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Three-dimensional porous networks, built under the framework of the dual 
site-bond model of complex substrata, are used to represent the void 
structure of heterogeneous mesoporous materials. In essence, 
a topological characterization of different types of simulated porous 
structures is carried out to visualise therein the effects of: (i) varying 
connectivity (i.e. the number of throats that emerge from a pore cavity 
allowing its connection with homologous entities), and (ii) changing 
pore-size correlation (i.e. how size-alike neighbouring void entities can 
become). The characterization is based on the evaluation of some 
statistical properties of the porous substrata such as: (i) the mean 
size-correlation length between pore elements, and (ii) the connectivity 
frequency distribution of pore cavities. Through this statistical analysis is 
found a clear interdependency between local pore connectivity and 
size-correlation length values. Thus, pore elements display sizes and 
connectivities that depend on those adopted by their neighbouring void 
entities. These topological features are explained and discussed in terms 
of the different morphologies that porous materials can adopt according to 
the dual site-bond model.
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1. INTRODUCTION

A typical porous material is a complex medium made by the arrangement of 
several billion or trillion void entities per unit mass. The shapes of these 
entities are, in general, very complicated and pores are intercommunicated via 
tortuous ways. However, bearing in mind the main morphological properties of 
these media, one can start simplifying their description by recognizing 
a characteristic that is common to many of them: the void space can be 
imaginarily subdivided into a collection of hollow cavities constricted by 
narrow necks. Subsequently, one could also devise ways to take into account 
the principal void-to-void interconnection characteristics of the network. 
Thereafter, the assumption of simple pore shapes instead of the original 
geometries could provide further simplification, especially with respect to the 
kind of metric that could be adopted to characterize the sizes of the pore 
entities. Nowadays most noteworthy modelling of porous media [1-9] allow 
for the existence of the two kinds of pore entities, i.e. cavities and necks, while 
sometimes involving other important topological properties of porous networks 
such as variable cavity connectivity [3, 7].

Therefore, a convenient description of a porous medium should be that in 
which different types of pore structural heterogeneities are considered [7]. Size 
and connectivity variations are among the most important heterogeneities to be 
included. Additionally, some other important structural constraints may be 
introduced according to information proceeding from diverse sources (e.g. 
electron microscopy).

In this work, a topological analysis (i.e. the way in which void entities are 
distributed and interconnected throughout the porous medium) of simulated 
heterogeneous 3-D porous networks will be undertaken. First, a brief 
description of the Dual Site-Bond Model (i.e. the theoretical foundation on 
which this study is based) will be made. Afterwards, specific details concerning 
the Monte Carlo method that will allow us to materialize the theoretical 
concepts into digital porous networks will be provided. Finally, graphical and 
tabular results will shed light about the structural order that can exist in 
different types of porous networks.

2. THEORETICAL BACKGROUND

Heterogeneous mesoporous media of a simplified sort can be constructed 
through the Dual Site-Bond Model (DSBM) of disordered structures [8, 9]. 
According to this scheme, there are two kinds of void entities that can be 
recognized in a porous solid: the sites (S) and the bonds (B). Sites are hollow 
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cavities or chambers linked to each other by narrower capillaries or bonds. 
Every site can be interconnected to a variable number C, of homologous 
entities. C, is called the connectivity of the site and also corresponds to the 
amount of bonds that are surrounding this cavity.

A very important parameter linked to the DSBM and that incorporates the 
concepts of sites and bonds is the twofold pore size distribution: the quantities 
Fs (R) dR and FB (R) dR provide the fractional number of sites and bonds of 
sizes between R and R + dR, respectively. If, for simplicity, sites are assumed as 
hollow spheres and bonds as open-ended cylinders, then R represents the radius 
of either a site or a bond. Both distribution functions, Fs (R) and FB (R), are 
normalized to unity, so that the fractional number of sites, S(R), or bonds, B(R), 
of sizes R or smaller are given by:

R R

S(R) = j Fs(R)dR B(R) = J FB(R)dR (D
о 0

The essence of the DSBM resides in the formulation of a Construction 
Principle (CP). In its most basic form, this principle states that the size of any 
given site in a porous network should be large enough as to accommodate the 
С, bonds attached to it. In a more elaborated version, this CP involves that a site 
size must be larger than, or at most equal to, the size of any of its surrounding 
bonds, while at the same time these capillaries must not be interfering with 
each other. For instance, if a pair of orthogonal cylindrical bonds of sizes RBi 
and RB2 meet into a spherical site of size Rs, the site size ought to be:

RS>^RB2 + RB22 (2)

Other restrictions can be added to the formulation of the CP depending on 
further information about the topological properties of the porous structure 
[10]. Obviously enough, the CP introduces a series of restrictions regarding the 
parameters of the twofold distribution. One of the most important consequences 
of the CP is that, in order to construct consistent porous networks, the site-size 
distribution should be leaned towards larger void sizes than the bond-size 
distribution. An additional effect related to the latter one is that, depending on 
the mean connectivity C of the porous network, there is a maximum possible 
overlap (ß) that can be attained between the site and bond size distributions: 
the size likeness between cavities and necks can only reach a limiting 
(maximum) value if all void elements of the twofold distribution are going to be 
connected together. This ß is the common area shared by the site and bond 
distributions and the higher its value the larger the degree of size correlation 
existing between pore entities.
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The relative positions of the site and bond size distributions in a twofold 
description have led into a classification of porous structures [11]; this 
classification includes five types of porous media. When .12 = 0 the size of any 
site is larger than any bond size and types I, П and III are compatible with this 
characteristic. These three structures are, however, different from each other 
since type I is one in which Fs and FB are too far apart, whilst in type III the two 
functions are very proximate. Type II is intermediate between the former cases. 
A structure type IV is a situation of non-zero overlap, perhaps the most 
common occurrence of porous media. Type V is an extreme case of about 
complete overlap between Fs and FB, where the adsorbent develops 
a patch-wise configuration; interconnected sites and bonds of about the same 
sizes constitute each one of these patches.

3. THE MONTE CARLO METHOD FOR THE CONSTRUCTION 
OF HETEROGENEOUS POROUS NETWORKS

The Monte Carlo method that allows the materialization of the above 
concepts into a digital porous network comprises several steps [7].

The first step is to induce the principal characteristics of a porous substrate 
by choosing an appropriate precursor lattice in which sites and bonds are going 
to be allocated. For instance, if a cubic lattice is chosen as the precursory 
network, sites are positioned at the nodes of the arrangement and allowed 
a maximum connectivity Cmax = 6; besides the node-to-node distance has a fixed 
length that is at least equal to the diameter of the largest site.

The second step is to establish the parameters of the twofold distribution, 
i.e. Fs (R) and FB (R), from which the adequate numbers of sites and bonds will 
be acquired. The possibility of variable connectivity is introduced via FB(RB) by 
means of a fraction f0 of virtual or blind bonds (i.e. those entities having 
RB = 0), this fo then adopts the form of a Dirac 8-function. The role of virtual 
bonds is twofold since, besides of being the tool to impose a given mean 
connectivity of the porous network, these blind entities help sustaining a more 
dynamic performance during the following stages of consistency and relaxation 
of the network, as it will be explained afterwards. Thus, besides FS(R) we have 
the following bond size distribution function:

Fs(Re)
[FB(RB)

for RB = 0 
for RB > 0

(3)

Where 8(RB) is a Dirac-5 function arising at RB =0 andFe(R)is the size 
distribution of real bonds, therefore the following normalization relationship 
also arises:
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~!FB(RB)dRB=l-f0 (4)
0

It should be also noted that the mean connectivity C depends on f0 as 
follows:

C = Cmax(l-/0) (5)

