
ANNALES
UNIVERSITATIS MARIAE C U R I E - S К Ł O D O W S К A

LUBLIN — POLONIA
VOL. XLIII/XLIV, 12 SECTIO AAA 1988/1989

Instytut Fizyki Doświadczalnej

Uniwersytet Warszawski

M.W. KALINOWSKI

Computer Architecture, Algorithms, Computer Physics and All That

Contents

Introduction

1. Computer architecture on SISD machines.
2. Computer architecture on SIHD machines.
3. Computer architecture on MISD machines.
4. Computer architecture on HIHD machines.
5. Present and operational HIMD systems.
6. Supercomputer performance and computer physics.
7. Hew Computer architecture, a perspective.
Ô. Artificial intelligence program and a special purpose

machine.

Acknowledgements

References

94 M.W. Kalinowski

Introduction

Without going into a thorough historical review of the
history of the digital computer (the other major branch of
computers are those of analog design which will have to be
left for another occasion), the general lineage of today's
computers is traced from Babbage's predecessor mechanical
machine (1634) to the first generation vacuum tube computers
(MANIAC and Eniac. circ. 1940) and on to the second-
generation transistor computer (Univac. IBM 1401, 2000
series, circa 1950), and third-generation integrated circuit
machines (IBM 360 series. i960), to the present LSI (large
scale integration and micro-processor designs)'. All of these
computers to date have been largely built around the Von
Neuman architecture, wich will be described momentarily.
Present attempts, and there are many, to develop the fifth
generation of computers generally revolve around VLSI (Very
Large-Scale Intergration, also to be explained shortly), and
multi-processor architectures.

The advances in computer hardware design have been the
result of increased speeds of operation and reduced costs of
memory. The first major advance in speed, of course, came
with the move from mechanical devices like Babbage's to the
electronic device of the vacuum tube. The advent of the
transistor meant that components could be packed much closer
together. Each halving of distance between components meant
a doubling of speed with which signals could be processed
between them. Transistors required much lesss energy to
operate and, consequently, produced much less heat than
vacuum tubes. Partly because of this, they proved to be much
more reliable, and their increased MTBF (Mean Time Between
Failures) permitted the construction of larger, more
powerful systems.

The same principles and results applied in the next stage of
development as Integrated Circuits appeared on the scene.
Onece again, circuitry was condensed so signals had less
distance to travel, and there was less energy required,

Computer Architecture, Algorithms... 95

which meant fewer heat problems. The I. C. (integrated
circuit) or chip at first combined within itself a half
dosen o£ translator» or the equivalent logic of aa many
vacua tubes. Improved manufacturing and design techniques
over the next couple of decades raised this number of
transiter equivalent circuits first to hundreds, and then
thousands, and tens of thousands. Eventually we had the
equivalent of a whole computer on a chip and memories had
likewise been so condensed that some small desktop computers
had power and access to memories far beyond the capacities
of the largest computers available at the beginning of the
working careers of most of the older professionals working
in the industry.

Many types of new hardware and circuits were developed
during this period and manufacturers of hardware are still
developing competing technologies. Unfortunately, because of
space requirements, a discussion of those various hardware
technologies such as a gallium arsenide, MOS, CMOS, Josephson
Juction etc. will have to be left to another occasion.

The key point here is that, while there has been a
revolution in the hardware component side of computers over
the last few decades, there has been little change in the
techniques and architecture of the software side. It is in
this area that most researcher in A. I. (Artificial
Intelligence) feel that major discoveries will have to be
made if the ambiitlous goals of the field are to be
obtained.

The prevalent Von Heuman architecture in computers works in
the following manner. There exists in the computer a two
stage clock that is either in an instruction phase ox- a data
phase. In other words, according to the clock, the computer
Is either to be getting an instruclon or executing that
instrucion upon a -particular set of data. The computer tick-
tocks back and forth between getting the next instrucion and
executing the instrucion many times a second. In fact, in
the largest computers millions (MIPS - Millions of

96 M.W. Kalinowski

Instructions per Second) or even billions (BIPS) of
instructions per second.

Consequently Von Neuman machines (most existing computers)
are what are called SISD (Single Instruclon Single Data)
machines. Looking below you can see that there are three
obvious alternatives. Each of these will be discussed in the
next four section.

Thus we have :
SISD - Single Instruction Single Data
SIMD - Single Instruction Multiple Data
MISD - Multiple Instruction Single Data
MIMD - Multiple Instruction Multiple Data
In the fifth section we describe present and operational
MIMD systems with a special interest in the ZMOB processor
(Maryland machine). Section 6 is devoted to the Known
supercomputer performance and computer physics. Section 7
gives a review on new computer architecture and parallel
processing with connecion to a data structure of algorithms.
In section ô we discuss a special purpose machine in
connection to arrtlficial intelligence program.

I COMPUTER ARCHITECTURE ON SISD MACHINES

The classical von Neuman computer is a single instruction
single data machine (SISD). IBM Amdahl, and Unlvac
mainframes as well as all mini and microcomputers fall into
this category. Essentially a single operation is performed
on a single datum and the speed of operation is a linear
function of logic speed and a memory access time. Although
another order of magnitude increase in speed appears likely
over the next decade, further improvements will be
incremental at best. A number of mainframe manufactures
offer multi-processor systems: these should not be confused
with parallel processors. A multi-processor can execute a
number of separate programs simultaneously, ■ each on a
separate processor. In a parallel processor the individual
processors collaborate to execute a single program.

Computer Architecture, Algorithms... 97

2. COMPUTER ARCHITECTURE OK SIMD HACHIKES

Single instrction multi-data (SIMD) machines (also known as
vector processors or array processors) execute the same
instruction simultaneously on many Items of data . For
example, in principle, a powerful array processor could
square the value of each of the tens of thousands of pixels
that comprise an image. It is not unusual for super computer
manufacturers such as the Cray and the Cyber to Include an
auxiliary array processor and to quote its processing rate
as being their performance rate. Since the processing rate is
the product of the arthimetic speed and the number of data
elements it is often in the range of tens of megaflops
(megaflop-a million floating point operation) per
second. Unfortunately only a relatively small subset of
problems are amenable to vectorization. Although some of
these problems are of central significance (ie. matrix
inversion) in physics and- computer graphics, they are not
particularly applicable to A. I.

