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A wide application of gas separation processes based on adsorption 
phenomena can be observed. This paper presents the possibilities of 
Integral Equation (IE) Approach to study the mixed-gas adsorption 
equilibria. As a result, the generalizations of Langmuir-Freundlich and 
Dubinin-Astakhov equation for the case of mixed-gas adsorption are 
presented. Also the corresponding expressions for isosteric heats of 
adsorption are obtained. To predict phase diagrams and isosteric heats of 
mixture components only the knowledge of single-gas isotherm adsorption 
and accompanying calorimetric effects are required. A special attention is 
given to possibilities of arriving at relatively simple analytical or 
combined analytical/numerical solutions.

1. INTRODUCTION

Recently growth of interest in gas separation by adsorption processes has 
been observed. At the same time there appears a need for relatively simple 
methods to predict theoretically mixed-gas adsorption equilibria. As follows 
from recently published literature [1-8] many methods are proposed. As the 
measurements of multicomponent systems are difficult and time consuming in 
comparison to the measurement of adsorption isotherm for pure components 
such theoretical predictions are important from a practical point of view.

Theoretical prediction of mixed-gas adsorption equilibria can be applied to 
control industrial processes of gas separation, for example Temperature Swing 
Adsorption (TSA) and Pressure Swing Adsorption (PSA) processes. They are 
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controlled by computer programs because the precision of fast calculation of 
gas adsorption equilibria plays the substantial role in the industrial application.

PSA processes require reversible adsorption so that the preferentially 
adsorbed species can be removed readily during the regenerative portion of the 
cycle. As they are usually operated at ambient temperature, the adsorption and 
desorption steps in the cycle operate under approximately adiabatic conditions. 
The magnitude of the temperature change induced by adsorption or desorption 
is determined by the individual heats of adsorption of the mixture components 
through an energy balance. Since loading is highly sensitive to temperature, the 
selectivity is closely coupled to the magnitudes of the individual heats of 
adsorption. Also the heats of adsorption play the substantial role in the TSA 
processes where energy (major cost in TSA processes) is required to regenerate 
the column. Therefore accurate design calculations require values for heats of 
adsorption as well as selectivity. Surprisingly, although heats of adsorption 
have been measured extensively for pure gases, hardly anything is known about 
heats of adsorption from mixtures. Therefore, there is a need to present 
theoretical description of this phenomenon and to compare it with the 
experimental data.

Thermodynamic analyses of the isosteric principle and of the isosteric 
heats of multicomponent adsorption were performed previously by Sircar [9]. 
Molecular simulations supported on Ideal Adsorbed Solution Approach were 
performed by Karavias et al. [10]. Jaroniec [11] used the generalized integral 
equation and as a local adsorption isotherm the Jovanovic equation to derive 
expressions for isosteric heats of simultaneously adsorbed components. Talu et 
al. [12] utilized the Vacancy Solution Theory to describe isosteric heats of 
adsorption of single gases. Theoretical description of heats effect of two and 
three component gas-mixture was performed by Sundaram and Yang [13]. The 
adsorption of binary liquid mixtures and accompanying heat effects at the 
solid/liquid interface was studied by Dekany et al. [14-18].

This paper presents the method for estimation of the theoretical equations 
describing the isosteric heats of adsorption of single gases and the components 
of a gas mixture. These equations can be obtained using the theories of 
mixed-gas adsorption. To predict isosteric heats of gas mixture components, 
only the knowledge of isotherms and isosteric heats of single gases is required.

The theory of gas adsorption, used by us, as one of the most common, is the 
Integral Equation Approach. The obtained results will be verified by 
comparison with the experimental data.
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2. INTEGRAL REPRESENTATION FOR EQUILIBRIUM 
ADSORPTION ISOTHERMS

Let Nit denote the total number of the molecules adsorbed at the pressure 
p, and the temperature T on a heterogeneous solid surface, and Л/,- denote 
the total number of sites on that surface. Let further 0,({£},{p},T) denote the 
"local" fractional coverage by the component i, of a certain class of adsorption 
sites, characterized by a set of the adsorption energies {e}= {e1,e2,...,e„\ for the 
single components. The experimentally monitored Njt value is then expressed 
by the following integral equation,

0,, ({p},T )== J £ J#, )z„ -dEn (1)

where 0;,({p},T) is the average fraction of surface coverage by the molecules 
of the component i at a set of the partial pressures {p] = {px, p2,...}. %n ({e}) is 
the n-dimensional differential distribution of the number of the adsorption sites 
among various sets |Ej, normalized to unity,

f J/ (2)
J n. "

where is the n-dimensional physical domain of {e}.
For the adsorption isotherms of single components,

0,({p},7’)= j0,.(E,.,{p},T)Z,.(ą>/£, (3)
Q,

where
Xi<e- ) = J.., f Z„({e})^i • • • dE^ ■ dEM ■■■d£n (4)

a..,

That equation is used either to calculate 0„({p},7’) when 0,(£,,{p},T) and 
£,(£,) are known, or, to /,(E,) when 0„({p},7') and 0,(£,,{p},7') are known. 
The "local" adsorption isotherm may be the Langmuir isotherm or another one 
(BET, Bragg-Williams, Hill-de Boer, etc.).

