoniwn isotopes (cirches). Old results are depicted by crasses.
to 2 MeV for the considered nuclei. Because we look only as the differences between results for old $\left(\delta_{4}=\delta_{4}^{0}\right)$ and new potentials and the aboolute energy is not important here, then the choice of $\gamma_{2}=0$ dose not matter in our estimates. Looking at Fig. 2 we can say that in the region of the first barrier the effect of the heradecapole γ_{4} degree of freedom is like in the first minimmm of E , i.e γ_{1} is clowe to zero. The cocresponding macroscopic contribution to the potential energy E is shown in Fig. 2 b .

On the basis of our calculations we can draw the following conclusion: The γ_{4} contribution to the potential energy $\mathrm{E}(\bar{\beta})$ is negligible and even equal to zero in the case of minimum. At the first fission barrier this statement may not be correct and the tendency of decreasing the barrier on few tens of MeV for nonsero γ_{4} is likely.

From Fig.la one can see that the minimurn of E appears at $\delta_{4} \approx 100^{\circ}$ and $\%_{1}=0$. However in the barrier region (Fig.2.) the minimum with respect to δ_{4} is close to its Nilsson value $\delta_{4}=\delta_{1}^{0} \approx 40.2^{0}$. The same figure shows the minimam of the macroscopic part of E, for which δ_{4} equals to δ_{4}^{0} value as well.

After these introductory tests we can state that in the vicinity of the minionum point one has $\gamma_{2}=0$ and $\gamma_{4}=0$ and the only important deformation parameters are $\varepsilon, \varepsilon_{4}$ and δ_{4}.

Figure 4 : The same ar Fig.s. but for ratherfordium isotopes.

The minimization of the potential energy with respect to these deformation parameters was performed exactly. This minimization was carried out by calculating the E($\left.\varepsilon, \varepsilon_{4}, \delta_{4}\right)$ in the following points:

$$
\begin{aligned}
& \varepsilon=0.15(0.05) 0.35 \\
& \varepsilon_{4}=0(0.04) 0.12 \\
& \varepsilon_{4}=0^{0}\left(45^{\circ}\right) 180^{\circ}
\end{aligned}
$$

The results of the minimiration procedure for each naclei are minima shown in Fig. 3 and 4 for the case of isotopes $\mathrm{Z}=94$ and $\mathrm{Z}=104$ and N ranging from 140 to 162. In these figures crosses correspond to the old version of Vilsson parametrisation with s and ε_{4} only (negative values of ε_{1} are allowed). The new results are represented by open circles. We soe that for $\varepsilon_{4}>0$ new results nearly coincide with old ones. Parameters δ_{4} minimiring the energy are shown in the lower parts of Fig. 3 and 4 Their valnes are embraced by limits 45 and 130 degrees. The correspondence between the new and the old $s_{4}^{0}<0$ is not the case here because the new parametrization allows only poaitive values for ε_{4}. The \mathcal{E}_{4} parameter takes care about the eign of Y_{4} terms as well as its value in the single particle potential.

Figure 5 : Deformation energies (in MeV) for plutonium isotopes.

Figure 6 : Deformation energies (in MeV) for rutherfordium isotopes.

The new and the old deformation energies $E_{\text {def }}$ are shown in Figures 5 and 6 correspondingly. Except of cases of light nuclei ($Z=94, N<148$) one sees deepest first minima in the case of new parametrization (circles) as compared to the old ones (crosses). The fact that the potential energy minima of the light nuclei are higher in new parametrization of the single particle potential means that in this case the new degrees of freedom (i.e. γ_{4} or $/$ and δ_{4}) become important and they have to be taken into account accurately in the analysis of the deformation energy.

Figure 7 : Deformation energies for the whole actinide and transferminm region (MeV).

Figure 8: Electric quadrupole (lower part) and heradecapole (upper part) moments for plutonixm isotopes.

Figure: 9 The same as Fig.8. for ratherfordium isotopes.
For the sake of completeness we show the new deformation energies $E_{\text {dof }}$ of nuclei from the actinide-transfermium region in Fig. 7.