In the past few years the so called Systolic Array
architecture has made possible a vast increase in the speed
and versatility of array processors. As yet no commercially
available systems contain 'systolic arrays. It is our opinion
that an advanced super_coraputer facility should incorporate
a systolic array processor (£1],£2]). A single instruction
multiple data might be arranged in the following manner (see
Fig. 1). From the instruction store each processor À through
E. would be loaded with the same instruction at the same time
and on the next clock moment each would process a different
data stream. These could, for example, be the payroll record
for different individuals. Each individual would have their
hours computed at the same moment, and then their first
deduction at the next moment, and then the next, and so
forth so that five individuals', payroll records would be
computed simultaneously. Theoretically this would be five
times faster than using the Von Neuman Architecture. In
actuality, because each employee record would not need the
same treatment and because of problems in organizing the

98 M.W. Kalinowski

INSTRUCTION STORE

A
DIFFERENT

DATA
IMPUT

D
E

OUTPUT

PROCESSOR

Fig. 1. SIMD architecture

Computer Architecture, Algorithms... 99

data and usiner auxiliary bardware such аз printers, these
exact efflcencies would not be realized. but the example
demonstrates the principle. Moreover, it should be noted
that most multi-processors architectures do not envision the
use of just five processors but are usually designed around
64, 126,256 or even larger multiples of processors.

3. COMPUTER ARCHITECTURE OK MISD MACHIMES

Multi instruction single data (MISD) machines are also Known
as pipeline processors. Such a system may be conceived of as
a single datum which is operated upon successively in a
series of arithmetic processing stations. Super computers
such as the Cray and the Cyber achieve their high processing
rates by employing a large numer of these processing
stations and thus avoiding the s~tore and fetch operations
which precede and follow each arithmetic operation in more
conventional architectures.
Here, as shown in the following diagram, (Fig. 2) each
processor has a different instruction. All the processors
worK at the same clock moment, the data is passed from one
processor to the next. Since, theoretically, the processor
does not have to get a new instruction at alternate clocK
moments but each time only gets a new piece of data, by this
factor alone, the architecture is twice as fast as the Von
Heuman architecture. Once again there is added to this
advantage the additional multiplication of speed-up of
whatever actual number of processors are used (see Fig.2).
This method of processing is called pipelining because the
whole employee record passes from processor to processor as
If it were going down an assembly line with each processor
performing its single function upon it. It takes the pipeline
a moment to fill up, but this can be a small disadvantage. In
actuality, a payroll is not a particularly good example in
this case because each employee’s record consists of a
number of distinct parts that require different types of
processing. There are other types of problems where numerous
operations are performed upon . the same type of data one
after the other, and it is in these types of operations the
array processors of this design have been favourably

100 M.W. Kalinowski

INSTRUCTION
STORE

DATA
STREAM

INPUT
ABODE OUTPUT

Fig. 2. MISD architecture

applied. Examples are mathematical array processing,
weather, and economic modeling.

Computer Architecture, Algorithms... 101

4. COMPUTER ARCHITECTURE OH MIMD MACHINES

Multi instruction multi data (MIMD) machines are true
parallel processors. All the processors cooperate in solving
the problem. Ideally such systems would be transparent to
the programmer and the assignment of processors and the
inner communication between them would be performed by the
systems compiler and operating system.

It should be emphasized that such multi-processors and
compilers are at present experimental, inefficient and
fragile. Other than assiging "do" loops to separate
processors, performing in depth searches and explicity
designated parallel portions of the program (these are by no
means easy tasks) until recently' little progress has been
made.

In A. I. a number of interesting theoretical proposals have
been made. A recent paper by Hiroshi Hakogawa entitled
"Parallel Prolog with Diveded Assertion Set” represents a
promsing approach. In applied mathematics another recent
paper by Pan and Relf at the Courant Institute suggests a
parallel processing approach to the solution of large
systems of linear equations. This approach if successfully
Implemented has enormous commercial possibilities and would
provide a powerful tool in many areas of physics and
engineering.

The most desired type of desgn is a Multiple Instruction
Multiple Data type of configuration. This type of
architecture envisions there being some large multiple of
processors interconnected in perhaps every way possible. The
difficulty is largely in designing the interconnenction bus.
This is in itself a subject of architecture design of such
scope that it will also have to be left to another
opportunity. Moreover, there is a second and equally large
problem with MIMD computers and that is development of a
satisfactory software language. That is to say, a language
that would be reiable, comperhensible, and efficient for use

102 M.W. Kalinowski

by large numbers of programmers. Ho really satisfactory
solutions bave been found to either of these two major
problems but great numbers of researchers are working on
them throughout the world.

The reason that so many researchers are interedsted in the
MIMD machine are several-fold.
1) The obvious power of such configuration
2) Its ability to simulate any of the lesser configurations.
3) That A. I. researchers often theorize that there is some
similarity between such a configuration and the human brain.
4) That it would be useful in machine vision, and therefore
for pattern recognition, and perhaps perception if such a
thing is theoretically possible.

It is this last application that is of the most immediate
interest to us although there are many auxiliary aspects of
A. I. to which it could be applied, such as Robotic
Languages, which are almost of equal Interest. The reason an
MIMD machine could be of such value in machine vision is
that there could be many sensing points that could be
processed simultaneously. This appears in fact to be the way
that the human eyeball is wired. Whereas at the moment,
using Von Neuman architecture, the procedure is to scan the
surface of a device such as CRT (Cathode Ray Tube)point by
point and line by line at a time. The MIMD configuration
could' allow many points of input to be processed
simultaneously and therefore make available in real time a
complete image for pattern matching and processing (Fig.3).

5. PRESENT AND OPERATIONAL MIMD SYSTEMS

Although business magazines have in recent months published
a plethora of articles on parallel processing (Business
Week) and the IEEE Special Inerest Group on Computer
Architectures has for many years presented conceptual
designs for parallel processors, very few systems have ever
been built,fewer still have become operational, and only
four are commercially available.

Computer Architecture, Algorithms... 103

i

Fig. 3. MIMO example. Some multiple number of processors inter
linked through some interconnected bus arrangement in a machine
vision application (for example), there could be 1024 of the pro
cessors with each one being linked to a single point of some op
tical devices

104 M.W. Kalinowski

a) The Bolt BeraneK and Hewnam Butterfly.