The really existing adsorption energy distributions are expected to have 
a pretty complicated form, with a number of local maxima and minima. 
However, to a certain degree of accuracy, the really existing function £,(£,) 
can, for practical purposes, be approximated by some "smoothed" functions, the 
shape of which is described by a small number of parameters. The following 
functions have, most frequently, been used to represent the "smoothed" form of 
the actual adsorption energy distributions:
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1. The rectangular function

£.(£/) = ) E,"
1 , force (e

0, elsewhere 
(5)

where (£.,£”) is the physical domain of E,.
2. The Gaussian-like function

x(e,)=jr-^— c‘ Ł (6)
f -, „0 |

centered at £,. = £(°. For obvious physical reasons, there must be a certain 
minimum, and a maximum value of the adsorption energy £,., on 
a heterogeneous solid surface, e' and E," . Thus, the Gaussian-like function (6) 
becomes a rectangular (constant) energy distribution when c —> °°.
3. The Dubinin-Astakhov function

/,(£,) =
r. (£, - e! )'1'1

(ĘT
exp- (7)

£,. -£,'

the variance of which is equal to E. The El is the lowest value of the 
adsorption energy E on a given heterogeneous surface. Depending on the shape 
parameter r, it is a pretty Gaussian-like function for r = 3, right hand widened 
for r < 3, and left hand widened for r > 3. When r = 1 DA function (7) 
changes to the exponential energy distribution function.

Single-gas adsorption isotherms. The most frequently used method to 
calculate the integral in eq. (3) is Condensation Approximation (CA). 
Application of the CA makes it possible to simplify the calculations. For 
example, if the local isotherm Ofß^p^T) under the integral sign is the 
Langmuir isotherm:

0,(£,,P,,T) =

„ e-

^P-exp^f 
I AC/ J

1 + 7C, p, exp] — 
' ' [kT

ovJe--£-cl
kT J

1 + exp-
£. - £/

(8)

where E. = -ATln(A)p,.). The Condensation Approximation is based on the 
assumption that adsorption on a heterogeneous surface proceeds in an ideally 
“stepwise” fashion in the sequence toward decreasing adsorption energies.
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It means that the true kernel 0(£,, p,,T) in eq. (3) is replaced by the following 
step function, 0,c(£.,p,.,T)

0, for £,. < e,c
1, for E, > £■

0i(e„P,.,7’)-^0,c(E,.)A)T) = (9)

Then,
0„ ({P} >T) = J/,. (e, )dei = - N(e.) (W)

where К ,.(£,.) is the integral form of /, (£, ).
While using symmetrical energy distribution function (6) we arrive at the 
Langmuir-Freundlich (LF) isotherm for the single-component adsorption 
isotherm 0it :

kT

0„({р},П =

£° 
K.Pi exPl77’ I KI

kT (И)
E°1 c‘ 
~kT)

The experimentally measured adsorbed amount, TV,., ({/?},?’), is equal to 
A/,0,.,({/>},?’), where Af,. is the number of the adsorption sites on the solid 
surface, expressed in the same units as A convenient way to
analyze an experimental adsorption isotherm in terms of (11) is to use the 
following linear regression:

NJM kT

1+ K-pi exp-

£,° kTIn—-- = — In# .+— +—Inp
\-NJM c, L kT] c, '

The only adjustable parameter is then the monolayer capacity M i, which is 
chosen in such a way that the l.h.s. of (12) can possibly be the best linear 
function of In p. (the best linear regression). The heterogeneity parameter 
kT / ci is then the tangent of that linear plot, and K,exp^E11, lkT\ is found 
from the intercept multiplied by c, / kT.

Now, we focus our attention on the case when the energy distribution 
function is described by the non-symmetrical Dubinin-Astakhov function (7). In 
this case the CA approximation leads to the following expression for the 
fractional coverage:

kT
(12)

0„(p1,T) = exp- - (13)
Pi.
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Eq. (13) is just the well-known Dubinin-Astakhov isotherm, or the Dubinin- 
-Radushkevich isotherm for the particular case when r = 2. When r -1 DA 
isotherm (13) becomes the Freundlich equation. Generally, r may vary from 
unity up to 5 or 6. It is established that 1 < r < 2 refers to carbons with large 
micropores. For molecular sieves the value is 2 while very fine pore carbons 
and zeolites may require values up to 5 or 6 [30,31]. Thus, it is clear that the 
heterogeneity parameter r is related in some way to the pore dimensions. It can 
be showed [29], that r also depends on the analyzed region of adsorptive 
pressures.

