AN NALES
UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA
VOL. KL/XLI, 37
SECTIO AAA
1985/1986

Instytut Fizyki Teoretycznej
Uniwersytet Warszawski
Z. SZYMANSKI

Possible Reasons for the Rigid-Rotor Like Behaviour of the k゙ast Rotating Nuclei

O możliwych przyczynach zachowywania się szybko ritujących jąder jak estywnego rotatora

Возможные причины поведения быстровращансцихся ядер

 как жестиих роторов
Abstract

Many interesting features of the atomic nucleus do not seem to manifest themselves until the nucleus undergoes a fast rotation. When the rotational frequency exceeds a certain eritical value the well-known static superfluid correlations existing in a cold nonrotating nucleus may be destroyed. In this state the system seems to be mostly governed by the interplay between the rotational couplings and the singleparticle structure. Recent experiments (see e.g.refs. [1-4]) have shown that angular momentum I of the rotating nucleus is proportional to its rotational frequency ω in the region of high values of I and. This has all the features of the


```
& in collaboration with J.Dudek and W.Nazarewicz
```

rigid rotation since both moments of inertia kinematical $\mathfrak{J}^{(2)}$ and dynamical are equal to each other [5] $^{(2)}$ are

$$
\begin{equation*}
y^{(1)}=7^{(2)}=\mathcal{F}_{\text {rigid }} \tag{1}
\end{equation*}
$$

and Independent of ω. Let us analyse this behaviour assuming that the influence of the superfluid correlations can be disregarded.

It has become custamary to describe the very high spin states by means of an external rotation of the deformed nuclear potential (cranking model). It has been also established (sem .g.refs. [6, 7]) that the average mament of inertia $\mathcal{F}^{(1)}$ in the normal nuclear phase should be equal to the rigid-body value.

This picture, however, encounters some difficulties that could be predicipi even without performing the detalled numerical calculations in the framework of the cranking model $\quad 8 \mathrm{~B} . \quad$ In fact, in the independent-particle description of nuclear rotation the energies ey in the rotating frame ithe routhians) can be plotted as functions of rotational frequency ω. When two levels cross at the Fermi surface the angular momentum I (or, more precisely, its components on the rotation axis) of the system undergoes a discontinuity equal to difference in the slopes of the two crossing levels. In between any two crossings the curve of angular momentum must, therefore, increase less steeply as to provide an average slope corresponding to the rigid-body value $y^{(t)}=\mathcal{F}_{\text {rigid }}$. Thus the dynamlcal mament of inertia $\mathcal{F}^{\text {a }}$ which is determined by the lacal slope dI/dw should be lower than $\mathcal{F}_{\text {nifid }}$. This contradicts the experiment that requires eq. (i) to be valid.

In order to analyse this contradiction in more details let us look closely what happens with nuclear deformation when the nucleus in cranked. Usually, the nuclear shape changes are disregarded in the calculation. This may seem justified, as the corresponding changes appear to be rather small. One has to bear in mind, however, that even small changes in nuclear shape may cause considerable variation in energy or angular momentum of the nucleus.

Let us adopt the rotating harmonic oscillator as a
simple model to illustrate better the situation. Fig. 1 represents the approximate $[6,9,10]$ independent-particle solutions to the rotating h.o. ($=$ harmonic oscillator) potential plotted versus rotational frequency ω. In this model the existence of the nucleonic spin is ignored. It results only in the double degeneracy of levels. The single-particle routhians are labelled by the three h.o. quantum numbers n_{A}, n_{α} and $n_{p} l e a d i n g$ to

Fig.1. Single-particle energies e_{ν}^{ω} in a rotating potential of of harmonic oscillator (routhians) plotted versus rotational frequency ω at fixed value of the deformation parameter $\mathcal{E}=$ $\left(\omega_{1}-\omega_{3}\right) / \omega_{0}=0.2$. Both e and are given in units of $k \omega_{0}$.