The BB and H butterfly is by far the most popular parallel
processor in the world. At least sixteen machines have been
sold and about thirty are on order. Each processor node
consists of a 6SOOO micro computer with a 1MB of memory.
The memory of every computer is accessible to any other
computer with a miniscule access time penalty through a
cross bar switching arrangement. Each node has a cost of
about $1OK (U.S.). A system with 512 processors, secondary
storage backup, printers, terminals and a front system such
as micro Vax would have a budgetary price of about seven
million dollars (Canadian). The butterfly is an elegant
architecture. It enables a large number of processors to
work independently on different aspects of a problem
employing different data sets and is able at the same time
to simultaneously work on a single data set. It has been
argued by its proponents that a variety of data flow and
control flow architecture can readily be embodied within the
BB and N fabric.

b) The Denelcor Hexus.

Denelcor has sold at least five multi processor systems to
prestigious computational research institutes such as the
Los Almos Institute for Hon Linear-Studies, the US Army's
Ballistics Research Centre, Laurence Livermore Labs,
Messerschmidt A. G. as well as to the usual unnamed U.S.
government agencies. The Denelcor system consists of four
very high speed ECL processors each equipped with an ECL
memory and interconnected with a high speed switch. The
quoted price for the system, 'including a front and
processor, is about seven million dollars (U.S.). Denelcor
argues that each of- its pipelined processors can sustain 32
independent processors and the time of execution of 122
programs compares more than favourably with the BB and H
system. It would seem that very few have been convinced by
their argument. In our opinion the Denelcor system is a

Computer Architecture, Algorithms... 105

brute-force attempt to achieve performance through the use
of very high speed logic.
Although many processes can be supported, the extent to
which processes can be compled or can communicate with each
other is limited.

c) The Intel Cosmic Cube.

The Cosmic Cube was developed at the Berkeley Campus of the
University of California and applied to a variety of problem
areas in theoretical physics. Intel Corporation began to
produce conanercial systems in mid 1985 and about eight have
been delivered. In the Cosmic Cube each 8080 processor can
communicate with six adjacent processors in the large class
of problems which are susceptable to relaxation techniques.
The Cosmic Cube functions very effectively and simulation in
the area of quantum chromodynamics on a lattice have yielded
a number of valuable and even profound insights. A sixteen
node system has price of about $400, 000 (U. S.)

d) Thinking Machines Inc. Connection Machine (TMI).

TMI's Connection machine evolved from the doctoral
dissertation of its founder Danny Hillis. It consists of
64. 000 single bit processors each of which has a 500B
memory. Each of the processors is associated in hyper cube
with six of its neighbours. Effectively the Connection
machine is a gigantic Cosmic Cube whose interconnection
pattern can be arbitararily defined. It is designed to
remove the so called semantic gap which exists between
higher level computer languages such as Lisp and Prolog and
the basic hardware fabric of a computer. For example, a
semantic network can be effectively embedded and directly
manipulated in the Connection Machine.

Although Hillis and his colleagues claim they have exceeded
the Cosmic Cube benchamarks, others have argued that the
Connection Machine is only an^ associative memory under the
control of a symbolic Lisp processor. Others have suggessted
that it is a single instruction multiple data (SIMD) system

106 M.W. Kalinowski

and as such is restricted in the class of problems to which
it can be applied.
The Connection Machine is strlcty connected to the
Connectlonlst Hypothesis. Thus we add some remarks on this
subject. Artificial Intelligence began in the early fifties
as a program of cooperation between engineers,
mathematicians and neuro-physiologlsts to understand and
simulate the higher functions of the central nervous system.
By the late sixties the enthusiasm generated by the
seemingly remarkable properties of the Perception, had
dissipated and the central thrust of Al research shifted
abruptly to knowledge representation, that is to say
techniques for encoding knowledge so that it could be
accessed and manipulated by computers. By the 19ÔO's
techniques for representing knowledge in semantic networs or
as logic expressions in the first order predicate calculus,
had evolved sgnificantly but the process of manipulating
these representation presented almost insuperable obstacles
to conventional computing techniques. The Japanese Fifth
Geneeration program is to- large extent an attempt to solve
this problem with radically new computer architectures.
At the same time a new school was developing among Al
theorists who returned to the Al position of the fifties.
Central to what has come to be called the Connectlonlst
thesis was the observation that cognitive tasks such as
recognition occur in about 300 msec and that a synaptic
transmission requires about 3msec, so that only about one
hundred operations can be executed to perform a complex
task. In addition the amount of information transferred
between synapses must be relatively small. From these facts
the Connectionists argue that the massive programs common in
A. I. are qualitatively different than the mechanism that
governs mental functions and that the structure and
interconnections in the system that is carrying out the
computation are paramount. Recently David Touretsky and
Geoffrey Hinton of Carnegie-Hei1оц University in a paper
entitled "Symbols Among the Heurons: Details of ’ a
Connectlonlst Inference Architecture" put forth a program
which could provide a bridge between the connectlonlst
hypothesis and current research in logic programming.

Computer Architecture, Algorithms... 107

A motif which repeatedly appears in all A. I. discussions is
the need for highly parallel architectures to simulate the
massive amount of interconnection in the brain, to perform
pattern matching, unification, and breadth and depth
searches. We do not wish to imply that parallel
architectures will solve all the problems of A. I. Extensive
research in non-monotonic logics, default logic, modal logic
and many other areas of formal logic is essential if
progress is to be made. However powerful parallel processors
are as important to progress in AI as telescopes and
microscopes are to progress in astronomy and bacteriology.

e) The University of Maryland ZMOB Processor

The ZHOB is certainly the most venerable of the multi
processor architectures. The design originated from a
dissection by Chuck Rieger and was implemented with funds
from the Air Office for Scientific Research (AFOSR) in 1980.
About three years were required for the system to become
operational with 64 processors. Since that time it has been
employed for research in areas related to computer vision
and music, artificial Intelligence, intelligent data bases
and numerical analysis.

The system employs Zylog Z8O computers each with 16KB of
memory and 1KB of ROM. The processors communicate with each
other by means of very versatile bus. The entire system can
be visuallized as a circular conve>yor belt with a number of
stops and a processor at each stop. As instructions and
information circulate around the bus each processor can
accept or reject data. This bus structure enables any
processor to broadcast instructions and data to any other
processor to any subset of processors, or to all processors.
In addition, a pattern matching function is available which
enables the processors to function in an associative manner.

