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Prąd elektronowy metalowej elektrody umieszczonej w plazmie

Электронный ток металлического зонда помещённого в плазме

1. INTRODUCTION

The theoretical determination of the electron current (Je) of the metallic elec
trode, placed in ionised gas is an important problem of the plasma physics. A 
dependence of the current on the electron energy distribution [f(e)j is specially 
important. The widely known Druyvestein theory [1] is not fully satisfactory for 
resolving the problem. This theory does not explain the fact, observed in the expe

riment with the electrostatic probe, that electron current density i = decreases 

when the area surface S of the probe increases, e.g. see Herrmann and Klagge [2]. 
Attempts at an explanation of the experimental fact were often undertaken. The 
consideration of Swift [3] concerning the spherical probe are successful. However, 
the results of Swift theory can be used only for a low pressure with regards to 
accepted assumption. *

In the present paper, the generalization of the Swift theory is described. In 
these consideration the problem of the calculation of the special integrals p(P, x)| 
is present. Values of many different integrals can be determined by integral 0(P, x). 
For the above reasons, integral is treated as the new special function. The values 
of ff(P, x) calculated with the computer are presented in the tabele.
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2. GENERAL ANALYSIS OF THE PROBLEM

The metallic electrode, placed in the plasma, is the object of an intensive neu
tralization of charge carriers: the plasma becomes locally impoverished. When the 
electrode potential (V) in relation to the plasma is negative, the positive charge 
sheat surrounds the electrode. This sheat having the size (a) shields the electri
cal field of the electrode. The determination of the d is an open problem, e.g. 
see report [4j. In general, it is accepted that d is equal to the Debeye length 

i ~
X,i = t/-----: , <7o is here the permitivity of the free space, TeTt are the

\ nee(rc+Ti]
electron and ion temperatures, n is the plasma density, e is electron charge. If the 
mean free path (A,) of the electrons is longer than the sheat size, the Druyvestein 
theory (modified by Medicus [5]) can be used lor the determination of the electron 
current of the electrode. According to the above theory, the group Д (s)As of the 
electrons, placed at distance of d from the electrode, forms the current △ Je defined 
as

△ JK = gSy/e(l------) • Fi(e) ■ , (1)

w ere g — \l----  and m is here the electron mass.
V 8m

The advantage of the Druyvestein theory is, that it gives a simple relationship

of Fi (s) with the second derivative of the electron current, 
dv 2

d2Je _ gSF^e) 
dV2 Je

(2)

The above formula is widely used in order to determine the electron energy di
stribution function J’o(e') of an undisturbed plasma. Using the above formula one 
accepts that Fi(e) = Fo(sj. However, this assumption is often incorrect. This 
assumption is insignificant if one uses the Druyvestein theory in the Swift modi
fication. According to Swift, the plasma perturbation around the electrode has a 
more complex structure than that accepted in Druyvestein theory, see Figure 1.

Besides the region of the strong electrical field , the region of the weak field is 
present at which the plasma density is lower than that of the undisturbed plasma. 
The electron current passes through this second region in a diffusive manner. At 
distance of r from the spherical electrode, the group [F(s)As] of the electrons forms 
the electron current

△ Je = , (3)
dr

I------
where D = | А,д/ In case of the spherical electrode, a very useful assumption 

can be accepted that F(e) —* Fo(e) as r —» 00. When we use the above assumption 
then resolving equation (3), we obtain

F^e) = Fo(e]-
4jreD(a + d)

(4).
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Fig. 1. Plasma stucture arround the spherical electrode

Substituting (4) into formula (1) and integrating over region V 4- oo we obtain

e — V 
e-PV

(5)

“ф 3a2
where P ~  ----- -, ip — ——------ — and a is the electrode radius. On the basis of

2+0 2Ae(a + d)
cP J e

formula (5) a very important relationship of /Ь(е) with ■ * can be determined as

(Pje 
dV* ~ 9

F(e = V) 
x/ê

(e-PV)^ (6)

Swift obtained analogous expressions. The presence of the integrals in formulae 
(5, 6) causes that the further solution of the problem is very difficult. Swift con- 

^2 J
sidering the relationship /[-^(е)! determined the correction function for
the Maxwellian and Druyvesteinian distributions of the electrons. Swift calculated 
suitable integrals in a rough manner, when he assumed that —- < 0.6. However, 

this assumption limits the use of the Swift solution in the experiment with the 
electrostatic probe.

