ANNALES
UNIVERSITATIS MARIAECURIE-SKLODOWSKA LUBLIN - POLONIA
Vol. XXXIII, 1
Sectio AAA

Instytut Fizyki UMCS
Zaklad Fizyki Teoretycznej
Klerownik: prof, dr hab. Stanistaw Szpikowski

Andrzej GOZDZ, Stanislaw SZPIKOWSKI

Interacting Octupole Bosons and Its Group-Theory Background
Teoriogrupowe podstawy oddzialujących bozonów oktupolowych
Теориогрупповые основы взаимодействуюших октупольньх бозонов

INTRODUCTION

Recently the Interacting Boson Approximation Model (IFA) to deal with the collectlve states for even nuclel is rapidly developed [1-5] . However, only quadrupole states can be Interpreted within the glven formalism with the eventual of une-phonon states of the hgher multipolerity. According to known suggestions $[6,5]$ the important role is played by other collective motions especially by the octupole degrees of freedom. Calculations based upon the Bohr--Mottelson geometrical model showed $[7]$ that In some cases almost pure twomphonon octupole states ought to appear. The extension of theoretical predictions is rather importent to suggest experimental search for many-phonon states.

The alm of the paper is to extend the IBA formallsm as to taice into account the interaction of octupole bosons.

GRCUP-NHEORY NORN:ALI:

(quadrupole bosons, with the angular momentum quantum numbber $6=2$, so far considered, were followed by the $S U$ (5) standard symmetry with five one-spiniess boson states for the 5-dimension group -space. Nor octupole bosons the base is of 7-dimensions with seven oneboson states ($L=3$) which form the base of the funcemental rpresentation of the $S U(7)$ symmetry. Generators of the infinitesimal transformations are

$$
\begin{equation*}
\left(f_{6}^{+} \tilde{f}_{3}\right)_{M}^{L} \quad L=1,2, \ldots, 6 \tag{1}
\end{equation*}
$$

where $f_{s m}^{*}|0\rangle$ is the one-phonon octupole state and

$$
\tilde{f}_{3 m}=-(-1)^{m} f_{3-m}
$$

The commutator of two generators reads

$$
\begin{equation*}
\left[\left(f_{3}^{+} \tilde{f}_{3}\right)_{M_{1}}^{L_{4}},\left(f_{3}^{+} \tilde{f}_{3}\right)_{M_{2}}^{L_{4}}\right]-\sqrt{\left(2 L_{1}+1\right)\left(2 L_{2}+1\right)} \sum_{i n}\left[(-1)^{L}-(-1)^{-1+L_{2}}\right] x \tag{2}
\end{equation*}
$$

$$
*\left(L_{1} M_{1} L_{2} M_{2} \mid L M\right)\left\{\begin{array}{ccc}
L_{1} L_{2} L \\
3 & 3 & 3
\end{array}\right\}\left(f_{3}^{+} \tilde{f}_{3}\right)_{M}^{L}
$$

The operators (1) for odd L ($L-1,3,5$) form the closed set of generators of the 0 (7) transformations, too.

Following the traditional way of atomic spectroscopy [8], we introduce here also the G_{2} boson group generated by the operators (1) restricted to $L=1,5$

The last symmetry, as usual, is the rotational symmetry with angular momentum operators as generators of 0 (3) transformations

$$
\begin{equation*}
L_{+}=-2 \sqrt{14}\left(f_{3}^{+} \tilde{f}_{3}\right)_{4}^{4} \quad L_{-}=+2 \sqrt{14}\left(f_{3}^{*} \tilde{f}_{3}\right)_{-4}^{4} \quad L_{0}=+2 \sqrt{7}\left(f_{3}^{+} \tilde{f}_{3}\right)_{0}^{1} \tag{3}
\end{equation*}
$$

In that way the group-symmetry chain for further considerations is

$$
\begin{equation*}
S \cup(7) \supset O(7) \supset G_{2} \supset O(3) \tag{4}
\end{equation*}
$$

To adopt the above symmetry chain means, among others, consider tron of the interaction between the octupale bosons only.