The parameter p' is commonly assumed to be the saturated vapour pressure 
of the adsorbate at a temperature T. But, the present computer simulations 
show that the state of the adsorbate molecules in the micropores is considerably 
different from that of the molecules in the bulk liquid. The critical temperature 
in the micropores is much lower, so the “micropore filling” cannot be identified 
with bulk condensation. Thus, p1 cannot be identified generally with the 
saturated vapour pressure value.

The property of parameters r and kT IE was discussed earlier, they play 
a role of heterogeneity parameters.

Frequently to adjust the Dubinin-Astakhov equation (13) to the experimental 
data it is easier to use the following linear form:

InN,., =lnM, - kT
Ei Pi

(14)

When the parameters p', rt are correctly chosen, In Nit should be the linear 
function of [in p' / /?;f in the whole range of the surface coverages.

The mixed-gas adsorption equilibria. In order to obtain the theoretical 
expressions for the mixed-gas adsorption isotherms it is necessary to evaluate 
integral (1). A general strategy is to reduce this integral to a dimensional one, 
by using various physical arguments. Most commonly, it is done by taking into 
account the correlations between the adsorption energies £,. and £ул., 
i*  j = 1,2,3,..., n on different adsorption sites. Two physical situations have 
been considered so far:
1) The adsorption energies £f,£>( are not correlated at all;
2) A functional relationship exists:
£/=//£>) ' = (15)

In our theoretical model we use two adsorption energy distribution functions 
described by the Gaussian-like function (6) and the Dubinin-Astakhov function 
(7). Next, we assume that the local adsorption isotherm is described by the
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Benton equation (Markham and Benton, 1931) which is simply the generalized
Langmuir equation for the case of mixed-gas adsorption isotherm:

„ f e, 1^,P, exp
Ö, (E, ,P„T) =--------------- fe"T

1 + Х^ЛехР|^-
(16)

Then

e (17)
( fc 1

-kT\n У К:р. exp-^ — > Y kT\
So, for a given adsorption energy distribution function we can obtain 

different equations corresponding to the accepted model of correlations 
between adsorption energies of various components. As the first step, we 
consider the model of lack of correlations. This is the case of coadsorption of 
components exhibiting much different character of interactions with the same 
solid surface. We use the idea proposed by Wojciechowski et al.[27]:

(18)0„({p},n = - i-£e? W)

(16) is a kind of a master equation from which various expressions for the 
mixed-gas isotherm can be derived by assuming various adsorption energy 
distributions (ą. ).
For example, if x(e,) is the Gaussian-like function (6) we arrive at the 
following isotherm equations for the case of mixed-gas adsorption:

I E° K- p, exp( —— 
' ' ]kT

^F({p},T) =
l + £ K>yexp £1 

kT

- kT/cj (19)

When /,(£,) is the function (7), eq. (18) leads to the generalized Dubinin-
-Astakhov equation:

С(лП =

1 - exp-
kT ( p^T 
— In —LF2 exp- — In

P. JJ
(20)

1 - exp- — In
Рг}Pi
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Let us consider the case of very high correlations between £f and £; 
represented by the following condition [28],
Ej = E, + Д>; , i, j = 0,1,2...« on each adsorption site, (21) 

where A;, ’s are certain constants. This case can be used only when the 
components of the adsorbed mixture have a similar chemical character. Another 
obvious condition is that the molecules of different components should have 
similar sizes. Then, if 0i.(e,,p,,7’) is the Benton equation (16) and X,(e,) *s the 
function (6), the CA approach leads to the following form of 0„ [8]:

kT

еГ({р},П= к‘р'е"^
Ък,р/т

^KiPjekT

kT
(22)

1+ YKiPjekT

When %. (e, ) is DA function (7),

0r(p,T) = -/-Z^-exp- 
iPi'p'j

лт, —In
Ei

Ypj'p'j
(23)

The conditions (22) and (23) assume implicitly that the functions /, (£, ) have 
a similar shape. So, it is obvious, that when the shapes of energy distribution 
functions /, (£,) are not similar, (22) and (23) cannot be used, even if high 
correlations exist between the adsorption energies of various components. But 
this does not indicate the lack of correlations between adsorption energies of 
various components. Strong correlations also exist when, with the increasing 
surface coverage, various adsorption sites are covered by molecules i and j, in 
the same sequence [8]. Strong correlations also exist when, with increasing 
surface coverage, various adsorption sites are covered by molecules i and j in 
the same sequence. Then,
-k/e^-k/e') (24)

Thus, if we assume that the adsorption isotherms of both components i and j 
obey the Langmuir-Freundlich behaviour, originating from the Gaussian-like
adsorption energy distribution (6) we arrive at the following relation:

1 + exp E. -E- 

ci
= 1 + exp

£ -£"

c.
(25)
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and, consequently, 
0 C‘ c° 

C,
(26)£j = ci+ Ej~

In the case of Dubinin-Astakhov adsorption energy distribution (7), eq. (24) 
leads to the following interrelation:

£, - £,'

E,
e. =e'.,+E. (27)

Thus, the physical assumption that adsorption sites are covered in the same 
sequence is equivalent to assuming the above relationship between £,. and £ .#(.. 
Then, for the Langmuir model of adsorption we have, 

7e A 

£ 
1 + X^^exp 

(28)X^de,
0

where £; £; in (28) have to be expressed by £,, using the relations (26) 
or (27).

