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1. INTRODUCTION

In this paper we consider two types of phenomena which a- 
rise in the theory of low energy fission due to the finite ve­
locity of a fission process: diabatic mode coupling (DMC ) for 
collective coordinates and energy loss of the fission mode via 
dissipative processes: If the fission motion were infinitely 
slow one could describe the wave function of a fissioning nuc­
leus within the zero order Born-Oppenheimer approximation (BOA)» 
i.e. the wave function would separate into the simple product
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4» ( a, q , x) « U (а ) W ( q., x ; а) >

Неге « is the fission coordinate, q stands for the collective 
degrees of freedom of the fissioning nucleus and x for the re­
maining internal coordinates. U(cr) is the probability amplitude 
for finding the fission coordinate between a and a + da , while 
W(x,qia) is the wave function in the space of all other coordi­
nates} it depends parametrically on oc . In the case of BOA the 
wave function W(x,qia ) belongs to the lowest eigenvalue of the 
internal Hamiltonian being compatible with the prescribed con­
served quantum numbers. The first step towards the inclusion of 
effects of the finite fission velocity consists in expanding the 
wave function in a basis which allows for excited states in the 
x,q-space and for subsequent modifications of the fission wave 
function itself:

= (*> 'Л'Г"(Я’х>а) (2)

m,k

Here ffm(x,q} a) is an eigenfunction of the internal Hamiltonian 
Hint(x,qja ) which depends parametrically on а :

H-(nt(q,x;«)»vm = (q,«;«) (?)

The fission wave function depends on the quantum numbers m of 
the internal state via the energy 8ш(<х) and on the quantum num­
bers к which characterize the fission mode (energy, angular mo­
mentum etc.). The coupling between .the excited modes tp,p^(<X, q,x ) 
results from the operator T1^?) which is obtained from the part 
of the kinetic energy operator which acts on the parametric de­
pendence of on а . Since this parametric dependence of 
on a is directly related to the deviation from the simple adia­
batic wave function of Eq.(1), we call the coupling leading to 
the form oï Eq. (2) diabatic mode coupling.

The ШС would adequately describe the fission process, if 
in Eq. (2) we could really perform the sums over all relevant 
quantum numbers m, i.e. sums over quantum numbers related to 
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collective and intrinsic coordinates. Since this is mathematical­
ly unfeasable one can divide the problem into two distinct parts: 
In the first step one ignores the intrinsic degrees of freedom 
and performs а ШС calculation in q-space*.  In the second step 
one takes account of the coupling between the intrinsic coordina­
tes x and the collective coordinates oc and q. The most promi­
nent effect of this coupling is the thermalization of the energy 
of the collective motion. Two mechanisms can be distinguished: 
(i ) The coupling between the intrinsic coordinates x and the 
collective coordinates q leads via intrinsic excitations to a 
damping of the collective mode (e.g. the asymmetry vibration). 
This is the same mechanism that leads to the damping of excited 
collective states of fission-stable nuclei, as for example in 
giant resonances. This damping depends on the fission motion in­
directly via the available energy and the energy dependence of 
the damping width, (ii ) The coupling between the intrinsic coordi­
nates x and the fission coordinate a leads to a direct excita­
tion of intrinsic degrees of freedom which in turn results in a 
direct dissipation of the fission energy. The dependence on the 
fission mode comes via the velocity of the fission process and via 
the fission energy which determines the phase space for intrinsic 
excitations.

In our treatment we ignore the change of nuclear structure 
parameters due to the heating up of the fissioning nucleus, though 
this will be probably important for the inertia parameters. These 
problems will be considered in further investigations.

Furthermore our treatment is limited to small fission ener­
gies« otherwise diabatic level crossing would become an important 
effect which upsets the basis of our description.

2. BASIC DEFINITIONS AND NOTATIONS

In recent years many calculations of potential surfaces and 
inertia tensors for fission configurations of nuclei have been 

*In the numerical application we deal with only one collective co­
ordinate belonging to the mass asymmetry oscillation. In principle 
more collective coordinates could be included.
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performed [1-5] and methods have been developed which allow the 
determination of adiabatic paths to fission [3]. To describe the 
fission process in the adiabatic approximation one generally in­
troduces a number of collective coordinates: The fission coordi­
nate a related to the mean elongation, a coordinate q„„ descri- 
bing a possible mass asymmetry, a necking coordinate qnO(;k and 
eventually further coordinates depending on the degree of sophi­
stication one is aiming at.

In this paper we use the collective coordinates of ref.fs^, 
i.e.

OC = (a/02* c2+ cJ/2R0 ,

q = (a<b<2-a2b2)/(a)b/+a2b/)^ .

^ith these coordinates the classical energy of a system of par­
ticles becomes

H , = f E * Ę v(q‘) , (2.1)
4 • 1

where and V(q) denote the mass tensor and the potential 
energy. After quantization the Hamiltonian takes the form

where the determinant of the mass tensor is | M | = det

AJ Л

In the two dimensional space with the coordinates 
the mass tensor is

I
M-. =lj \ M (|(x

M<xq, \

I'M /

(Mi j ) and

CX , q

(2.3)

îfe chose a coordinate system q- = (<x,q) in which the mass ten­
sor is diagonal = M л = 0.