The next step is to set up an initial pore configuration by assigning precise 
amounts of sites and bonds (i.e. those associated with the chosen twofold 
distribution) to the precursor lattice. This initialization procedure is carried out 
at random with no regard of the CP. Because of its arbitrary nature, this initial 
configuration involves multiple contraventions of the CP; therefore 
a subsequent combined consistency and relaxation process is compulsory to 
perform. This process involves an exhaustive interchange of pore entities in 
order to generate network configurations that are fully respectful of the CP 
(i.e. consistent with it) while at the same time void elements are being gradually 
allocated in the most aleatory possible way (i.e. the network is being relaxed). 
Details of this combined process are as follows [12]. Firstly, the locations of 
two sites к and / in the lattice are chosen at random, these entities are swapped 
if this exchange involves no contradiction of the CP at both places where the 
cavities are going to be allocated; otherwise the swapping is not performed. 
This operation is now repeated but on two bonds к and I chosen at random 
while employing the same criterion: if the exchange between bonds к and / 
allows the fulfillment of the PC at the two new locations, then the swapping is 
accepted if not it is rejected. For each swapping attempt exercised on sites, C /2 
attempts should be realized on bonds in order to relax the network steadily. It is 
also important to say that the entire group of bonds, real and virtual entities, 
participates in the exchange process. The relaxation procedure is performed 
according to a number of Monte Carlo Steps (MCS); each of these steps 
involves a number of exchanging attempts (successful or not) that equals the 
total number of pore elements in the arrangement. For porous networks of 
about 104 * 6 elements, the required number of MCS necessary to reach 
a convenient network, in the sense of fulfilling both the CP and the statistical 
expectations [13], is of the order of tens of thousands (i.e. tens of thousands of 
millions swapping operations).

4. RESULTS AND DISCUSSION

The results proceeding from the simulation of heterogeneous porous
substrata point to the emergence of two main topological phenomena: (i) a size 
segregation effect, and (ii) a connectivity segregation effect. The intensities of
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these two phenomena depend on the degree of correlation between porous 
entities, most times influencing very deeply the morphology of a porous 
substrate. The following analyses will shed light on these topological aspects of 
heterogeneous 3-D porous networks.

Simulation of porous networks. In order to study the effects of variable size 
and variable connectivity as well as the degree of correlation between pore 
entities on the topology of a porous network, a large set of structures was 
studied in terms of the following parameters: (i) the mean site size/?5, (ii) the 
mean bond size RB, (iii) the standard deviation a (assumed to be the same for 
both sites and bonds, i.e. a = crs = сгя ), (iv) the overlap fl between Fs and FB, 
and (v) the mean connectivity C . cr is a measure of the pore size heterogeneity 
that exists in the porous structure. In turn, fl is an indication of the intensity of 
size correlation between two neighbouring entities. Finally, C is a magnitude 
that not only accounts for the interconnectivity of the porous material but also 
for the spreading of pore size correlation throughout the network.

Twofold Gaussian distributions in terms of Fs and FB, and allowing a span 
of site or bond sizes between R - 3d and R + 3d , have been chosen as the 
suppliers of the respective pore elements. Besides, Fs and FB have been set in 
such a way that the range of pore sizes of the whole void lot is in-between 
20-150 Â, an interval credited to mesoporous materials [14]. Table 1 
summarizes the sets of Gaussian arrangements that have been constructed, 
networks with C = 2, 3, 4, 5 and 6 have been considered. All simulated 3-D 
porous networks ensued from precursor cubic lattices (Cmax = 6) comprising 80 
л 80 л 80 sites together with 3(1-/0) x (80)3 real bonds and 3/0 x (8O)3 virtual 
bonds. The following numbers of heterogeneous networks were constructed: 63 
for C = 2, 50 for C = 3, 43 for C = 4, 49 for C = 5 and 33 for C = 6. Table 1 
only shows, for the four bond-size distributions considered in this work, the 
two extreme mean values between which the myriad of site-size distributions is 
located, in order to reach a minimum, Amin = 0, and a maximum, flinax, overlap 
with the neck-size distribution, respectively.