Conclusions following this model will be consequently applied to such collective states of atomic nuclei which are pure, or almost pure, mary-octupale phonon states.

Classalacation of many-octupole phonon states is simplified as the considered states are completely symmetrized ones, For such states the irreducible representations of the $S U(7)$ symmetry group are very restricted and are denoted by one number, namely the number of bosons involved: [N].
I. oreover, the irreducible representation $[\mathrm{N}]$ of the $\mathrm{SU}(7)$ group splits into the irreclucible representations of the orthogonal group 0 (7) in the simple way

$$
\begin{equation*}
[N]=\sum(v, 0,0) \tag{5}
\end{equation*}
$$

where $\mathrm{V} m \mathrm{~N}, \mathrm{~N}-2, \ldots, 1$ or 0 is the boson seniority number and $(v, 0,0)$ rneans the fuily symmerrised irreducible representation of the) (7) 'sroup. Each of allo:"ce' representations ($v, 0,0$) appars only once in the decomposition (5). Even more simple is the ne:t step in the chain (1) as the irreducible representation ($V, 0,0$) of the O (7) grotp remains irreducible as the representation of the G_{2} group. The last one is factorized by ($V, 0$).

Sonitivial probler: arises, hovever, in the decomposition of the irreducible representations $(v, 0)$ into the irreducible representations (L) of the rotational group 0 (3). For a given ($v, 0$) the same (L) may appear more than once and the addlitional non-specified quantum numbers X must be introduced to distinguish the same (L) within a given ($v, 0$).

The many-boson states in the chain (4) are then

$$
\begin{equation*}
|N \vee x L M\rangle \tag{6}
\end{equation*}
$$

DECOMPOSITION OF THE IRREDUCIELE REPRESENTATION ($v, 0$) OF THE G 2 SYMMETRY GROUP INTO THE IRREDUCIBLE REPRESENTATIONS (L) OF THE O (3) ROTATIONAL GROUP

シor the effectuve accomposition we make use of the paper of ahi-.jheng-! ing [9] where the formula for the multiplicity of the representation (L) in an irreducible representation of the G_{2} group was given. Whe results of that rork are here c.itended to a handful form in applications.

In the two-dimensional root space (Fig. 1) with the same angle of 30° wetween roots, we choose the non-orthorgonal base

$$
\begin{equation*}
\vec{n}_{1}=(1,0) \quad \vec{h}_{2}=(0,1) \tag{7}
\end{equation*}
$$

Sicalar procluct of two vectors in this base is

$$
\begin{equation*}
(\vec{a} \mid \vec{b})=\left(a_{1} a_{2} \mid b_{1} b_{2}\right)-a_{1} b_{1}+a_{2} b_{2}+\frac{1}{2}\left(a_{1} b_{2}+a_{2} b_{1}\right) \tag{8}
\end{equation*}
$$

anct the roois arc

$$
\begin{equation*}
\vec{d}_{1} \equiv h_{2}=(0,1) \quad \vec{d}_{2}=(1,-2) \tag{9}
\end{equation*}
$$

$$
\begin{array}{ll}
\vec{\delta}_{8}=h_{1}=(1,0) & \vec{\delta}_{4}=(1,-1) \\
\vec{\delta}_{5}=(2,-1) & \vec{\alpha}_{6}=(1,1)
\end{array}
$$

with

The roots $\overrightarrow{\mathcal{K}}_{4}$ and $\overrightarrow{\mathcal{K}}_{2}$ are called the prime roots.