The typical energy distributions [F(e)] of the plasma electron can be described 
by the formula:

. . nay/s ißsyk. Ле) = -^-ехр-(^)к
VI a J- 

(7)

where a, ß, k are the suitable constants dependent on the distribution type. Sub-
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stituting (7) into (5, 6) we obtain

<Pje 
dV2

_ „Sna(l- P

PV2(1 - P) 
e-PV

gSna f== —==- < <
T3 I 
2PV

e*P~(^)k

P2V2
PV)2 +

oo

■ exp-(y)fc de,

- 2P(1 - P)2 /

L fZ’
py)3 exp —

° 1 
e-PV

k 1
de > .

(8)

(9)

T

2
In case of the Maxwellian distribution (fc — 1, a = —y=, /9 = 1), the integrals 

V^r
of formula (8, 9) can be simply determined with the exponential-integral function 

f°° 1
Р,(х) — / ~ ' exp — t ’ dt see ref. [6]. For example the' Je(V) can be described as

Jr t

^е(У) = gSn-^=\/T(l - P) (exp-^0 {1+ Ç+

-P(l-P)^ [exp(l - P)£] • E, [(1 - P)~.
(10)

3. CASE OF THE DRUYVESTEINIAN ENERGY DISTRIBUTION OF ELECTRONS

For stable homogenous plasma (a model plasma), kept with the stable electrical 
field, the Druyvesteinian type of the electron energy distribution is characteristic. 
This distribution is the result of the solution of Boltzmann equation, if the inde
pendence of the electron collisions cross section on the electron energy is assumed, 
see Rutsher [7]. It is characteristic of the classical Druyvesteinian distribution that

2 2Г(|)

к = 2, ß2 = ----- “ 0.243, a =
згф

4

2sr3(^)

-------- ~ 0.565. Often the simple Druyve-
\ ЗЗГ(^)

steinian distribution is used for which к — 2, ß =■ 0.5, a =-------- x— = 0.577 are
^ï(j) 

characteristics Г(г) = f0 t* 1 • exp — t dt is the gamma function, see ref. [6].
In case of the Druyvesteinian distribution the integrals of the expression (8, 9) 

cannot be determined by special functions known so far. However, they can be de
termined by the expression containing the error function erfc (z) = exp — t2 dt

Z
°° 1~—~p~ ' exP —f2 dt-
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According to above, the formulae for Je and for can be described as 
dv 3

Je(V) =з$па±'/Т(1_р){1|ехрЧ/ф2] +

-(1 - P)ß^ erfc (ß^) - P(1 - P)(ß^9(P,ß^) J ,
(И)

= ^?{[1 - 4P2 + 3P2 + 2P<(1 - P)(4)21 ' [exp-(^^)2]+

—4P2(1 - P)2[P2(j9^)3 - 2P(ß^)] erfc (ß^)+ (12)

-2P[(1 - P)2 - 5(1 - Р)2(/ф2 + P3<ß^]9(P,ßV~)}

The manner of reducing of integral 

bed in Appendix.

/ ß& \2exp-(-y)2
to integral 0(P, z) is descri-

4. CALCULATION OF INTEGRAL 9(P, z)

Introducing new variable z = integral 9(P, z) can be described as follows:

1
exp —t2 dt = /
t-Px Jo

exp- —
—-------z(l — zPx)

This transformation permits to calculate value 9 (P, x) by function RUMOAA (dou
ble precision) which is described in the reports [8, 9j. The use of the above function 
allows to calculate 9(P, z) with relative errors < 1 • 10~-9. The calculations were 
made with the computer R-22 (« IBM-360). The computed values of 9(P, z) for 
P = 0.1,0.2 , ... 0.9 and z = 0.1,0.2 , ... 3.0 are presented in Table 1. Moreover, 
Figure 2 presents the dependence of 9(P, z)on P and z.

In order to determine intermediate values 9i(Pl,xt) (for z;, Pt absent in Ta
ble 1) linear approximation cannot be used, because the errors can be higher by 
several per cept. The shape of diagrams 9(P, z) — f(x) shows that the depen
dence can be approximated exponential type functions: 9(P, z) = Aexp—fc^/z, 
0(P, z) = A exp— bx, 9(P,x) = A exp— bxy/x, at intervals 0.05 + 0.3, 0.2 + 0.8. 
0.7 -r 3, respectively. When constants A and b are determined on the basis of 
01(P>S1) and ^s(P>^2) values, corresponding to Zi, Xq = Z], +0.1 arguments, then 
intermediate 9j(P, z,), corresponding to x*, (zx < z,- < Z2) and determined accor
ding to the above approximation, is charged with an error smaller than 0.25%. In 
case of the calculation of intermed’ate values Ö, (P, z) (for intermediate P, parame

ters, different from those given in Table 1) approximation 9(P, z) = ГГр be
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used. When constants A and b are calculated on the basis of 0i(Pi, x) and ^з(Рг> x) 
then value 9,(Pt, x) corresponding to Pi (Pi < P{ < Pi + 0.1) and found according 
to the above approximation are charged with an error smaller than 0.25%.