$$
\begin{equation*}
e_{n_{1} n_{\alpha} n_{n}}^{\omega}=\left(n_{1}+\frac{1}{2}\right) t_{1} \omega_{1}+\left(n_{\alpha}+\frac{1}{2}\right) f_{\omega_{\alpha}}+\left(n_{\beta}+\frac{1}{2}\right) n_{2} \omega_{\beta} \tag{2}
\end{equation*}
$$

with normal mode frequencies $\omega_{1}, \omega_{\alpha}$ and ω_{β} depending on the original h.o. frequencies $\omega_{1}, \omega_{2}, \omega_{3}$ (which fulfil the volume conservation condition $\omega_{1} \omega_{2} \omega_{3}=\omega_{0}^{3}$, and on rotational frequency ω

$$
\begin{equation*}
\omega_{\alpha / 3}=\frac{\omega_{2}+\omega_{3}}{2} \pm \sqrt{\frac{\left(\omega_{3}-\omega_{3}\right)^{2}}{4}+\frac{\left(\omega_{2}+\omega_{3}\right)^{2}}{4 \omega_{2} \omega_{3}} \omega^{2}} \tag{3}
\end{equation*}
$$

The $N=4$ shell is mostly shown in Fig. 1 (solid lines) together with some upsloping $N=3$ levels and some downsloping $N=5$ levels (dashed lines). Let us take for example the system with $\mathscr{N}=52$ particles corresponding to a given occupancy of the lowest levels (as indicated in Fig.1). At $\omega=0$ the $N=0,1,2$, and 3 h. 0 . shells are fully occupied while the remaining 12 particles populate the lowest $N=4$ orbits. When rotational frequency increases the lowest $N=5$ orbit with $\left(n_{\sim} n_{\alpha} n_{\beta}\right)=(005)$ carrying most of the angular momentum comes down to the Fermi surface and crosses with the (002) level. The system gains about $i=9$ units of angular momentum. When ω increases further there occurs a crossifig between two levels: (030) and (104) with further gain in angular momentum i=12.5. Fig. 2 illustrates the resulting curve of I versus ω corresponding to this situation. One can see that the average slope in the curve $I=I(\omega)$ is that of the rigid-body while the local slopes (determined by $y^{(2)}=d I / d \omega$, are considerably smaller: $f^{(2)} \ll \jmath^{(1)}$ contradicting the experiment as expressed by eq. (1).

Let us now abandon the assumption of a constant deformation and, instead, let us leave the nucleus to adapt its own shape during the process of external rotation. In the model of rotating harmonic oscillator it turns out to be possible to find a simple analytical solution for arbitrary angular momentum I that corresponds to the energy minimised with respect to deformation (selfconsistent solution). The energy E in the laboratory system turns out [9,10] to be given by a simple formula

$$
\begin{equation*}
E=3 \hbar \omega_{0}\left\{\Sigma_{1}\left(\sum_{\alpha} \Sigma_{\beta}+\frac{1}{4} I^{2}\right)\right\}^{1 / 3} \tag{4}
\end{equation*}
$$

where $\sum_{1}, \Sigma_{\alpha}$ and \sum_{β} define the occupancy of the h.o. quanta along the three axes

$$
\begin{equation*}
\sum_{x}=\sum_{r-\infty}\left(n_{x}+\frac{1}{2}\right) \tag{5}
\end{equation*}
$$

with $x=1, \alpha$, or β.
It has to be emphasized that this formula gives the energy E that is already minimised with respect to deformation.

Fig.2. Angular momentum I plotted versus rotational frequency ω in units of $\hat{\omega}$ (felid line). The two crossings of levels mentioned in the text are indicated by arrows. Long-dashed line indicates the rotation with rigid moments of inertia shown for the sake of comparison.