Fig. 1. Roots for the G_{2} group: $\frac{\left|\bar{\alpha}_{2}\right|}{\left|\stackrel{\rightharpoonup}{\alpha}_{1}\right|}=\sqrt{3}$ and $\ddagger\left(\vec{\alpha}_{1}, \vec{\alpha}_{2}\right)=30^{\circ}$
We label as $\mathcal{X}, \vec{\phi}, \vec{E}$ the following vectors in the root--spare

$$
\begin{align*}
& \vec{\Lambda} \equiv(v, 0) \\
& \vec{\phi} \equiv \frac{1}{2} \sum_{i=1}^{t} \overrightarrow{\dot{c}_{i}}=(3,-1) \tag{10}\\
& \vec{\varepsilon} \equiv \vec{\Lambda}+\vec{\phi}=(v+3,-1)
\end{align*}
$$

Let us introduce the operators di $_{i}$

$$
\begin{equation*}
\sigma_{i} \vec{\xi}=\vec{\xi}-2 \frac{\left(\vec{\xi} \mid \vec{\alpha}_{i}\right)}{\left(\vec{\alpha}_{i} \mid \vec{\alpha}_{i}\right)} \vec{\alpha}_{i} \quad i=1,2, \ldots, 6 \tag{11}
\end{equation*}
$$

which rican the reflections of the vector $\vec{\xi}$ with respect to the straight lines passing through the origin perpendicular to the root vectors $\overrightarrow{\boldsymbol{h}}_{i}$. If we apply the transformations $\boldsymbol{\sigma}_{i}$ several times we get in aciclition only si, further transformations $b_{i}, i=7,8, \ldots, 12$ These transformations form the Veyl's group with the known property
$\operatorname{det} \sigma_{i}=-1$
$\operatorname{det} \sigma_{i}=+1$
for $\quad i \leqslant 6$
for $\quad i>6$

Let us define the vector \vec{F} from conditions

$$
\begin{equation*}
\left(\vec{f} \mid \overrightarrow{\mathcal{L}_{1}}\right)=1 \quad\left(\vec{f} \mid \overrightarrow{\mathcal{L}}_{2}\right)=1 \tag{13}
\end{equation*}
$$

which give

$$
\begin{equation*}
\vec{f} \cdot\left(\underline{3}, z^{\prime}\right. \tag{14}
\end{equation*}
$$

Then we introduce the c-number $O(\vec{\xi})$:

$$
\begin{equation*}
0(\vec{\xi})=(\vec{\xi} \mid \vec{f})=3 \xi_{1}+\xi_{2} \tag{15}
\end{equation*}
$$

Hence

$$
\begin{equation*}
0(\vec{\phi})=8 \tag{16}
\end{equation*}
$$

The multiplicity of a given L in the irreducible representation $(v, 0)$ of the G_{2} group is given by the formula $[9]$

$$
\begin{equation*}
C_{L}=M_{L}-M_{L+1} \tag{17}
\end{equation*}
$$

where M_{L} can be calculated from recurrence relation

$$
\begin{gather*}
M_{L}=\sum_{\delta \in W} \operatorname{det} \delta-\sum_{\delta \in W} \operatorname{det} \delta M_{L+o(\vec{\phi}-\delta \vec{\phi})} \tag{18}\\
0(\delta \vec{\varepsilon})-0(\vec{\phi})=L \quad \delta \neq 1
\end{gather*}
$$

Where W is the "Weyl's group and 1 is its identity transformation.
We can also express the C_{L} from (17) and (10) by the recurrence formula

$$
\begin{align*}
& C_{L}-\delta_{L, V-3}+\delta_{L, 2 v-5}+\delta_{L, 3 V}-\delta_{L, V-8}-\delta_{L, 2 V-1}-\delta_{L, 3 v-1} \\
&+ C_{L+1}+C_{L+2}+C_{L+1}+C_{L+9}+C_{L+10}+C_{L+15} \tag{19}\\
&-C_{L+5}-C_{L+6}-C_{L+1}-C_{L+13}-C_{L+14}
\end{align*}
$$

with conditions

$$
C_{3 v}=1 \quad \text { and! } \quad C_{k}=0 \quad \text { for } k>3 v
$$

We have obtalned the more compact relation for the multiplicity $C_{\mathcal{L}}$ in the form