Extension of the IE approach to regular adsorbed solutions. The term ‘ideal 
solution’ refers to the systems of interacting molecules, in which the 
interchange energy Wfj equals zero:
^=юй+ш..-2®0=0 (29)

being the interaction energy between two molecules i and j adsorbed on 
two neighbouring adsorption sites. As it is well known, when the adsorption of 
interacting molecules (collective adsorption) on a heterogeneous surface is 
considered, one must also take into account the surface topography. So far two 
extreme models of surface topography, i.e. patchwise and random models have 
been commonly considered. To take into account the interactions between the 
adsorbed molecules, we will use here the Mean Field Approximation (MFA) 
approach.
So, when we assume that the heterogeneity of adsorption system is described by 
Gaussian-like function (6), application of the Condensation Approximation 
(CA) to develop corresponding expressions for 0„ for single components, in 
the case of patchwise topography, leads to the following equation [8],
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e^({p},T) =

[ e° 
Æ/Aexp|Ir

- kT/c, 

exp- <4, 
2c;

-]И7с, 
exp-

(30)
4 
2c,.

1+ KiPiexp<-J- 
KI 

whereas for random topography we obtain

w.,0„

0(^({p},D =

£°
*,P,exp^

kTIc, 

exp

£°

1+ KjPj exp- —
- kTIc, 

exp-

Ci J
Cl) вli lt

c.

(31)

If we assume that energy distribution function is non-symmetrical (eq. (7)) CA 
leads to the following expression for 0„,

0°A(p,7’) = exp- p—In —
Pi

^,(р,Т) ■ 
E.

(32)

A convenient way, frequently suggested in literature [8], to correlate the 
experimental data by eqs (31-32) is to use the logarithmic form of these 
equations like in the case when the interaction effects were neglected. But, due 
to a large number of best-fit parameters in the above equations that method is 
not as convenient as previously. Especially it concerns DA equation (32). 
To adjust LF or DA eqs (31-32) to the experimental isotherms another 
numerical method should be used.
Next, we arrive at the generalization of our mixed-gas isotherm equations for 
the case of interacting molecules. Unfortunately, for the case of patchwise 
topography it is difficult to obtain simple analytical expressions for mixed-gas 
isotherm adsorption. So, we consider only the case of random topography. 
Then, application of the Condensation Approximation to develop 
corresponding expressions for 0,, in the adsorbed gas-mixture (the case of 
random surface topography) leads to the following form of E- :
e; =-kT\nKiPi-^ijejl (33)

J
While assuming lack of correlations between adsorption energies of mixture 
components, the use of eq. (18) leads to the following generalizations of 
eq. (19) [8]
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0/({р},П =
Kt pt exp' "A

ci

(34)

If we assume DA energy distribution function (7) [26]

exp'

W(px,p2,t)

kT In P‘ У a)ydi'
E, P, >

c
1-exp kT In P'2 У 

E2 p2 Г e2

kT In P' У Й)|'0" 
_E, p, V E, _

kT In P‘2 У 
e2 p2 e2

(35)
In the case of high correlations between adsorption energies of mixture 
components, we obtain the following expressions for 0;, [8,26]

°
‘ kT

kT

^({p},T)=

^р, ехр|—+ Х>—• 
' ' [кТ 1 кТ

^р.^ехрК + Ь^
V \кТ кТ

8
X*A exP1^ + b

!+ X^P.exp -£ + b
kT kT

kT

(36)
and

Ü Jt (

0 “ (р,Г) = —у-----------
У, (р/Р;)ехр У, 
>=> L I

1exp. kT, —In
Ef

“ kT

(37)

where eq. (36) corresponds to symmetrical energy distribution function (6), and 
(37) was obtained for the case of DA energy distribution function (7). It can be 
seen that when the interaction parameters <u(, are equal to zero, the above 
equations (34-37) reduce for the case of non-interacting molecules (19), (20), 
(22) and (23).

It is important to remark that to calculate mixed-gas adsorption isotherms 
only the best-fit parameters obtained from adjustment of eqs (31-32) to the 
single-gas adsorption isotherms are required. So, assuming the ideal solution of
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the adsorbed phase, i.e. Wi} = 0 (see eq. (29)) to calculate theoretical phase 
diagrams no additional parameters are needed, except those obtained from 
adjustment by LF or DA eqs (31-32) to the single-gas adsorption isotherms. 
Reduction of the number of best-fit parameters simplifies our theoretical model 
and affects numerical calculations rate.