Thi lewes: energy for the system of $\mathcal{N}^{2}=52$ particles corresponds to $\Sigma_{1}=\sum_{\alpha}=64$ and $\bar{L}_{\beta}=98$. It is essential to observe that this configuration remiains yrast in the large range of angular momentum (i.e. there is no crossing of orbits if we fallow the path of minimised energy). The two moments of inertia $y^{(0)}$ and $7^{(2)}$ following from eq. (4) turn out to be almost equal. They also appear to be elose to the rigid moment of inertia iactually, $f^{\prime \prime}=F_{\text {rigid }}$ up to quadratic terms in deformation parameter which is consistent with the approximation of the modell.

One can see that once the nucleus is left to adjust freely its shape during rotation the sharp crossings of levels may be avoided and the above mentioned difficulties of the mode! may be overcome. In particular, the two moments of inertia贸 ${ }^{\prime \prime}$ and tend to have values close to each other and the rotation of the system does not differ very much from that of a rigid rotation. One can thus expect that the changes in nuclear deformation may appear ias an important factor influencing the structure of the rotating nucleus in the region above the pairing phase transition.

An open question remains, however, whether the above conclusions drawn in the framework of a simple model of the harmonic oscillator hold as wellin the case [11] of a more realistic description of the nucleus. Moreover, there may exist some other physical quantities in the nucleus that vary during the fast rotation and thus tend to play a similar role as the nuclear shape.

The author is indebted to Professor Ben Mottelson for drawing his attention to the existence of the problem and for the essential discussions. This work has been partly supported by the Research Program C.P.B.P., contract number 01.09.

References

1.Chapman R., Lisle J.C., Mo J.N., Paul E., Simcock A.: Willmott J.C., Leslie J.R., Price H. G., Walker F.M., Bacelar 3.C., Garrett J.D., Hagemann S. ב., Herskimd E., Holm A. and

, Tjom P.O., and Lisle J.C.: Nucl.Phys. 1985, A442, 509-54ó.
3.Price H.C., Lister C.J., Varley E.J., Geldetly W., and 01ness J.W.: Phys.Rev.Lett. 1993, 51, 1942-1545.
4.Twin P.J., Nyako B.M., Nelson A.H., Simpson J., Bertley M.A. , Cranmer-Gordon H.W., Forsyth P.D., Howe D., Mokhtar A.R., Morrison J.D., Sharpey-Shafer J.F., and Sletten G.: PyS.Rev. Lett. 1986, 57, 811.
5. Bohr A., and Mottelson B.R.: Phys.Scr. 1991, 24, 71-75.
6. Bohr A., and Mottelson B.R.: Nuclear Structure, Vol. 2, New York 1975.
7. Bohr A., and Moteelson B.R.: K.Dan.Viderisk.Gelsk.Mat.Fys. Medd. 1955, 30, No 1, 1-24.
8.Mottelson B.R.: comments given at Workshop on Nuclear Structure 1986 (NBI, Copenhagen).
9. Cerkaski M., and Szymanski Z.: Acta Pioys.Polon. 1979, B10, 163-179.
10. Szymanski Z.in Nuclear Physics with Heavy Ions and Mesons, ed.by Balian R., Rho M., and Ripka G. (Les Houches 30), 1977 , Vol.1, 297-361.
11. Dudek J., Nazarewicz W., and Szymanski Z.: current work.

STRESZC ZANIE

Dyslutuje się plyw deformacji na własnosci szyblcorotujqcych jąder. Pokazano prostym modelu oscylatora harmonicznego, ze dwa momenty bezwiadności: kinematyczny $J^{(1)} i$ dynamiczay $J^{(2)}$ majaz martóci bliskie sobie 1 że rotacja układu niewiele sié rózni od obrotu ciała sztymnego. Wniosek ten jest zgodny z ostatnimi daaymi doswiadczalnymi.

$$
\text { PE } 310 \mathrm{ME}
$$

Рассщатривается влияние деформашии на свойства быстровращаюпихся пдер. С помомью простои нодели гармонического
 динемического $\mathrm{J}^{(2)}$ моментов инерции блззяи друг дручу и что

leat

 kfota

 0

我

焦

-arnit virmbell

 (at

[^0]
[^0]: $\frac{1020}{}$