$$
C_{3 v-k}= \begin{cases}\sum_{n=0} \gamma_{n-n} g(n-v) & \text { for } k \leqslant 3 v \tag{20}\\ 0 & \text { for } k>3 v\end{cases}
$$

where the coefficients γ_{k-n} are independent $o f$ seniortty v and can be obtained from the relation

$$
\begin{align*}
\gamma_{i} & =\gamma_{i-1}+\gamma_{i-2}+\gamma_{i-i}+\gamma_{i-1}+\gamma_{i-\omega}+\gamma_{i-k} \\
& -\gamma_{i-s}-\gamma_{i-4}-\gamma_{i-1}-\gamma_{i-13}-\gamma_{i-\omega} \tag{21}
\end{align*}
$$

with the condition

$$
\chi_{0}=1, \gamma_{i}=0 \quad i<0
$$

and where

$$
\begin{equation*}
g(n, v)=\delta_{n, 0}+\delta_{n, v+3}+\delta_{n, 2 v+3}-\delta_{n, 1}-\delta_{n, v+1}-\delta_{n, 2 v+1} \tag{22}
\end{equation*}
$$

In euch a way we have completed the decomponition of the fully mynmotric irreducible representation of the SU (7) group according to the chain (4). In the table 1 we give the values of the γ_{i} coemelents

Tab, 1. The coeticients X_{i} in the multiplity formula

1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	1	15
T_{i}	1	1	2	3	5	7	10	13	18	23	30	37	47	57	70	84

up to $1=15$ and in the table 2 we have gathered the results of multplicity calculations $C_{s v-k}$ for $k \leqslant 15$.

MATRDK ELEMENTS OF THE OCTUPOLE CREATION OPERATOR $\mathrm{F}_{\mathrm{s}=\mathrm{m}}^{+}$DN THE $0(3)$ SU $(1,1)$ BASIS

We restrid calculations to the atates $|N \vee X L M\rangle$ in which the additional quantum numbers χ are not needed Lee. χ take on only one value for each (NVLM). Such states are supposed to be the most important phyaical states.

Tab, 2. The values of the multiplidty $C_{3 v-k}$

It can be seen, by construction, that in these states $L=3 v ;$ $3 \mathrm{v} 2: 3 \mathrm{v}-3$ only, We will keep, In what follows, the order of quantum number \mid NvLM \rangle. The construction of states |NvLM \rangle are done in several step:

$$
\begin{align*}
& |v, v, 3 v, 3 v\rangle=N_{1}(v)\left(f_{33}^{+}\right)^{v}|0\rangle \\
& |v, v, 3 v, M\rangle=N_{2}(v, M)(L-)^{3 v-M}|v, v, 3 v, 3 v\rangle \\
& |v, v, L, M\rangle=N_{3}(v, L)\left\{f_{3}^{+}|v-1, v-1,3 v-3\rangle\right\}_{M}^{L} \tag{23}\\
& |N, v, L, M\rangle=N_{4}(N, v) S_{+}^{\frac{1}{2}(N-v)}|v, v, L, M\rangle
\end{align*}
$$

where

$$
\begin{equation*}
S_{4}=\frac{\sqrt{7}}{2}\left(f_{3}^{*} f_{3}^{*}\right)^{0} \tag{24}
\end{equation*}
$$

Is the pair L - 0 creation operator on the $f \frac{z}{2}$ level. Normalizing coefficients $N_{1}(v), N_{2}(v, M)$ and $N_{4}(N, v)$ are given immedr ately:

$$
\begin{align*}
& N_{1}(v)=\left(\frac{1}{v!}\right)^{\frac{1}{2}} \\
& N_{2}(v, M)=\left\{\frac{(3 v-3+M)!}{(6 v-6)!(3 v-3-M)!}\right\}^{\frac{1}{2}} \tag{25}\\
& N_{4}(N, v)=\left\{\frac{2^{\frac{1}{2}(N-v)}(2 v+5)!!}{\left(\frac{N-v}{2}\right)!(N+v+5)!!}\right]^{\frac{1}{2}}
\end{align*}
$$