3. ISOSTERIC HEATS OF ADSORPTION

It is true to state that the calorimetric effects of adsorption give more 
valuable information about the adsorption system than the isotherm of 
adsorption. For example, the heat of adsorption profile reveals the degree of 
energetic heterogeneity of gas solid interactions. An increase in heat of 
adsorption with gas loading is characteristic for nonheterogeneous adsorbents 
with the constant gas-solid energies of interaction. The increase is due to 
cooperative interactions between the adsorbed molecules. A decrease in heat of 
adsorption with gas loading is characteristic for highly heterogeneous 
adsorbents with a wide distribution of gas-solid interaction energies. A constant 
heat of adsorption with gas loading indicates a balance between the strength of 
cooperative gas-gas interactions and the degree of heterogeneity of gas-solid 
interactions.

The isosteric heat of adsorption is defined as the difference of partial molar 
entalphy in the gas phase and the excess partial molar entalphy in the adsorbed 
phase:
q^H^-H’ (38)
Although q' is traditionally called the isosteric heat of adsorption, the above 
eq. shows that it is actually the heat of desorption.
Another heat of adsorption in common use is the differential heat of adsorption, 
defined by:

=U>’ -U' (39)
since H. ~ U- , we obtain the relation between two types of heats of 
adsorption:
q^ = q''— RT (40)
The excess partial molar entalphy in the adsorbed phase is related to the 
chemical potential by the Gibbs-Helmholtz equation
H’ =-T2(^‘,TA (41)

I Jw;

where N't is the surface excess. Adopting the perfect-gas reference state , 
the chemical potential is
Я=^0 + /гПп(/./р0) (42) 



112 K. Nieszporek

and p° is the perfect-gas reference pressure (1 atm.).
Combination of eqs (38-42) yields the Clapeyron equation for mixtures:

<7," + (н,6-Я‘о) (43)
l дТ k

where (H. - H* 0) is the enthalpy departure from the perfect-gas state. For the
special case of adsorption from a pure perfect gas at the pressure p,. 

Э In p,q“=RT2(^-^-
I dT

or, for one molecule p" = -k L; (44)
J/v;

In order to apply the above equations to calculate the isosteric heats of 
adsorption from the isotherm equation we can rewrite them in the following 
form:

d In p,р,“=-Л 
|_d(l/T)

Q-=-k Э In p,. 
Э(1/Т)

e„

J*i

(45)

(46)

where р" and Q.' mean the isosteric heats for single and mixed-gas adsorption 
systems, respectively.

Based on the equations presented above it is easy to obtain the 
expression describing calorimetric effects of adsorption when one component is 
adsorbed. When we assume Gaussian-like adsorption energy distribution 
function (6), and use isotherm equation (11), 

0„ „St StO „ 
qt ~ Qi ~ ci (47)=

1-0.,

(48)

where
ÎIO d\nK' 

q, - к------- -dty/T) 
and Kt'= K. exj 
Assuming non-symmetrical energy distribution function (7) we arrive at the 
following expression for isosteric heats:

q.'=q."+E. In—
' 0.,

= q‘" -Шп Ą
P' J

(49)

where
„ Æ^lnp- z. <Mn<

4i d(MT) d(l/T) (50)
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Now, we show how to obtain theoretical expressions for isosteric heats of 
adsorption corresponding to the isotherm equations presented in this paper. 
Here we consider the simplest case when the interactions between adsorbed 
molecules are neglected. Theoretical description of calorimetric effects 
accompanying the mixed-gas adsorption equilibria for the case of Gaussian-like 
adsorption energy distributions (6) was precisely investigated in our recent 
paper [19,20]. Theoretical studies on calorimetric effects accompanying mixed- 
gas adsorption, when energy distribution function is represented by the 
Dubinin-Astakhov eq. (7) has not been made yet.

It can be stated that the simplest method, which can be used to obtain the 
expressions for isosteric heats of mixture components, is the transformation of 
the adequate isotherm expressions for In p,. However, it is not easy in many 
cases. If transformation is not possible, the following general method can be 
used. Namely, the differentiation of isotherm equation function

, p2,Ct,C2,T) of two components gives the following equation system:

dot: Y э in /?, Y Г Э0к Yainp, V Гэе., Y эс, ' Э0,, Y эс2 'If Э01;
Эin р, ра/Т) J (Э1п р2 J Э(1/Т) " [ Эс7|Э(1/Т) ( ЭС? JЭ(1/Т) J ^Э(1/Т)

(51)

Эб2, Y э in P, ) Э02, Yâin р2
Э1п Рх IЭ(1/Т) / pin р2 IЭ(1/Т)

Y Э0„ Y эс, } ( Э0,, Y эс2 ) ( Э02,
_ Zł I I I ZI I Z I i I _____Z/__ 

[ ЭС, Jp(l/T) J [ЭС2 |Э(1/Т) J [Э(1/Т)

(52)

where all differentials are calculated when remain variables are constant. In the 
case of LF equations (34) and (36) C, = K\ whereas in the case of DA eqs (35) 
and (37) C, = p.. The above equation system is simply linear with the two 
unknown: (dinp1/d(l/7’))e e and (dinр2/д(\/Т))е e which are the isosteric 
heats of adsorption divided by (-k ).
In the above equation we assume that (ЭС,/dfl/T)) will be the best-fit 
parameter which can be found from adjustment of theoretical isosteric heat of 
single component to the calorimetric data.