The above degrees of the accuracy of the 9i(Pi, xt) determination are satisfactory 
from the practical point of view.

5. CASE OF A CYLINDRICAL ELECTRODE

Let us consider an element of an infinitely long cylindrical electrode having 
radius a and length I, see Figure 3a. The solution of appriopriate equation, corre
sponding to equation (3), gives

Р(е,г)-Л(£,о+</)=-^Ь-^, (13)
IvleD a + a

where △ Je is the diffusive current of electron group F(e)Ae. On the basis of formula 
(13), the relationship Ei(e) = /i[Fb(e)] cannot be simply determined under the 
condition that F(e, r — oo) = Pb(e), because F(e) —» oo as r —► oo. It is the 
principal difficulty of the use of Swift theory for cylindrical electrodes.

In report [10], the above problem was solved in a rough manner, where it was as
sumed that the Swift perturbation is located at the finite region a+d-r several Xe. 
However,^this assumption requires grounds and it also requires an additional in
formation about the plasma-electrode state. Moreover this procedure can be used 
only in case of the slim electrode, (a « I, X « I). This problem can be also so
lved by introduction of the »spherization” of the cylindrical electrode having finite 

length. Let us consider the cylindrical electrode having radius a and length I, see 
Figure 3b. Let us assume that the barrel-shaped surface, placed at distance x from 
the electrode surface and having the area Sx = 2тг[а2 + (a + x)l + 2x2 + Trax] is the 
geometric locus of points having identical plasma parameters. Surface Sx tends to 
the sphere as r tends to the infinity. Thus we can write

△ Je = е2тг[а2 + (а + x)l + 2x2 + тгах] . (14)

Resolving equation (14) in limits d-i- a, we obtain

P i » w t \ 1 1 ) 4d + тга + I + л/А
Fi (e) = г0(е)------ — - -----7== In-----------------------7= ,°' 1 eD2ir-/R 4d + ira + l-\/&

where A = тг(а + I)2 — 8(a2 - al).
Putting F’i(e) in formula (6) and integrating over interval V -r oo, we obtain 

the expression for Je(V) which is identical to expression (8). The new formula for 
Je(V) has the hew coefficients фс, Pc, determined as:

ri ipc . За2 + al, 4d + тга + I + \/Ä
Aç ——■ “ ■ . il) £ —---------1 111 1 1 ' .

2 + V’c 2 Ae%/Ä 4d + тга + I — VA
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The further use of the Swift theory for the cylindrical probe is the same as for the 
spherical probe.

6. EXAMPLE OF THE USE OF THE EXTENDED SWIFT THEORY

Herrmann et al. [11] presented the results of the probe measurement in the 
neon plasma for which the Druyvesteinian distribution is particularly characteristic. 
The electron concentration determined with the cylindrical probe by Herrmann was 
twice higher than that determined with the spherical probe. This discrepancy could 
be caused by small size of the spherical probe which was 0.6 mm in diameter. The 
slim cylindrical probe has the good contact with the plasma. The small spherical 
probe practically collects the electron current only with half of its surface. Another 
half is shaded by the probe leg. For the better result one should use a probe of a 
larger size.

Under the conditions of the Herrmann experiment (P = 1.29 <torr) the mean
free path of the electrons was «1 mm. If the probe of 1.2 mm in diameter is used, 

Ö A
the ratio — equals 0.6. This value of — is the limit value permissible by Swift in

his theory. In this case and at higher pressures the correcting function, determined 
with integral 9(P, x), ought to be used. Figure 4 gives the example of the use of 
the extended Swift theory.

It is seen that the discrepancy of the characteristics determined with the funda
mental theory and those determined with the extended Swift theory is considerable 
if — is high. Moreover it can simply be deduced that the density of the electrode 

At
electron current decreases when the electrode radius increases. At higher gas pres
sures (several torr) the use of the extended Swift theory is necessary even for the 
small electrode as that having 1.2 nun in diameter.

7. CONCLUSION

The generalization of the Swift theory permits to use it at every values of the 
ratio of a electron mean free path and a f>robe radius. This generalization can be 
used for typical electron energy distributions: Maxwellian and Druyvesteinian. One 
should bè stressed that the Swift theory is important because it takes to account 
the local impoverishment of the plasma occurring around the electrode.