Nontrivial case is the calculation of the $N_{3}(v, L)$. At $11 r s t$, from the matrix element

$$
\begin{equation*}
\langle v+1, v+1,3 v+3,3 v+3| f_{33}^{+}|v, v, 3 v, 3 v\rangle=\sqrt{v+1} \tag{26}
\end{equation*}
$$

we get the reduced matrix element (in 0 (3))

$$
\begin{equation*}
\left\langle v+1, v+1,3 v+3\left\|f_{3}^{+}\right\| v, v, 3 v\right\rangle=\sqrt{(v+1)(6 v+7)} \tag{27}
\end{equation*}
$$

and then

$$
\begin{equation*}
\left\langle v+1, v+1,3 v+3, M^{\prime}\right| f_{3 m}^{+}|v, v, 3 v, M\rangle=(3 v M 3 m \mid 3 v+3 M) \sqrt{v+1} \tag{28}
\end{equation*}
$$

By streightiorward calculations we get

$$
\langle v, v, L M \mid v, v, L M\rangle=1=N_{3}^{2}(v, L)\left[1+(v-1)(6 v-5)\left\{\begin{array}{ccc}
3 & 3 v-3 & 3 v-6 \\
3 & 3 v-3 & L
\end{array}\right\}\right]
$$

Hence

$$
N_{3}(v, L)=\left[1+(v-1)(6 v-5)\left\{\begin{array}{ccc}
3 & 3 v-3 & 3 v-6 \tag{29}\\
3 & 3 v-3 & L
\end{array}\right\}\right]^{-\frac{1}{2}}
$$

Similar method while applied to matrix element calculations dives

$$
\begin{align*}
& \left\langle v+1, v+1, L^{\prime}\left\|f_{3}\right\| v, v_{1} L\right\rangle_{0(3)}-N_{8}(v, L) N_{3}\left(v+1, L^{\prime}\right)(-1)^{v+L^{\prime}+1} \sqrt{v\left(2 L^{\prime}+1\right)} x \\
& x\left\{\delta_{L, 3 v}+v(2 L+1)(6 v+1)\right. \tag{30}\\
& \left.\left\{\begin{array}{ccc}
3 & 3 v & 3 v-3 \\
3 & L & L^{\prime}
\end{array}\right\} N_{3}^{-2}(v, L)\right\}
\end{align*}
$$

The general formula gives six considered here matrix elements which are given in the table 3 .

Standard quesi-mpin calculations have been performed to get the double reduced matrix element of the $f_{3 m}$ creation operator In the $O(3)$ © $S U(1,1)$. The operator $f_{3 m}^{+}$has a well defined tensor property with respect to the $\operatorname{SU}(1,1)$ namely

$$
\begin{equation*}
f_{3 m}^{*}=F_{+\frac{1}{2} m}^{\left(\frac{1}{2}\right)(3)} \quad \tilde{f_{3 m}}=F_{-\frac{1}{2} m}^{\left(\frac{1}{2}\right)(3)} \tag{31}
\end{equation*}
$$

where

Hence, by definition

$$
\begin{equation*}
\left\langle N^{\prime} v^{\prime} L^{\prime} M^{\prime}\right| F_{q m}^{(t)(3)}|N v L M\rangle=\frac{\left(L M 3 m \mid L^{\prime} M^{\prime}\right)}{\sqrt{2 L+1}}\left[\left.S S_{0} \frac{1}{2} q \right\rvert\, S^{\prime} S_{0}^{\prime}\right] \times \tag{32}
\end{equation*}
$$

$$
x\left\langle v^{\prime} L L^{\prime}\left\|F^{(1)(3)}\right\| v, L\right\rangle_{O(3)} \operatorname{su}(1,1)
$$

where

$$
\begin{equation*}
S=\frac{1}{2}\left(v+\frac{7}{2}\right) \quad S_{0}=\frac{1}{2}\left(N+\frac{7}{2}\right) \tag{33}
\end{equation*}
$$

and $\left[\left.S S_{0} \frac{1}{2} q \right\rvert\, S^{\prime} S_{0}^{\prime}\right]$ is the Clebsch-Gordan coefficient for the $S U(1,1)$ non compact group [10]