While considering the case of generalization of LF equation (19) (lack of 
correlations between adsorption energies) in order to obtain the expression for 
isosteric heats it is easier to use eq. (18). Of course, the use of eq. (18) leads to 
the same expression for isosteric heats of mixture components as the equation 
system (51-52). So, assuming that the expression for energy distribution 
function is represented by eq. (6) we arrive at the following equation:
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Qî' = - ct In g|t = q?0 - kT In (/C, Pl )
1 “it “it

(53)

If the Dubinin-Astakhov function (7) is used, eq. (18) leads to the following
equation:

G _ a 4 
Q^qï'+E, In ----- = q{" -kT\n

Pi
(54)

0„
The above equations (53) and (54) can be used for the case of lack of 
correlations between adsorption energies of mixture components. If we assume 
that correlations between adsorption energies exist, and are described by 
relation (21) (adsorption energy distributions 2,(e;) have a similar shape) the 
solution of equation system (51-52) leads to the following expressions for 
isosteric heats of adsorbed mixture components. In the case of Gaussian-like 
adsorption energy distributions (6) the use of eq. (22) leads to the following 
equation:
Q;'=qr-kT\n(KlPl+K2p2) (55) 

and when /, (e, ) is DA function (7), i.e. we use isotherm equation (23)

Q;'=q‘"-kT\n Pi , Pi 
I ' /IA Pi)

(56)

It is interesting to note that the existence of high correlations between 
adsorption energies of mixture components is reflected by difference under the 
logarithmic term of the corresponding expressions (53) and (55) or (54) and 
(56). While analyzing eqs (55) and (56) we can expect that theoretical isosteric 
heats of adsorption calculated for the case of high correlations between 
adsorption energies should be approximately linear in a wide range of surface 
coverages. Also another conclusion can be drawn: for high values of partial 
pressures Pi (and consequently high values of mole fractions У, and X, in gas 
and adsorbed phases, respectively), the values of theoretical isosteric heats of 
mixture components should be similar (the second term under logarithm in eqs 
(55) and (56) can be neglected).

Another important fact is that theoretical isosteric heats calculated for the 
case of lack of correlations between adsorption energies of mixture components 
have the same form as in the case of single-gas adsorption. We can draw 
conclusion that if there are no correlations between adsorption energies, 
calorimetric effects accompanying adsorption of mixture components are 
similar to those accompanying single-gas adsorption isotherms. The existence 
of correlations causes differences in behaviour of the theoretical isosteric heats 
of adsorption of mixture components. Of course, such a conclusion can be 
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drawn only in the case of non-interacting molecules, which is justified because 
if neither correlations nor interactions exist there are no reasons for existence of 
the differences in heat effects accompanying adsorption of single gases and 
those in the adsorbed mixture. The existence of molecules of the second 
component in the adsorbed phase exhibits only by blocking adsorption sites for 
molecules of the first component.

Such a conclusion can be extended: if experimentally measured isosteric 
heats of adsorption of single gases and those gases in mixture have a similar 
shape it indicates lack of correlations between energies of adsorption of 
mixture components and weak interactions between adsorbed molecules.

So, while recapitulating our theoretical study we can state that during the 
analysis of experimentally measured adsorption data we have two isotherm 
equations (11) and (13) obtained for the case of single-gas adsorption and four 
isotherm equations (19), (20), (22) and (23) useful during the investigation of 
phase diagrams. Likewise studying calorimetric effects we can also use two 
equations in the case of single gas adsorption (47) and (49), and four (53), (54), 
(55) and (56) in the case of isosteric heats of adsorption determined for mixture 
components.

4. CORRELATION OF EXPERIMENTAL DATA

To calculate theoretical phase diagrams and theoretical isosteric heats of 
adsorption for the adsorbed gas mixture we need specific experimental data. 
Namely, all experimentally measured data for the adsorption system i.e. single- 
and mixed-gas adsorption isotherms and isosteric heats of adsorption of pure 
and mixed gases must be measured at the same temperature. Unfortunately, it is 
not easy to find such data in literature. These requirements fulfil the 
experimental data reported by Dunne et al. [21-23] on silicalite: С2Нб at 
23.31 °C, CH4 at 23.07 °C, C2H6+CH4 at 25.29 °C; for NaX: CO2 at 31.4 °C, 
С2Нб at 32.4 °C, СО2+С2Нб at the two temperatures: 29.4 °C and 28.94 °C 
(small differences between temperatures of measurements). While analyzing 
the isosteric heats of adsorption of these single gases adsorbed on silicalite and 
NaX it can be assumed that in all cases interactions between the adsorbed 
molecules exist. In particular, it concerns adsorption of CO2 on NaX. For this 
reason we cannot use these adsorption data to examine our equations for 
isosteric heats of adsorption.