Another topological parameter of interest is r0 the mean size correlation 
length. This parameter represents the mean length (measured in lattice units and 
taking the node-to-node distance of the porous lattice as unity) at which the size 
correlation coefficient C* y\r) (defined below) between two homologous void 
entities attains a value equal to Me (i.e. the reciprocal of the natural number e). 
The correlation length r0 thus helps measuring the decay of the correlation 
coefficient with r in multiples of Me. The relationship between r0 and C^(r) can 
be written as [15]:
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C^(r)=e-r/r» (6)

Tab. 1. Summary of twofold Gaussian size distribution parameters Rs, RB, a, C and 
Л of heterogeneous 3-D porous networks
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* Rs ma» corresponds to the maximum mean size of the site distribution in order to have a 
zero overlap (f2^in = 0) while Rs min is the minimum mean size of the site distribution to 
reach a maximum overlap (Gmax) with the given bond-size distribution, respectively

Where C*'(r)  is then the correlation coefficient linked to the event of finding 
sizes Rx and Rv for two homologous void elements x, y, separated by a lattice 
distance г. СЩг) and r, are given by:

C”'(r) =
(Rx-Rx)(Ry-Ry) 

«
(7)

r = |rx-ry| (8)

Where Rx, Ry, ax and ay are the means and dispersions of Rx and Ry, 
respectively, while rx and rv are the vectors that define the positions of the two 
void elements in the lattice. Then, a unitary distance r = 1 corresponds to the 
distance between the centres of two first-order neighbouring sites. When there 
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is perfect correlation between the sizes of two neighbouring pore entities 
C1' = 1 and r0 = while Cxy = 0 implies no correlation and r0= 0.

Two main size correlation lengths, ross and r0BB, can be obtained from 
equations 6 and 7, each of these coefficients quantifying the correlation 
established between two sites or two bonds separated by a distance r, 
respectively. In general, r/5 * rBB but nevertheless there exists a direct 
correspondence between them. It is for this reason that rBB has been chosen 
(r/s could have also played a similar role) as an adequate parameter to 
envisage the degree of correlation between void elements in a heterogeneous 
porous network, and for simplicity it will be just labelled as r0.

Size correlation between pore elements. Among the three main topological 
parameters that characterize a heterogeneous porous network, fl influences the 
values of r0 to a larger extent than either C or O’ [15, 16]. This is because r0 
increases exponentially with fl, nevertheless the effects of the two other 
variables ( C and o) are not negligible. When cr is small, it is much more 
probable to find rather extensive pore domains that are constituted by void 
elements of similar sizes than when this parameter is large. In tum, C is 
a quantity that greatly influences the propagation of correlations between pore 
entities, thus a large connectivity spreads much more efficiently the size 
likeness among pore elements throughout the void arrangement.

Figure 1 shows a set of curves of r0 versus fl according to different values 
of C and <7. The analysis of the whole set of curves leads to the conclusion that, 
in general, C influences more strongly than a the outcome of r0. When 
fl < 0.1, the values of C and cr have almost no influence on r0, the overlap and 
the correlation length are both very small thus meaning that sites and bonds are 
arranged mostly at random throughout the porous network since the size of any 
site is in general much larger than the size of any bond. However, when 
fl > 0.1 an intense growth of r0 starts taking place especially for large C 
values. High connectivity promotes strong correlations between pore elements 
and a size-segregation effect [13] becomes apparent. The case of C = 2 is an 
interesting one, since here it is possible to attain quite large values of fl that are 
very close to the maximum possible limit of this parameter 
(i.e. flmax(C=2) = 1 -f0 = 0.333), under these circumstances the porous 
network then becomes extremely correlated and the r0 curve is almost vertical 
around this value. This is the first evidence of a tubular network being set up at 
C = 2, in which case the sizes of interconnected bonds and sites almost 
coincide, thus forming a substrate of rather long cylindrical capillaries.
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Fig. 1. Correlation length r0 versus Q for different C values. C is labelled as <C> in 
the plots
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The case of C = 6 is_also very interesting to point out since here, in contrast to 
those cases of low C , the influence of cr on r0 can be distinguished. At these 
high connectivity and low (rvalues, pore elements are more size alike and as 
a result networks become more correlated and r0 increases steeply when ß is 
large enough. In summary, the following observations concerning the size 
correlation displayed by heterogeneous 3-D porous networks can be 
established: (i) C affects more deeply than cr the values of r0, and (ii) the effect 
of a on r0 becomes noticeable when C > 4 .