The quasi-opin calculation gives

$$
\begin{align*}
& \left\langle v+1, L^{\prime}\left\|F^{\left(\frac{1}{2}\right)(3)}\right\| v L\right\rangle_{0(3) \in s u(4,1)^{=}}-\sqrt{\frac{2 v+5}{2 v+7}}\left\langle v+1, v+1, L^{\prime}\left\|f_{3}^{+}\right\| v, v, L\right\rangle_{0(3)} \\
& \left\langle v-1, L^{\prime}\left\|F^{\left(\frac{1}{2}\right)(3)}\right\| v L\right\rangle_{O(3) \in S u(1,1)}=(-1)^{L \cdot L^{\prime}+1}\left\langle v, v, L\left\|f_{3}^{+}\right\| v-1, v-1, L^{\prime}\right\rangle_{0(3)} \tag{34}
\end{align*}
$$

Tab. 3. The complete set of the reduced matrix elements of a boson creation operator \mathbf{f}_{3} for the states uniquely labelled by $N=v_{0} L$

L	L	$\langle v+1 v+1 L\| l\|=\| v v L\rangle_{0(3)}$
$3 v+3$	$3 v$	$\sqrt{(v+1)(6 v+7)}$
$3 v+1$	$3 v$	$\sqrt{\frac{6(2 v+1)(3 v+2)}{6 v-1}}$
$3 v+1$	$3 v-2$	$\sqrt{\frac{3(v-1)(2 v+1)(6 v+5)}{6 v-1}}$
$3 v$	$3 v$	$-\sqrt{\frac{(v-1)(2 v+1)(6 v+1)}{(3 v-1)(6 v-1)}}$
$3 v$	$3 v 2$	$2 \sqrt{\frac{3(3 v+2)(6 v-1)}{(3 v-21(6 v-1)}}$
$3 v$	$3 v-3$	$\sqrt{\frac{(v-2)(3 v+1)(3 v+2)(6 v+1)}{(3 v-2)(3 v-1)}}$

Hence we get the full set of one-particte matrix element In the 0 (3) - $\operatorname{SU}(1,1)$ reduction restricted to the states $N v L M$ with $L=3 v, 3 v-2$ $3 v-3$. We are now in position to obtain after a simple extension of calculation the matrix elements of one-body and two-body physical operator under consideration, especially, the energy and transition operators.

The results obtained in the paper will be followed by appilicaHons to nuclear calculations in the frame of the Interacting Octuple Boson Approximation.

REFERENCES

 3. Arimad a. I achelıo Fo: Phys, Rev. Lett 35. 1069 (1975). 4. Arima An, I achello Fo: Annales of Pirys. (NoY). 99, 253 (1976).
5. A rima Ao, achello Foi Interacting Boson Model of Collective Nuclear Stetes, preprint Kerniysisch Versneller Institurt, Univerelty of Groningen, Is The Vibrational Lmit, 1975, If The Rotational Limit, 1977.
 Benjenin inc., New Yoric 1975.

 Dubna 1975.
B. R a c a G G Phys. Rev. 1942-1949.
 10. H a u o U is Annales of Physics 49, 69 (1968).

> STRESZCZENIE

W pracy zostely podane podstawy klasyllkacjl bosonowych stanow oktupolowych wediug tancucha grupowego $S U(7) \supset 0(7)=G_{2} \Rightarrow 0(3)$ maja cego bezpoírednie zastosowanie w modelu oddziakujacych bozonow (IEA) wzbudzerí kolektywrych jader atomowych.

PE3KME

В работе предотявлены псновы клясситикации октупольных бозоннжх эолтояни: по груптовой цепочке $S U(7)=0(7)=G_{2}=O(3)$ ияеющей нетосредственное применение в кодели взяияодействур-