It is a good practice to compare not the deformation parameters (which differs one of another e.g. $\varepsilon_{4}^{\text {old }}$ and $\varepsilon_{4}^{\text {now }}$ from definition) but more physical nuclear shape characteristics as eg. electric multipole moments of the ground states of nuclei. Figures 8 and 9 show quadrupole and hexadecapole moments respectivelly for the selected $\mathrm{Z}=94$ and $\mathrm{Z}=104$ isotopes. The comparison with the old values is given on the same figures. One observes a small differences in recent quadrupole and hexadecapole moments as compared to the former ones. These differences are however very systematic. From these results we observe that both ways of parametrization of the single particle potential generate nearly the same sequence of the equilibrium nuclear shapes in the region of actinide and transfermium nuclei. For completeness, we present again both quadrupole Q_{2} and hexadecapole Q_{4} moments for the whole actinide-transfermium region of nuclei in the next Fig. 10 and 11.

The general conclusion from presented calculations is the following. Both parametrizations the old and the new one give approximately the same results for the deformation energies (or masses which are directly connected to them) and to the shapes of even-even nuclei (quadrupole and hexadecapole electric moments) in their ground states. However,

Figure: 10 Quadrupole electric nuclear moments (in eb units) for actinide and transfermium nuclei.

Figure : 11 Hexadecapole electric nuclear moments (in eb ${ }^{2}$ units) for actinide and transfermium nuclei.
the present parametrization of the hexadecapole part of the Nilsson potential has a greate advantage which we want to point here. As it is known from early papers on inclusion of partial axially asymmetric hexadecapole terms into single particle potential [7], the following problem of discontinuity of the potential energy arises. In the case of zero \boldsymbol{c}_{4} degree of freedom, starting at a prolate ($\gamma=0$) shape and passing the γ-region on the

Figure : 10 Quadrupole electric nuclear moments (in eb units) for actinide and transjermium nuclei.

Figure : 11 Hexadecapole electric nuclear moments (in eb ${ }^{2}$ units) for actinide and transfermium nuclei.
the present parametrization of the hexadecapole part of the Nilsson potential has a great advantage which we want to point here. As it is known from early papers on inclusion of partial axially asymmetric hexadecapole terms into single particle potential [7], the following problem of discontinuity of the potential energy arises. In the case of zero ε_{4} degree of freedora, starting at a prolate $(\gamma=0)$ shape and passing the γ-region on the
way to the oblate shape $\left(\gamma=60^{\circ}\right)$, symmetry axis of the shape changes from x to 2 . If now one looks at shapes characterized by nonzero ε_{4} then this leades to the discontinuity in the energy with respect to γ coordinate in the middle of γ-region because both prolate and oblate starting configurations do not lead to the same intermediate shape. Such a situation dose not allow the proper determination of the potential energy of the system. This very serious problem disappears in the case of the new set of deformation parameters and results in continuous and uniquely determined energy functions.

Acknowledgements

Both of us would like to acknowledge professor Adam Sobiczewski from the Institute of Nuclear Problems, Warsaw, for a suggestion of the subject and very hindly discussions. We also woud like to thank proffesor Krzysztof Pomorsld for many discussions and for critical reeding of the manuscript. The authors are very greateful to Dr. Anka Gyurkovich for the preparation of part of the numerical program calculating the macroscopic energies.

REFERENCES

1. Baran, A., Pomorski, K., Lukasiak, A., and Sobiczewski, A., Nucl. Phys. A361, 83, (1981).
2. Ćwiok, S., Lojewski, Z., Pashkevich, V.V., Nucl. Phys. A444, 1 (1985)
3. Bohr, A., Mat. Fys. Medd. Dan. Vid. Selsk 261 no. 14 (1952)
4. Rohoziński, S.G., Sobiczewski, A., Acta. Phys. Pol. B12, 1001 (1981)
5. Nilsson, S.G., Tsang, C.F., Sobiczewski, A., Szymański, Z., Wycech, S., Gustafson, C., Lamm, I.L., Möller, P., and Nilsson, B., Nuc. Phys. A131, 1 (1969)
6. Myers, V.D., S wi ̧̧tecki, W.J., Ann. Phys. 55, 395 (1969)
7. Larsson, S.E., Phys. Scr. 8, 17 (1973)

[^0]: ${ }^{1}$ Work supported partly by CPBP 01.06.