Swift [3] has given one’s attention to determine of the electrode potential in 
relation to the plasma. The results of this work can simply be incorporated in the 
Swift’s considerations relative to the potential determination.

In order to correct the energy distributions, measured with an electrostatic 
probe, we have defined a new special integral. This integral can be useful in the 
solving of the other problems. In regards to the physical character of this report 
only the fundamental properties of the above integral are shown.
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Fig 2. Integral 0(P, x) as function of parameters P and arguments X
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Fig. 3 Scheme of the use of the Swift theory for cylindrical electrodes

Fig. 4 The currept-voltage characteristics of the spherical probe placed in the Druyvesteinian 
plasma. The characteristics were calculated according to the extended Swift theory for several 

values of ratio a/Àe: a — ~ 0, b — 1, c — 2, d,— 5 . Electron current J(V) was normalized
, . gSnay/Т • L •

to value J (0) = ----——---- forecasted on the basis of the fundamental Druyvestein theory.

According to Swift [3], d — Xe was assumed

К
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Table 1. Values of integrals 0(P, x)* 4

x,P 0.1 0.2 0.3 0.4
0.1 2.1073 0 2.2075 0 2.3229 0 2.4581 0
0.2 1.41'57 0 1.4976 0 1.5952 0 1.7111 0
0.3 1.0190 0 1.0881 0 1.1694 0 1.2669 0
0.4 7.5267 -1 8.0875 -1 8.7527 -1 9.5584 -1
0.5 5.6033 -1 6.0518 -1 6.5877 -1 7.2422 -1

0.6 4.1714 -1 4.5249 -1 4.9497 -1 5.4725 -1
0.7 3.0913 -1 3.3655 -1 3.6972 -1 4.1079 -1
0.8 2.2739 -1 2.4834 -1 2.7382 -1 3.0555 -1
0.9 1.6568 -1 1.8145 -1 2.0070 -1 2.2481 -1
1.0 1.1941 -1 1.3108 -1 1.4540 -1 1.6342 -1

1.1 8.5023 -2 9.3536 -2 1.0401 -1 1.1725 -1
1.2 5.9756 -2 6.5863 -2 7.3403 -2 8.2966 -2
1.3 4.1425 -2 4.5734 -2 5.1071 -2 5.7863 -2
1.4 2.8307 -2 3.1299 -2 3.5013 -2 3.9756 -2
1.5 1.9058 -2 2.1100 .2 2.3642 -2 2.6897 -2

1.6 1.2636 -2 1.4007 -2 1.5717 -2 1.7912 -2
1.7 8.2479 -3 9.1523 -3 1.0282 -2 1.1737 -2
1.8 5.2978 -3 5.8844 -3 6.6190 -3 7.5667 -3
1.9 3.3477 -3 3.7217 -3 4.1908 -3 4.7971 -3
2.0 2.0806 -3 2.3149 -3 2.6092 -3 2.9903 -3

2.1 1.2715 -3 14157 -3 1.5971 -3 1.8324 -3
2.2 7.6394 -4 8.5113 -4 9.6096 -4 1.1036 -3
2.3 7.6394 -4 5.0291 -4 5.6823 -4 6.5322 -4
2.4 2.6180 -4 2.9201 -4 3.3016 -4 3.7987 -4
2.5 1.4928 -4 1.6659 -4 1.8848 -4 2.1702 -4

2.6 8.3628 -5 9.3370 -5 1.0569 -4 1.2179 -4
2.7 4.6019 -5 5.1402 -5 5.8218 -5 6.7130 -5
2.8 2.4872 -5 2.7793 -5 3.1494 -5 3.6337 -5 К
2.9 1.3202 -5 1.4757 -5 1.6730 -5 1.9314 -5
3.0 6.8812 -6 7.6947 -6 8.7269 -6 1.0080 -5

* The reading manner of the 0(P,

19(0.1,0.1) = 2.1073

x) values is given in the following examples: 

10° 0(0.9,3.0) = 4.6864 ■ 10~5 .
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0.5 0.6 0.7 0.8 0.9
2.6206 0 2.8228 0 3.0880 0 3.4688 0 4.1329 0
1.8523 0 2.0306 0 2.2683 0 2.6157 0 3.2345 0
1.3870 0 1.5408 0 1.7448 0 2.0581 0 2.6206 0
1.0561 0 1.1861 0 1.3642 0 1.6334 0 2.1331 0
8.0650 -1 9.1416 -1 1.0636 0 1.2930 0 1.7272 0