Connectivity distribution. Another important characteristic of the topology of 
heterogeneous porous networks is the connectivity distribution, f(C) that is 
exhibited throughout the system. Figure 2 shows histograms of/(C) as function 
of both ß and C . There it can be seen that in the absence of significant size 
correlations, i.e. when ß—>0, f(C) assumes the form of a binomial 
distribution with a maximum towards C - C (see Figures 2a-2d). Sites and 
bonds, in these scarcely correlated networks, are allocated mostly at random. 
Here, there is no major problem in surrounding a given site with an average 
number of bonds, this also meaning that bonds are still far from approaching 
each other. However, when ß becomes significant, the situation changes 
appreciably since there start appearing two maxima o_f f(C) which are located 
at C = 2 and C = 6 (see Figures 2g-2j). When C= 2 and ß = 0.33 (see 
Figure 2e) there is a sharp maximum at C = 2 with some contribution of sites 
with C = 1 (i.e. there again emerges evidence of a tubular structure). For C = 3 
and ß - 0.4 (Figure 2i) there is already a clear indication of these/wo peaks at 
C = 2 and C = 6, and they become more evenly balanced when C =4_and ß is 
either 0.33 or 0.40 (Figures 2g, 2j). Something similar occurs when C = 5 and 
ß = 0.33 (Figure 2h).

For highly correlated networks the height ratio between peaks at C = 2 and 
C = 6 depends on C , the higher this value the greater the amount of sites with 
C = 6 whilst the converse is true for lower C . It should also be stressed that the 
restriction that is involved in the CP, establishing that bonds should not interact 
with each other (i.e. a geometrical restriction), is a main reason for which this 
connectivity segregation phenomenon occurs. When these geometrical 
restrictions are not considered (i.e. when there arises the unrealistic situation in 
which bonds have the opportunity of interpenetrating each other around the 
sites) the effect of ß on/(C) is not so evident [7] and no dominant connectivity 
values arise. In the following sections, calculation of some other structural 
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parameters will reinforce and extend the picture hitherto developed about the 
morphologies of these heterogeneous porous networks.

Fig. 2. Connectivity distribution f(C) as function of й and C for heterogeneous 3-D 
porous networks. C is labeled as <C> in the figure

Pore sizes as function of C. Mean sizes of interconnected sites or bonds as 
function of connectivity are shown in Figures 3 and 4, in which plots of Rs 
and Rb versus C are constructed, respectively. These plots show the mean sizes 
of the pore entities that are associated with a given connectivity value; for 
instance in the case of bonds the corresponding value Rb (C) is calculated by 
averaging all bond sizes that are connected to sites of connectivity equal to C, 
while the site sizes associated with a given C, i.e. Rs (Q, is the average size of 
all these entities depicting the same C. When Q = 0 there is a uniform 
distribution of both sites and bonds for every C value, there is no preference at 
any given region of the porous network for a specified pore size
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(see Figures 3a-3d and 4a-4d). Void entities of all possible sizes are 
interconnected in the same proportions (although their total numbers are 
different) irrespectively of the mean connectivity of the system. Now when 
£2*0,  two general tendencies, concerning the cases of sites with C = 2 and C 
= 6, start emerging. The first one shows that, in a given network, the sizes of 
sites associated with C = 2 are smaller than those related to C = 6, i.e. 
Rs(C = 2)< Rs(C = 6), see Figure 3e, and this tendency remains the same and 
perhaps becomes more intense as £2 increases. The second one consists in that 
values of Rb(C = 2) are every time comparatively larger (with respect to the 
site sizes to which these entities are joined) than those of Rb(C = 6) as £2 
increases, i.e. Rb(C = 2)> Rb(C = 6), see Figures 4e-4j.
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Fig. 3. Mean site size Rs as function of £2 and C for heterogeneous 3-D porous 
networks. Rs is labelled as <R$> and C is labelled as <C> in the plots
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Fig. 4. Mean bond size RB as function of ß and C for heterogeneous 3-D porous 
networks. RB is labelled as <RB> and C is labelled as <C> in the plots