At present a new advanced version of the ZMOB is in the
process of implementation under the auspices of the U. S.
National Sciences Foundation. The new machine will utilize a

108 M.W. Kalinowski

refined version of the bus structure and powerful 68000
processors. Since the software is for the most part written
in C no major difficulties are anticipated in porting it to
the new system.

Although the ZHOB architecture is inherently slower than the
BBN Butterfly it is our considered opinion that the
architecture is more flexible and that it provides an
excellent framework for research in parallel architecture.
In addition the opportunity of collaborating with a
prestigious centre for computer research, whose work is in
the public domain, is an asset of considerable value.

The following is a description of this architecture. The
machine consists of 256 autonomous processors (Z80 8-bit
microcomputers) each with 64K bytes of memory connected
together by a ring-shaped high-speed communications system
called the "conveyor belt".

This conveyor belt conceptually consists of 257 rotating
mail bins which, at any given point in time, are each under
257 "mail stops". Each of these mail stops, turn, is
associated with Z80 processor, except the 257th, which is
used for communications with the ZHOB external host
computer. The conveyor belt is implementd by a 48-bit-wlde
10 MHZ circular shift register, where each stage of the
shift register represents a mall stop. Each processor
contains, as well as its conveyor belt interface, a high
speed parallel and serial interface to the "out side world"
for special applications. A special processor occupies the
257th conveyor belt slot that interfaces ZHOB to DEC Unlbus
connectd to a host VAX11/780.

In summary, the processor is an autonomous 10HHZ Z80 system
including 53K of 357ps RAH and IK of 375pS EFROH with
single-bit parity detect, eight-level vectored priority
interrupt logic, 8-blt by 8-bit integer multiply and 32-bit
floatingpoint (AHD9511) hardware, 19. 2K band
synchronous/asynchronous external serial and 24-bit high
speed parallel interface, and the interface logic for its

Computer Architecture, Algorithms... 109

mall stop. ZHOB as -whole consists of 256 processors sharing
a 16-million-byte memory that is capable of executing
approximately too milion instructions/s, and communicating
via a conveyor belt that switches messages at a rate of 20
million bytes/s. In order to facilitate convenient
communication. ZHOB*s conveyor belt has four addressing
modes. These are "send to processors by address", "send to
processor by pattern", "send to all processors" and "send to
all processors by pattern". A message always contains the
address of the sender and information describing the
intended receiver(s) (the destination field), as well as
data. In turn, each mail stop contains a unique address (0-
256) that can be used to identify it when sending or
receiving and hardware enabling it to recognize a specific
pattern in messages destination fields. In "send to
processor by address", the message sent is intended only for
the processor whose unique address matches that of the
destination field, in "send to processor by pattern”, the
message is intended for the first processor whose specific
("posted") pattern matches that of the destination field, in
"send to all processors", the message is intended for all
processors (regardless of what is in the destination
field). Lastly, in "send to set of processors by pattern",
the message is intended for all processors whose posted
pattern matches that of the destination field.

Each message is sent under exactly one of these modes. In
the first two modes, there is only one intended
receiver:upon receipt, the mail stop will "consume " the
message. In the second two, the mail stop will allow the
message to continue after copying it: it is incumbent on the
sending processor to intercept its own message after it
completes an entire conveyor belt revolution.

In addition to these four (sender-specified) modes, the
receiver may futher condition its mailstop to accept
messages only from a specific, processor,, the "exclusive
source" mode. This mode allows an uninterrupted flow of
messages between two, or one and a group of processors. It
also allows overhead-free establishment of communication,

по M.W. Kalinowski

should the sending processors's address be known ą priori
(and the receiving processor's exclusive source address be
set to it beforehand) since, to the processors. It seems as
if they have exclusive access to the communication belt.

Reception of messages by pattern is useful in systems where
the specific processors that may respond are not known
beforehand, e. g. , is implemented via a FATTERH/MUSK register
pair in the mall stop. One bits in the MASK register
represents DOH’T CARE position in the PATTERH, and zero, bits
represents the opposite. A successful match occurs when the
CARE positions of the Ï>ATTERK register match the message's
destination field. The conveyor belt is organized to arrange
for optimum efficiency in simultaneous communication between
processors. Each mail stop buffers one message in the
outbound direction, and can buffer one message in the
inbound direction (from the belt). Each processor owns
exactly one bin in the conveyor belt through which it can
send one message every belt turn. One 48-bit bln passes
under each mail stop every 100 ps, under control of a
careffully synchronized iOHHZ master clock. When a
processor's bin arrives back at the processor's mall stop -
as it does simultaneously for all processors and is
signalled by a special "index pulse" from the master clock -
-if the bin is empty and the mail stop's outbound buffer is
full, the message is injected into the belt stream and a
special processor interrupt is generated (indicating that
the outbound message has departed and the buffer is prepared
for another). Otherwise, speed pattern matching logic
attempts to recognize the destination field of the message
(if any) in the newly-arriving bin.

If the bin is full, the pattern matcher's circuitry deems
the message appropriate (including with regard to any
exclusive source addres), and if the inbound buffer is
empty, the message will be read from the belt and a second
type of processor interrupt will be generated (indicating
that a message is available to be processed, if only to
remove it form the mail stop buffer so that another one may
be received). If the addressing mode of the message

Computer Architecture, Algorithms... Ill

indicates that the message is also intended for other
processors, the mail stop allows the message to continue in
its bin; otherwise, the mail stop empties the bin and
consumes the message. Messages on the conveyor belt intended
for a processors that, upon arriving, can not be accepted by
its mail stop (the inbound buffer is still full, the
exluslve source addres in effect does not match that of the
message or the pattern matching circuitry is simply turned
off) will continue to circulate until they are eventually
received and consumed, or until the sending processor "reads
back” the message (as for multiple—destination addressing
modes) and removes it. This apples to a sending processor
whose outbound buffer is full, finding that the last sent
message is still circulating in its bin in that it must wait
until any one of the above conditions is fulfilled before it
can send the message.