6.1325 -1 7.0108 -1 8.2508 -1 1.0154 0 1.3848 0
4.6324 -1 5.3316 -1 6.3242 -1 7.8898 -1 1.0966 0
3.4635 -1 4.0117 -1 4.7978 -1 6.0539 -1 8.5664 -1
2.5601 -1 2.9823 -1 3.5933 -1 4.5807 -1 6.5688 -1
1.8668 -1 2.1880 -1 2.6541 -1 3.4158 -1 4.9899 -1

1.3456 -1 1.5829 -1 1.9320 -1 2.5084 -1 . 3.7180 -1
9.5530 -2 1.1285 -1 1.3853 -1 1.8132 -1 2.7244 -1
6.6825 -2 7.9250 -2 9.7779 -2 1.2895 -1 1.9627 -1
4.6038 -2 5.4788 -2 6.7920 -2 9.0208 -2 1.3896 -1
3.1223 -2 3.7277 -2 4.6415 -2 6.2048 -2 9.6688 -1

2.0839 -2 2.4953 -2 3.1195 -2 4.1957 -2 6.6089 -2
1.3684 -2 1.6429 -2 2.0615 -2 2.7884 -2 4.4373 -2
8.8377 -3 1.0636 -2 1.3393 -2 1.8211 -2 2.9261 -2
5.6124 -3 6.7701 -3 8.5519 -3 1.1686 -2 1.8949 -2
3.5040 -3 4.2355 -3 5.3662 -3 7.3668 -3 1.2048 -2

2.1503 -3 2.6042 -3 3.3084 -3 4.5615 -3 7.5221 -3
1.2968 -3 1.5733 -3 2.0039 -3 2.7741 -3 4.6102 -3
7.6846 -4 9.3388 -4 1.1922 -3 1.6568 -3 2.7737 -3
4.4739 -4 5.4455 -4 6.9672 -4 9.7162 -4 1.6380' -3
2.5586 , -4 3.1185 -4 3.9984 -4 5.5947 -4 9.4947 -4

1.4372 -4 1.7540 -4 2.2533 -4 3.1627 -4 5.4014 -4
7.9289 -5 9.6884 -5 9.2468 -5 1.7552 -4 3.0156 -4
4.2954 -5 5.2546 -5 6.7737 -5 9.5623 -5 1.6522 -4
2.2849 -5 2.7980 -5 3.61-33 -5 5.1133 -5 8.8831 -5
1.1933 -5 1.4628 -5 1.8914 -5 2.6837 -5 4.6864 -5
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8. APPENDIX

Г00 exp _j2
(i) The integral / ------—r^dt of the expression (9) was calculated as follows:

Jx H ~ Р x)

Г00 exp-t2 exp-г2 f00 t • exp-t2 _
Jr (t-Px)3 2x2(l — P)2 Jx (t-Px)2

exp — x2 exp — t2 Г°° exp — t2
” 2x2(l -Pÿ~Jx .^Px) Jx (t-Px)2^'

The next use of the integration by parts and of the substitution t — Px = z gives

f00 exp—t2 Г 1 P 2
Jx (t - Px)3 t ~ [2x2(1 - P)2 ~ FTP J (eXP ~X +

+2Px erfc (x) - (1 - 2P2x2)0(P, x)

(ii) According to the above scheme, the integral defined as

can be transformed to the expression containing integrals erfc (x) and 6(P, x). 
д, V are natural numbers and ц < v.

(iii) Putting t2 = г, the integral 9(0, x) can be evaluated as

0(0, x) = ri^ldt^\E,(x2).
J X Z
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STRESZCZENIE
i ' ■

W świetle teorii Druyvesteina i Swifta badano prąd elektronowy sondy. Wprowadzenie nowej 
funkcji specjalnej pozwala określić prąd elektronowy sondy dla dowolnego stosunku promienia 
sondy do średniej drogi swobodnej elektronów. Wartos'ci tej funkcji, obliczone numerycznie są 
zestawione w tabeli. Przedstawiono zastosowanie uogólnionej teorii Swifta dla sondy sferycznej. - 
Ponadto pokazano, że nowa funkcja specjalna jest elementem rozwiązania innych nieelementarnych 
całek.

РЕЗЮМЕ
• •

В рамках теории Дрювестейна и Свифта исследовался электронный ток зонда. 
Введение новой функции позволяет определить электронный ток зонда при лю
бом отношении радиуса зонда к свободному пробегу электронов. Значения 
этой функции, вычисленные с помощью ЭВМ, указаны в таблице. Показано 
применение обобщённой теории Свифта к сферическому зонду. Показано также 
использование новой специальной функции для решения других неэлементарных 
интегралов.

Złożone 31.VII.1987