Another important characteristic is the relationship existing between the 
mean sizes of interconnected sites and bonds for a given C, i.e. Rs(C) and 
/?в(С), as function of ß. Figure 5 depicts a series of plots relative to the mean 
sizes adopted by both sites and bonds for the cases C = 2 and C = 6; bar heights 
at each of these two C values represent the mean sizes of sites (blank bars) and 
bonds (dashed-filled bars) that are joined together. It can be observed that 
values of Rs(C = 2) and Rb(C = 2) become more similar as ß is enlarged, 
whilst the magnitudes of Rs(C = 6) and Rb(C = 6) remain very different from 
each other, i.e. Rs(C = 6)»Rb(C = 6). This means that, when there are 
appreciable size correlations between pore entities, those pores having similar 
sizes aggregate together in regions with C = 2, whilst those sites with C = 6
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form regions in which cavities are sensibly larger than bond sizes. Summaring 
up, when Ï2 is high, the sites inside regions of C = 2 are smaller than their 
homologous entities located in domains with C = 6. In turn, bonds connected 
to sites with C = 2 have larger sizes than necks linked to cavities having 
C - 6. These characteristics have a profound influence in the capillary 
behaviour of correlated porous networks.

<C> 2 3 4 5

n

0.0

c c c c

0.33

0.40

c

Fig. 5. Mean sizes of sites Rs and bonds RB associated with connectivity values of 
C = 2 and C = 6. Rs (blank bars) is labelled as <RS>, RB (dashed bars) is labelled as 
<Rb> and C is labelled as <C> in the plots

Bond interactions (geometrical restrictions). The above features of finding 
comparatively smaller bonds linked to sites when C is high, and also that of 
having relatively small sites connected to bonds of about the same size when C 
is low, find their origins in both the existence of strong size correlation and 



Topological analysis of heterogeneous three-dimensional porous networks... 93

geometrical restrictions (i.e. these geometrical constraints arising when bond 
interactions are being precluded) between pore entities. As ß intensifies, the 
sizes of interconnected sites and bonds become similar. The sizes that present 
the largest problems to be accommodated appropriately (i.e. respecting the 
fulfillment of the CP) within the porous network are those related to small sites 
and large bonds, i.e. those regions in which the pore entities are size-alike. 
Therefore, the most likely arrangement in which these pore elements can be 
disposed together in order to comply with the restrictions of the CP, consists in 
the generation of the connectivity segregation effect. This phenomenon is 
practically absent in structures depicting ß = 0, but it becomes very strong 
when the overlap is considerable between the site and bond size distributions 
(see Figure 6). Besides, the connectivity segregation effect brings about the 
following characteristics. Pore domains endowed of high C are conformed by 
large sites connected to the maximum possible number of smaller bonds; in 
turn, small sites are connected to relatively large bonds thus making zones of 
low C. In this fashion, void entities subjected to the largest connecting 
difficulties can be incorporated into the network: size-alike sites and bonds 
form regions of low C and big sites joined to small bonds constitute patches of 
high C. This connectivity segregation also explains the propensity of j\C) to 
dissociate into regions depicting C = 2 and C = 6 when ß is high.

Pore network morphologies of heterogeneous networks. Compilation of the 
above results can provide an outlook about the pore topologies of the different 
substrates that have been simulated.

For substrata displaying C = 2,3 and significant ß, tubular pore 
morphologies (zones of C = 2 ) are preferentially formed. In these zones, bonds 
merge with sites of about the same size thus conforming tubular capillaries. 
Another aspect of this situation consists in that the extent of these regions 
depends largely on ß rather than on ст. The tubes are principally arranged as 
long cylinders with some cross-linking existing between them (see Figure 7a) 
and when this latter situation occurs this is due to a number of large sites that 
are fully connected to very small bonds ( C = 6 ).

For substrata having C > 4 and moderate values of ß, there exist pore 
domains formed by pore entities of similar sizes. The extent of these regions 
depends very much on cr, the larger the value of this parameter the smaller the 
extent of each size domain. High C values will be the most abundant within 
each region; however there also exists some provision of lowly connected pore 
entities that are mainly located at the borders between the former patches.