To elucidate the fundamental differences in the behaviour of the adsorption 
isosteric heats equations obtained by using the Integral Equation Approach, we 
use the adsorption data examined previously [19,25]. Namely, in our previous 
theoretical studies we considered the adsorption data for O2 and N2 and CO 
adsorbed on zeolite MS10X at the three temperatures: 172.04 К (-150 °F), 
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227.59 (-50 °F) and 273.15 (32 °F), reported by Nolan and coworkers [24]. Our 
previous research indicated that in the case of O2, N2 adsorption and at the 
lowest experimental temperature of CO adsorption we have to do with lack of 
interactions between adsorbed molecules. Unfortunately, the authors [24] report 
only the adsorption data for single and mixed gases. From these experimental 
data we choose adsorption of N2 and CO at 172.04 K. This choice is caused by 
similar values of the heterogeneity parameter c, which makes it possible to use 
both equations obtained for the case of correlation or its lack between energies 
of adsorbed molecules.

Before calculating theoretical phase diagrams it is important to discuss 
the phenomenon of correlations between the adsorption energies of mixture 
components. Namely, the model of high correlations, eq. (21), assumes the 
same shape of adsorption energy distribution function. It means that when high 
correlations between the adsorption energies of various components exist, the 
adsorption energy distribution functions are just the same, only shifted on the 
energy axis.

The shape of /,(£,) functions is affected by the heterogeneity parameters: 
in the case of Gaussian-like adsorption energy distribution (6) it is kT I c 
whereas the shape of Dubinin-Astakhov energy distribution function (7) is 
affected by the parameters r and kT / E . If we assume that high correlations 
between the adsorption energies of mixture components are described by 
relation (21), the correct use of the mixed-gas isotherm equations (22) and (23) 
requires the same values of heterogeneity parameters for both mixture 
components. In contrast, if kT/c , or r and kT IE for mixture components are 
notably different, only the model of lack of correlations should be used. 
Correlations between the adsorption energies of mixture components are shown 
graphically in Figures 1 and 2.

In our previous paper we applied the linear LF regression (12) to the pure N2 
and CO adsorption data. The results obtained in this way were presented in our 
previous paper [19,25]. Our investigations showed, that in the case of N2 and 
CO adsorption on zeolite MS 10X it is sufficient to apply the model assuming 
lack of interactions between adsorbed molecules.

In the present paper we use another procedure, namely we adjust directly 
isotherm equations (11) and (13) to the experimental data. This procedure leads 
to better agreement of the theoretical isotherm equations (11) and ( 13) with 
single-gas adsorption data.
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Fig. 1. The existence of correlations effect between the adsorption energies of mixture 
components (A) and (B) described by the Gaussian-like adsorption energy distribution 
(6). The figure shows also the influence of the values of parameters kT/с and £° on 
the shape of the function /, (£, )

Fig. 2. The existence of correlation effects between the adsorption energies of mixture 
components (A) and (B) described by the Dubinin-Astakhov adsorption energy 
distribution (7). The figure also shows the influence of the values of parameters r , E 
and e' on the shape of the function /, (£, )
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The obtained results are a little different from those obtained by applying linear 
regression (12) or (14). Figure 3 shows the adjustment of LF (11) and DA (13) 
equations to the experimental single-gas adsorption isotherms and we can see 
that both the Langmuir-Freundlich eq. (11) and the Dubinin-Astakhov eq. (13) 
reproduce very well the investigated adsorption systems. The best-fit 
parameters elucidated in this way are collected in Table 1.

Fig. 3. The single-gas adsorption isotherms of nitrogen and carbon oxide at the 
molecular sieve 10X reported by Nolan et al. [24] at the temperature 172.04 K. The 
solid lines are the theoretical isotherms calculated by using the LF (11) and the DA (13) 
isotherm equations with the parameter values given in Table 1

Tab. 1. Values of the parameters obtained by applying the Langmuir-Freundlich 
equation (11) and the Dubinin-Astakhov eq. (13) to the experimental isotherms of 
nitrogen and carbon oxide adsorbed on the molecular sieve 10X, reported by Nolan et 
al. [24]

Langmuir-Freundlich eq. (11)

M 
(cm3 STP/g) A'exp-

£°

kT

kT 
c

qn0 
(kJ/mol)

(mmHg-1)
n2 142.32 1.34- 10’3 0.506 7.44
CO 141.32 6.22- 10’3 0.443 8.87

Dubinin-Astakhov eq. (13)

M
(cm3 STP/g)

kT 
E

p' (mmHg) r 4s"
(kJ/mol)

n2 88.61 0.287 2227.85 1.33 6.01
CO 110.25 0.190 3938.98 1.60 4.00
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The isosteric heat of adsorption can be easily determined from the adsorption 
data. Namely, it is necessary to construct graphically the dependence vs. 
In p . It is important to use more than two experimental isotherms. Then, using 
the obtained data it is necessary to construct the graphical dependence In p vs. 
l/T for separate values of the fraction coverage. The slope of the obtained 
linear dependence is proportional to the isosteric heat of adsorption.