The conveyour belt operates at such high speed relative to
the processor's bin makes a complete revolution in 25.7 ps,
the time to pass through 257 mall stops at a 10 HHZ rate,
and thus a processor can send one message packet to one or
more other processors every 25. 7 ps. The 4Ô bits of the
message are further sub-divided into four fields: an ô-bit
control field, a 12—bit source field, a 12-blt destitnatlon
field, and a 16-bit date field. Four of the control field
bits can also be used as data, yielding a total of 20 data
bits. Hence, the actuaal data rate of the conveyor belt is
10. 3 ps/byte or 97220 bytes/s. If communication is limited
so that, at most, one message can arrive per belt turn
(easily effected by setting the exclusive source address
mode), it may barely be possible for a processor to send one
message (Load a message into outbound buffer from a pre-
designated location) and receive one message (take a message
from the Inbound buffer and store it in a pre-designated
location) without noticing any effects due to the
communication system (that is having to pause because it did
not load its outbound buffer in time for the index pulse or
because its outgoing message was not picked up in time by
the receiving processor). At worst, this could be the case
by slightly alterning the conveyor belt speed, e.g., by

112 M.W. Kalinowski

slowing the master clock or inserting additional processors
and mail stops into the belt (it would be unfortunate to
have to compromise some of the system in order to make it
practical because of the contemporary limits of
multiprocessor technology).

The special 257th mail stop which connects ZMOB to its
external host VAX 11/780 via Unibus has two special control
privileges. The first is that it can write into any of the
conveyor belt bins, allowing rapid loading and. unloading of
data .to or from all processors simultaneously; in fact, it
is so fast (256 messages/revolution or 25 Mbutes/s) that the
Unibus transfer rate (2. 5 Mbytes/s) is the limiting step in
the process, The second is that it can send special
"control" messages (adress in the normal fashion) which have
access to processors' mail stops guaranteed by being able to
bypass any of the mail stop's inbound buffer. This allows
absolute access to any or all processors form the external
conveyor belt messages. Also, it allows absolute control
over any or all processors by being able to generate non
maskable Z80A interrupts which can bring a processor back to
its (EPROM-based) resident kernel operating system.

Software for ZMOB can be any of a number of lanuages written
to run on the Z80 under the CP/M operating system.
Specifically, these include C, a general purpose language
with both high and low-level characteristics; Lisp, a
mainstay for artificial Intelligence research; and Micro-
Prolog, a Z80 version of the theorem proving and logic-based
applications language Prolog.

Programming on ZMOB is facilitated by a number of tools that
run on the VAX 11/760, including a cross compiler for C, a
cross assembler for Z8O, and a simulator written in VAX
assembler for efficiency.

The ZMOB can make an efficient use of its parallelism, and
as a result, should have substantial speed advantage in many
image processing situations. In particular, It is worth to
outline efficient ZMOB commun!cation/computation schemes for

Computer Architecture, Algorithms... 113

point and local operations (with particular reference to how
the data should be partitioned among the processors),
discret transforms, geometric operations (in some cases) and
computation statistics. These schemes demonstrate that
efficient use of ZMOB's parallelism is possible for
essentially all basic image processing and analysis tasks.
In all of these mentioned tasks, ZMOB achieves a speed-up
over a single processor's performance by a factor
approaching 256, the number of processors. ZMOB, with its
ansynchronous, geometry-independent nature, is a
particularly appropriate machine on which to implement a
wide variety of object-oriented software. This popular
programing style in turn has applications in many diverse
areas, including computer vision and image processing, VLSI
design, causal monitoring, natural language parsing and
simulation. A case in point is the domain of simulation of
mechanisms. Here not only do processors assigned to parts
communimicate by means of message-passing to effect a
simulation of motion, but in addition are able to use the
object-oriented system design to gain efficiency when
displaying this motion. This is accomplished using various
parallelizable graphics algorithms.

It is woth mentioning the advantages of ZMOB architecture
for operations on strings. Many operations on strings of
lenghth H can be speed up by a factor of P using P
processors. String operations can also be sped up even when
a single processor is used, by compactly encoding the
strings, e.g. , using new lenght code. This is very important
in image processing If we combine these two ideas. It is
well-known that the best way to distribute an nxn picture
specified by its pixels grey levels is to partition the
picture into P sub-pictures of size H x H each. Each
processor can be responsible for one sub-picture.

If a picture is represented by the new lenght codes of its
rows, operations such as finding the number of black pixels
in a picture, or taking the AND or OR of two pictures can be
done row by row. This is possible because the two

114 M.W. Kalinowski

dimensional properties of pictures are not used in these
operations.

i

ZMOB seems to be a very effective processor for parallel
searching and merging. In particular, a speed-up of log (P)
is possible for the problem of finding an element in
N—element sorted list, and speed-ups of P/log(logP) and P
are possible for merging N-element sorted lists on P
processors in cases when N = P and P< N, respectively.

In practise, these speed-ups are not attainble, since the
shared memory models ignore many practical considerations in
multi-processor systems such as interprocessor
communications, distribution of data on local memories and
limited fanout of memory locations. Taking into
consideration existing ZMOB architecture with its
communication facilities, it is possible to show that there
are:

1. O(log N/log P) algorithm for searching an N-element
sorted list distributed on P processors,К •

2. O(N/P) algorithm for merging two N-element lists on 2P
processors,

3. О (log N) algorithm for merging two N-element lists on 2N
processors.

Simultaneouly, it is worth mentioning that the lower bound
for merging two N-elements lists on HN processors is .
0 (log [log N)).

It is possible to extend ZMOB . architecture to two-'
dimentsional "conveyor belt-liKe" configuration (reported by
G Heil). In this case a speed-up factor could be squared.

Computer Architecture, Algorithms... 115

6. SUPERCOMPUTER PERFORMANCE AMD COMPUTER PHYSICS.

In this section we give a review of the performance of known
supercomputers and some remarks on computer physics.

Computer Compiler MLOPS Maximum theoretical
Speed MLOPS

CRAYX-MP-1 CFT (Coded) 33 1600

CDC Cyber 205 FTN 25 800

CRAY-IS CFT (Coded) 23 160

Fujistsu VP-100 Fortran 77 19 250

Hitachi S-810/20 FORT 77/HAP 17 800

CRAY IS CFT (Rolled BLAS) 12 160

The computer performance has been tested in Fortran •
environment using standard linear equation software in full
precision artithmetic (64 bit arith).

■ I ;
The above computers have the classical architecture with
some improvement to parallel architecture.

116 M.W. Kalinowski

Parallel Computers

Computer Maximum Speed

MPP 6.5 BIPS

Connection
Machine 10 BIPS

Non Von 16 BIPS

IPSC Intel 2-Ô MF LOPS

Butterfly 200 MIPS

Sigma-1 100 MFLPOS

Cedar 10 MFLOPS

MPP = Massive Parallel Processor
BIPS : Billion instructions per second
MIPS = Million Instructions per second

Sigma-1, deleloped by Japan's National Laboratory, will
start to work in 1987. Non Von is pure theoretical
construction.