94 S. Cordero et al.

Fig. 6. Graphical representation of the site connectivity distribution existing in some 3-D 
porous networks. Cross-sectional planes comprising 80 x 80 sites containing: 
(i) poorly connected, C = 5, 6 (dark grey), (ii) medially connected, C = 3, 4 (black) and 
(iii) highly connected, C = 5, 6 (light grey) pores, are shown. All networks have 
RB = 26 Â, os =_aB = 6 Â. (a) C = 4, Q = 0, Rs = 62 Â, (b) C = 2, Q = 0.33, 
Rs = 28 Â, (c) C = 3, Q = 0.40, Rs = 32 Â, (d) C = 4, Q = 0.36, Rs = 35 Â, 
(e) C = 4, Q = 0.33, Rs = 37 Â

The morphology of a porous network with C = 4 and Л = 0.36 is shown in 
Figure 7b; this figure corresponding to a close-up of a region formed by 12 x 12 
sites and associated bonds. There it can be seen a tubular zone ( C = 2, left 
hand side of Figure 7b) separated from a zone of ink-bottles ( C = 6 , right hand 
side of Figure 7b).
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(a)

(b)

Fig. 7. Close-ups of cross-sectional planes of 3-D networks comprising 12x12 sites and 
related bonds, showing topological details of porous media. Sites are represented as 
black-filled spheres and bonds as black-filled cylinders, (a) Tubular structure related to 
a network with C = 2 and Q = 0.33, (b) mixed (tubular + ink-bottle) morphology for 
C = 4 and Q = 0.36

In the case highly of correlated substrata corresponding to C - 2 or C - 5, 
these networks structuralize themselves according to different patterns. Tubular 
structures are associated with C = 2 while ink-bottle structures (a large cavity 
surrounded by narrower bonds) are mostly formed when C = 5. Networks of 
constant connectivity, in this case those in which C = 6 exist as ink-bottle 
networks and when ß is large a size segregation effect structuralizes the 
network into a patch wise substrate of different sizes. Figure 8 exemplifies the 
appearance of this size segregation effect, since from being not very detectable 
in networks with C = 6 and Q = 0 (Figure 8a), it becomes very evident in 
networks with the same C but with a considerable overlap between the site and 
bond distributions (Figure 8b). This size segregation effect is not exclusive of 
networks having constant C but it can also arise (together with the connectivity 
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segregation effect) in networks of variable connectivity and high Ï2.. Finally, it 
can be said that intermediate cases between low (i.e. C = 2) and high 
(i.e. C = 6) connectivity values, can represent different hybrid (tubular + 
ink-bottle) topologies of porous materials.

(a)

(b)

Fig. 8. Graphical representation of the size-segregation effect that can occur in regular 
porous networks with C - 6. Cross sectional planes of 3-D porous network comprising 
80 X 80 sites are shown. Small sites are represented in grey colour, medium-size ones in 
black and big voids in white, (a) Q = 0, Rs =62 Â, Rg = 26 Â, os = gb = 6 Â, 
(b) Q = 0.40, Rs = 32 Â, RB = 26 Â, os = oB = 6 Â
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5. CONCLUSIONS

The morphologies adopted by 3-D heterogeneous porous networks depend 
on the structural parameters of the arrangement. When sites and bonds are very 
different in size, pore entities in the form of ink-bottle shapes are disposed at 
random throughout the porous network. When the correlation in size between 
sites and bonds is high, the structure of porous networks is susceptible to the 
appearance of two phenomena: a size segregation effect and a connectivity 
segregation effect. When the latter phenomena occur, the substrate 
structuralizes itself into a collection of patches having pores of about the same 
sizes or the same connectivities; these patches alternate with others of different 
characteristics thus conforming a patch-wise adsorbent. Depending on the mean 
connectivity of the porous network, the morphologies of these highly correlated 
substrata can become tubular (low C, high J2), mixed (tubular + ink-bottle; 
intermediate C, high 12) or ink-bottle shaped (high C, high J2). The overlap 
between the site and bond distributions as well as the restrictions of 
geometrical nature play essential roles towards the establishment of network 
morphologies in correlated heterogeneous porous structures.
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