Fortunately, the experimental isotherms measured at three temperatures for 
both N2 and CO adsorption are available. So, we used this method in our 
previous paper [19]. Figure 4 shows the obtained isosteric heats of adsorption 
for single gases.

The course of isosteric heats of adsorption presented in Figure 4 (the heats 
become small with the increasing coverage) suggests high heterogeneity and 
transient interactions between the adsorbed molecules. It justifies application of 
the equations neglecting the interaction effects in the adsorbed phase.

Fig. 4. The isosteric heats of adsorption of pure N2 and CO adsorbed on the molecular 
sieve 10X determined by using the graphical method to the adsorption data reported by 
Nolan et al. [24]. The solid lines are the theoretical isosteric heats calculated from eqs 
(47) and (49) using the values of the parameters collected in Table 1

From Figure 4 we can obtain the configurational heats of adsorption q”° 
and q‘". Namely, in the case of eq. (47) it is the value of isosteric heats of 
adsorption when the fractional coverage is equal to 0.5. In the case of eq. (49), 
the value of configurational isosteric heats q." can be obtained for the 
fractional coverage equal to 1. These values are inserted in the last column of 
Table 1 because they will be helpful to calculate hypothetical isosteric heats of 
adsorpion in the mixture (N2+CO).

Figure 5 shows the comparison with experiment of the theoretically 
calculated phase diagrams for the case of (N2+CO) adsorption. Lines are the 
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theoretically calculated phase diagrams: solid line - the case of lack of 
correlations between energies of adsorbed molecules and, broken line - the 
case of high correlations between adsorption energies described by eq. (8). 
Although as follows from the analysis of heterogeneity parameters collected in 
Table 1 in the case of Dubinin-Astakhov equation (13) only the model of lack 
of correlations, eq. (22) should be used, we also show the theoretical curve 
calculated from eq. (23) (high correlations between adsorption energies).

As can be seen in Figure 5 only in the case of Langmuir-Freundlich eq. (22) 
(high correlations) satisfactory agreement was obtained.

In Figure 6 we present the results of theoretical calculations of isosteric 
heats of simultaneous adsorption by using the Langmuir-Freundlich and the 
Dubinin-Astakhov eqs (47-50). This confirms the previous conclusions that 
differences in theoretical isosteric heats of adsorbed mixture components are 
explicit for the small values of mole fraction Xi in the adsorbed phase. With 
the increasing values of X, the theoretical isosteric heats calculated for the 
cases of lack and high correlations between adsorption energies of components 
mixture become the same.

Fig. 5. Adsorption from the (N2+CO) gaseous mixture on the molecular sieve 10X at the 
temperature 172.04 K, at the constant total pressure P=760 mmHg. Comparison with 
experiment (•) of the X-Y composition diagrams calculated by applying equations 
corresponding to given energy distribution functions: left figure: LF eq. (19) (solid line, 
lack of correlations) and eq. (22) (broken line, high correlations); right figure: DA eq. 
(20) (solid line, lack of correlations) and eq. (23) (broken line, high correlations). The 
theoretical curves were calculated by using the parameters collected in Table 1. 
X] means the mole fraction of the component 1 in the adsorbed phase and 
У, = p, /(p, + p2) in the gas phase
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The above conclusions concerning isosteric heats of adsorption of mixture 
components are right only in the case when interactions between the adsorbed 
molecules are negligible. It is known that when the interactions between 
adsorption energies play a substantial role in adsorption phenomena, it is 
reflected in heat effects accompanying mixed-gas adsorption. The study taking 
into consideration interaction effects between adsorbed molecules for the case 
of the Gaussian-like adsorption energy distribution (6) has been carried out 
recently [19,20]. The case of the Dubinin-Astakhov energy distribution 
function (7) will be subject of our further publication.

Fig. 6. The hypothetical isosteric heats of simultaneous adsorption of N2 and CO on the 
molecular sieve 10X (X, means the mole fraction of nitrogen in the adsorbed phase). 
The theoretical curves were calculated by applying the equations corresponding to given 
energy distribution functions: left figure: LF eq. (53) (solid line, lack of correlations) 
and eq. (55) (broken line, high correlations); right figure: DA eq. (54) (solid line, lack of 
correlations) and eq. (56) (broken line, high correlations)
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