The remaining machines are operational. However, It Is
impossible to test their performance in a similar manner as-
for classical supercomputers, because the software has not
been develped.

The connection machine, developed be the Thinking Machine
Corp. , seems to be very promisslng solution in the computer
architecture. It is very flexible. The host computer can
change connections according to the nature of the problem to
be solved. Probably. it is necessary to develop new
parailel/data flow programming languages in order to get the
full power of this machine and to synchronize it with the

Computer Architecture, Algorithms... 117

host computer (Vax, or maybe one of the classical
supercomputers).
The high speed, of the classical supercomputer has been
achieved basically due to the very short clock pulse (high
frequency) and due partially to parallel processing. The new
full parailel/data flow supercomputers can get the high
speed of operation due to new architecture. There are
physical limits on the high frequencies imposed by laws of
quantum mechanics and velocity of ligth. The limit of the
high freequency will probably be saturated in 1990, even if
superconducting devices (Josephosn's Junction) will be
applied. I do not see any limits for a new type of
architecture (exept limits on human creativity). The most
interesting point of view for a future designer is an
interplay between a new architecture and new physics applied
as a material realization. Maybe a new branch of physics
computer physics — will cure this problem ([3]. (4), [5]).

The speed of light and Heisenberg uncertaint-y priciple
limit the processor in the following way. First of all let
us consider the processor with a period T of its central
master clock. If the frequency of the clock is suffitiently
high it will limit the size of the processor. For example if
v = 1G Hz (period of order 1 ns), during one period the
light travels 30 cm. In general we have a condition

1 <<-§■= cT
•

(were 1 is a size of the processor, and c a velocity of
light) in order to make a master clock time global for all
processes in our computer. This makes as to pack very
closely all the elements of hardware 1. e logic gates, flip-
flops etc. However this will cause mamy problems. First of
all we should remember that a computational process is a
physical process and it dissipates an energy. For this in
the case of very high density of logic elements the
dissipation of a heat can destroy the processor. This forces
us to go to molecular, atohne or maybe even nuclear
processes as a material realization of the logic. In this
case the laws of quantum mechanics start to play 1. e.

118 M.W. Kalinowski

Heisenberg, uncertainty, principle. But not only, we should
also change our philosophy of computer (logic) design. This
new ideology of a design has been introduced by R. Feynman
in 1985 ([3]). Let us describe it briefly. Let a vacuum
state [o> corresponds to the logic value 0 and the first
exited state |1> to the logical value 1. Let us introduce
operators of creation and annihilation a+, a for this state.
How we can express any, logic function using these
operators, for example HOT, HOR, HAND, AND,OR, EXOR etc. We can
also express more complicated logical divises as half-adder,
adder, multiplier, shift register, flip-flop etc. We can
also introduce a timing via an evolution operator U(t)
connected to the hamiltonian of the devise U:eiHt Defining
the so called "ballistic computation" we can find this
hamiltonian and desribe in terms of spin-like waves (as
R. Feynman). We can also proceede in a diffterent way working
with a periodic time-depending hamitonian. Let us come back
to the limitation of this system. Let an energy gap between
|o> and |1> be E and the width of an energy level Г •
The Heisenberg uncertainty principle limites the minimal
switch time tmin of any logical device: (t*r>ïî)

* >Z tmin >z^ . E >, ar

Thus we see that if) the case of ieV (spin wave) we have
t-min * 10* 15s For 1 keV, iHeV one easily gets 10~17s,
10-21s. This will force us to consider nuclear or elementary
particle (high energy) processes in the last case. From the
other side we will probably change a theoretical model of
computation i. e to consider Quantum Turing Machine in a
place of ordinary Turing Machine ([4]). This goes to a very
interesting considerations on quantum parallel computation
and a simulation of quantum processes. For example we can
get a real random number generator. The problem of
implementation of parallel or concurrent architecture in
quantum hardware seems to be very promissing. Some
researchess in Watson's IBM Research Centre are very
enthusiastic for such innovations ([5]). The interesting
point is to consider new type of algorithms and languages
designed for this type of computers. The speculations on

Computer Architecture, Algorithms. . 119

A. I. program implementation in such machines seem to be also
interesting. This is strictly connected to, the quantum
indeterminism in the machine. Some ressearchers in A. I.
program claim that the real intelligence can emerge only if
we have some kind of indeterminism. This indeterminism is
intrlstically probabilistic and has nothing to do with a
classical nondeterministic Turing machine.

7. HEW COMPUTER ARCHITECTURES, A PERSPECTIVE.

The von Newman-type computer, invented by John von Newman,
is a sequential machine. It means that every instruction has
to be executed step by step. This is reasonable, because we
need, in general, a result of a previous operation in order
to execute the next operation. Moreover, there are many
algorithms for which this statement is not terribly
important. The most important exaples are as follows:

1. matrix multiplication
2. matrix addition and substraction
3. matrix inversion
4. inner product calculation
5. quick sort
6. tournament sort
7. external sort
8. FFT (Fast Fourier Transform)
9. convolution
All of these algorithms have a common property: some of the
manipulations on data can be done in parallel. We do not
need the results of one operation in order to execute the
next one. Moreover, the traditional von Newman-like
architecture forces us to proceed with the computations
(manipulations, transformations) in a sequential way. It is
natural and important to make an effort to design a computer
architecture which will allow computations according to the
algorithm structure. In this ‘ way, the gap between an
algorithm and a machine would be much smaller and, due to
this, the computation process would be quicker. The idea is

120 M.W. Kalinowski

very simple. From a practical point of view, it is enough to
take a quite general and important algorithm and to map it
into the processor's structure.
It is necessary to say that I do not mean here an

implementation of an algorithm as a special purpose
computer. I mean a general purpose architecture based on
data structure of an algorithm.
The most important algorithms are: matrix manipulation and
sort/search algorithms. They are simultaneously very general
from the point of view of an information structure. It means
that they can be represented by networks or graphs (trees,
binary trees, balanced, almost balanced or tries; the last
motion is obtained from the word retrieval) ■ In this way, we
do not care what kind of transformation on data has been
done in a specific node of a network. It happens that,
in|the case of a matrix manipulation algorithms, the in
formation structure is a network with periodic properties —
an array. In the case of sort/search algorithms, we get
rooted graphs (trees). Both structures are very general and
, after mapping into the.processor*s interconnections, we
get systolic architecture (systolic arrays) and tree (graph)
machines. Some researchers in computer science suggest that
systolic arrays and perfect shuffle (quick sort algorithm)
should be a source of a new computer architecture for a
general-purpose computer (Bayan networks, G) —networks).
There are many kinds of systolic arrays: rectangular,
hexagonal (Fig. 4), 1-, 2- or 3-dimensional. All of them have
a common property: the information is flowing in a pulse way
(similar to heartbeat). Because of this pulsing property, it
is possible to consider the information flow as a wave
propagation process that the Hyghens principle is satisfied
(every processor is a source of information and this is
similar to a wave propagation on the'surface of the water).
Because of this, some of these processors are called wave
front processors. There are two kinds of architectural
solutions for this type of arrays.

In the first, every row of an array is working
independently. In the second, there is a synchronization

Computer Architecture, Algorithms. ■ ■ 121

Fig. 4. Hexagonal systolic array for matrix multiplication. Ar
rows indicate directions of the information flow

between all rows and an array behaves in a holistic way. The
first possiblility could behave similarly to a non-
determinlstric machine (there is not a coherent infomation
flow). The second solution has more advantages, because we
can consider an information flow as a coherent wave
propagation and apply some ideas from wave mechanics up to
holography. The wave propagates, of course, in information
space (not physical space). The idea of systolic arrays
seems to be very attracive, and some people consider data
flow and control flow machines. It is interesting to mention

122 M W. Kalinowski

that the BBN buterfly computer is bassed on the information
structure (interconnection) of the convolution or EFT
algorithms.

The tree (trie) machines are also very attractive. However,
the information structure is net as regular as in the case
of systolic arrays (excluding the case of completely-
ballanced binary trees (BBT)). There are also some more
complicated architecture, i. e graph machines (Fig. 5). Some
of these processors structures have been implemented in the
VLSI using HOS and CHOS technology.

Let us conclude that the parallel architecture has been
applied by Nature in visual data transformation. Probably,
this is the best architecture, because it needs only 10-100
computations in order to proceed visual data in the animal
brain. The amount of data is so enormous that everything
must be done in parallel. The connectionist approach to A. I.
program tries to use this architecture in order to enable
intelligent networks to understand natural languages. This
is similar to some ideas mentioned in the next section
(artificial intelligence program and a special purpose
machines) with a connection to Chomsky's linguistics and R.
Thom's catastrophe theory. The information structure in the
form of a network is typical for neocortex, and this is not
accidental (I presume). In this case, a network could be
considered (physically), as a complicated Ising-rlike model.
Some researchers in theoretical biology suggest the
posslbillity of a second order phase transition in such a
network (Grodsky's array). On the level of the information
structure such a phase transition means a new information
channel and a new connection between their elements.
Probably, the human brain behaves in this way, because it
has been proved that some correlations between functional
potentials of neurons have statistical significance. I do
not mean any a, B, & or e rhythms, which express an average
electrical function of the brain. It is now absolutely sure
that these rhythms have nothing to do with an information
exchange among neurons. For example, in an expiiepsii

Computer Architecture, Algorithme... 123

10

Fig. 5. Graph machine architecture

124 M.W. Kalinowski

these average rhythms dominate and, because of this,
the normal function of the brain is impossible.

The real function (electrical/physical) of the brain
probably consists in correlation of the potential
fluctuations between distant neurons (3-4 cm). They are not
connected directly; thus, it means there is an information
exchange channel between them. This suggests that the
connectionist idea supported by phase transition mechanism
is quite right. From a different point of view, we know from
neuro-pathology that the memory is distributed in a coherent
way, similar to the holographic picture. This suggests an
information wave propagation mechanism for a neuron network,
perhaps similar to wave front processing for systolic-like
arrays.

Let us sum up. Any quite general algorithms known in
computer science could be a soure of a new computer
architecture. Thus, we have many possibil lities. There is
not, in general, any clear critérium for an efficiency of
such a new architecture as a general-purpose computer. If we
implement one of these algorithms in VLSI as a piece of
hardware, it will work very well as a .special-purpose
computer for a specific problem solved by this algorithm.
However, it could fail for a different problem (for example,
it can be very slow, even in comparison to a classical von
Kewman machine, or it could not work). Supercomputers are
considered as general-purpose computers. Because of this, we
should choose an adequate algorithm as a map into a
processor's structure. This seems to be a question of art,
because, in many casese, the architectural Improvement does
not go to very high efficiency. Moreover, it is very
important to look for new solutions on all levels, 1. e. :

Computer Architecture, Algorithms... 125

1. hardware — VLSI system (or even UVLSI)
2. algorithms
3. high-level programming languages,

in order to remove a semanie gap. Semantic gap, rougply
speaking, means that there is not a mapping between these
three levels, i.e., there is not an isomorphism between the
processor's structure, algorithms and information structure
of the HLPL (High Level Programming Languages). The perfect
solution is to design a new type of HLPL with data flow or
control flow mapped into new computer architecture. This is
beyond SIHD (or even MIMD) structure applied in Cray-IS,
Cray-2, Cray-XMP or Cyber 205. Due to this, supercomputers
operate quite slowly. For example, in Fortran environment,
they will operate much more slowly for LISP or Prolog (an
additional compiler and a higher semantic gap). See, for
example section 6. If we do not want to change a programming
language (HLPL) because this will cause inconveniennnces and
costs, we can implement Fortran, LISP or Prolog in VLSI
system in order to get a higher performance. Some of these
implementations have been done and we have a LISP machine on
a chip (LISP Machine Corp.). The same has been dope in the
case of Prolog, for MProlog (a hungarian version). In the
case of Prolog the systolic architecture has been
used. (Logicware Inc.). The Japanese Fifth Generation
Computer Project uses MProlog as a machine languagge for Its
Personal Inference Machine. This is, of course, half of the
solution. Fortunately, a new high-level programming language
has been designed by the Department of Defence in USA. This
language is called ADA in favour of Ada Contessa de
Lovelace, daughter of Lord Byron, the first computer
programmer. (She programmed the steam analytic engine
designed in the 19th century, a primitive computer.) This
language is parallel and, because of this, more adequate for
new architecture. However, it is not popular in the academia
and it is not a data flow/control flow language. Thus, we
can conclude that we should re-invent a computer (hardware-
architecture) programming language, new physical concepts in
computer physics, in order to get a

126 M.W. Kalinowski

real supercomputer. This seems to be very exciting; however,
it is very hard because all of these new principles must be
in accord.

8. ARTIFICIAL INTELLEGENCE PROGRAM AND A SPECIAL PURPOSE
MACHINE.

In general, we can divide the whole artificial intelligence
program into two fundamental currents;

1. One which is based on logic programming [6] with
connection to modern digital computers:

2. One which is looking for deeper understanding of
intelligence due to connection between non-linear networks,
thermo-dynamics, catastrophe theory and modern linguistics.

It seems that the second program has many theoretical
advantages and probably due to an intriguing relation
between Chomsky's lingustic and R. Thom's catastrophe theory,
is able to solve an emerging problem of intelligence. This
is my personal point of view, but I see this possibility
quite clearly.

What is intelligence? ([6]) It is a language ab^e to form
models with hierarchal structure and double articulation.
The network approach uses the theory of differentail
equations and their stability. It looks for limit cycles and
attractors. Each such limit cycle corresponds to a
"behaviors" of a system. The natural terminology for this
problem is the terminology of differential topology, i. e. ,
catastrophe theory which classifies such "behaviours". R.
Thom discovered a very interesting relation between the
classification of stable (1. e. , stable with respect to small
smooth deformations) "behaviours" — "regimes", and a
derivation tree from modern linguistics (R. Thom —
"Topology and linguistics", (in French). In this way, the
derivation tree could naturally emerge from the stable
configuration of the network. This program seems to be very

Computer Architecture, Algorithms... 127

attractive for the long run, and it is worth studying in
more detail.

The special-purpose machine, based on these principles,
could probably develop an inteligent behaviour with an
ability to learn form experience. Moreover, I suggest
choosing the first possibility as a basic principle of a
design in order to get some practical results in the future.^
Why? The second fundamental approach is purely theoretical
(up to now) and, to the best of my knowledge, nobody has
constructed any robot, any autonomic unit, based on these
principles. Morever the second approach has practical
application in automated reasoning in CAD, CAM and
"intelligent" control systems. Thus, this program offers, in
principle, a hope of designing and manufacturing a special
purpose machine for example, a submersible robot which should
have the following properties:

1. Controlled form the ship by human staff

a. Able to make correct autonomic decisions concerning the
outside situation in a short time;

3. Able to transform information obtained by sensors into
data under sta—bl e by a program

4. Able to translate a logical decision into correct
commands for its effectors.

5. Able, in the case of any ambiguity, to ask the control on
the ship for a decision.

6. Able to ask a question about an internal or external
situation.

These six principles are higly inter-related, and should be
considered a minimum requirement for our special-purpose
machine. •

128 M.W. Kalinowski

The fundamental question which immediately arises is as
follows: How to achieve it theoretically and what kind of
material realization is necessary?

First of all, we will consider the theoretical means. What
we need is an effective inference engine which can proceed
as follows:

1. Form a question ?Q?

2. Answer this question: A and negate it B=~A

3. Select data D from outside and from inside the vehicle
connected to the preposition A.

4. Find all stored knowledge К connected to A and D.

5. Use logical rules and unification algorithms in order to
transform the expression B. D. K.

S. If B. D. K. equals О (s'ign of a contradiction), transform
into set of commands for effectors and/or communicate
with the ship

In order to proceed with this process, we should be able to
express A. , D. , К in a set of clauses, to unify expressions
and to apply a set of sound and complete inference rules. К
could be stored in an associative memory in terms of
clauses. What we need is to translate D into clauses. This
could be achieved by a pattern recognition program for
outside inofrmation. The inside information could be given
in a required form.

How it is necessary to translate a décision into commands of
effectors. This can be achieved by a feedback between a
question forming agent and an effector processor which will
proceed with its task if the inference engine finds a
contradiction. This quite vague program, after its
realization, has really nothing to do with an intelligent
behaviour, because the model of the situation has not been

Computer Architecture, Algorithms... 129

created. In my opinion, this is the most important in A. I.
Moreover, it can be very efficient if we find processors
which are able to proceed with all of these manipulations in
a very short time. The last problem seems to be very
promissing, because of the construction of SUM (Syracuse
Unification Machine) on a one chip in CHOC technology.

The question is immediately connected to the material
realization of the theoretical problem. If we decided to use
digital processors, we have following possibilities:

1. mechanical devices
2. fluidics
3. light devices (optoelectronics)
4. electronic devices (VLSI or UVLSI)

The first two possibilities are inapplicable because of a
very long reaction time and huge size. The third possibility
is not sufficiently developed (up to now). Thus, it seems
that VLSI are the best possibility and we can consider
silicon VLSI based on MOS, CMOS, CHMOS technologies. These
technologies are progressing rapidly, and we can also
condlder GaAr technology with MODFET transistors (Modulated
Doped Field Effect Transistor). The last technology is very
promissing because of a very high speed (up to 10 psec of
switching time).

130 M.W. Kalinowski

Acknowledgements

I am very grateful to dr A. Stein and J r G. Heil from
Epistemics Ltd Toronto Canada for ' many interesting
discussions and advises.
I thank also Hr B. Beach for discussions and a financial
support The support of UNCOMMON Foundation is highly
apreciated. I want to thank Miss Catherine Lynch for her
helpful assistance in a literature search using CAIRS
(Computer Aided Information Retrieval Service).

References

1. Kai Hwang and Fayê A Briggs - "Computer Architecture and
Parallel Processing" Me Graw-Hill Book Company, New York
1964.

2. Tutorial on parallel processing ed. by Robert H. Kuhn and
David A. Padua IEEE Computer Society, New York 1961.

3. R. Feynman - "Quantum mechanical Computers" Foundations
of Physics ,16P- 507 (1986).

4. D. Deutsch "Quantum theory, Church—Turing thesis and the
universal quantum computer" Proceedings of Royal Society
Of London A400p. 97 (1986).

5. Charles H. Bennett - "The Thermodynamics of Computation -
a review" Internatioahl Journal of Theoretical Physics
2Jp. 905 (1982).

6. Paul R. Cohen and E. Feigenbaum - "The Handbook of
Artificial Intelligence" William, Kaufmann Inc. Los
Altos Ca. 1982