Ofc q oc

17e denote the diagonal elements of the mass tensor
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M » M"«.cc a. >
(2.4)

M q ą = M q.

They depend on a and q.
To describe the fission process we have to solve the eigen- 

problem with the collective Hamiltonian

£ 4 g Vм»1 
M * Mq 3*  I

a + э if э 
ad 3q | Mq 3q (2.5)+ V

The variables <x and q describe the fission and asymmetry modes 
respectively. The masses M (<x ,q) and M_(ot,q) as well as the cv q
potential V(oc,q) are obtained from the asymmetric two center 
shell model [ 5].

The scalar product of the eigenfunctions of the Hamiltonian
H is defined with the metric

To obtain a metric which does not depend on masses and coordinates 
and gives orthogonal functions

we perform now an unitary transformation of the Hamiltonian and 
its eigenfunctions If (<x,q) with the help of the function ^~D (« ,q )’

$(m) >Kx.9) ,
Й (<x,q) =lfD (a,q)’ H («,<}) \|d (a,q)' .

Then the Hamiltonian takes the form

H-4 J_d__L+ J_ J_ JL' 
3*  M*  3л 3q Mq 3q.

+ v(<x,q) +vG(*,q).  (2.7)

Neglecting the small scalar term VG(a,q) (Appendix A ) we split 
up the Hamiltonian in the following way:
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H’VV (2.8)

where

~ a i a
ra= г aa M»(bt,q) Зсе ’ <2’8a)

In the adiabatic approximation one assumes that depends only 
weakly on the fission cordinate <x . Те therefore define an adia­
batic Hamiltonian for the internal system

where M^(q) is average mass for the q-motion. H defines 
the eigenfunctions of the q-mode

н(9 ;«) wm(q;«) = («•) (q ; «)

In order to define the adiabatic part of T, we introduce the 
average mass

Ma(a) -f lV*(q  ;«)M*  (a.q) W(q;«)/1q,<x)|2 dq.

Then Tad is defined by

ad ’ fi2, 3__  4 Э
T« = 2 da Ma(<x) Зое (2,10)

The eigenfunctions of the total adiabatic Hamiltonian

..ad . _ ad .ad
H (a,q)=Ta + (2.11)

can be written as:

ad
^nE(a-9) = UnE(a) Wn (9i*) (2.12)
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The adiabatic Schrbdinger equation is

UnE(<x) ;ot) sEUne(a)Wn(q;<x) (2.13}

which yields the following equation for the fission wave function:

(T^’L„W) U,E(«I - Eu,eH (2.14)

The energies £,(«)» £^(<x),... define the fission po­
tential when the fission takes place with the internal system W 
in the states n=1,2,3,...

Fig. 1. Effective potential for
different internal states w^,w2»w^.

3. DESCRIPTION OF THE MODEL .

Without dissipation the Hamiltonian in Eq. (2) is equal to 
H = Ha<i + Tnad. The energies 6m(a) are a sum of two terms: 
£m(<x) +^ш(а) where vf(a.) represents the fission potential 
and ^(a ), m = 0,1,2, is the energy of the m-th asymmetry pho­
non. Then we include dissipation the asymmetry mode is no longer 
stable because it can now thermalize. In principle this thermali­
zation could be treated by the explicit introduction of all the 
degrees of freedom into which the phonon can decay. However, in 
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practice this procedure is quite unfeasable. The well known re­
cipe to get around this problem is Feshbach’s effective operator 
method [ 10]: One continues to work in the space defined by the 
unperturbed phonons (P-space) and takes account of the remaining 
space into which the phonons decay (Q-зрасе) by the introduction 
of an effective energy dependent Hamiltonian. In this way the 
phonon energies become complex quantities and lead ultimately to 
a complex fission potential vihich is, of course, the analog of 
the complex optical potential for nucleon-nucleus scattering: in 
the course of the fission motion the amplitudes ! <f> m s > must 
be damped because they are partly scattered into more complicated 
states.

To consider this picture in more detail we write for the 
operator H in Eq. (1.3)

= vf(ot> +Phonon (я,х;а)

and replace the phonon operator by an effective operator PHef;f(E)P 
which is defined in P-space

PMg#f (E)P = PW0(«)P+PVQ(E-QHQf',QVP (3.1)

Here HQ ( <x ) is the unperturbed Hamiltonian defined by

He(a) Wra (*)

and V is the interaction which couples the phonon to more com­
plicated configurations. There are two distinct contributions to 
this coupling:
(i) For fixed a the finite velocity of the asymmetry oscillation 

leads to a coupling = V(q,x) between the coordinate q 
and the internal coordinates xj if the asymmetry motion is 
approximated by an octupole vibration the form of this cou­
pling is well known from the physics of low lying collective 
states (see e.g. ref. Г1 if). It leads to the usual damping of 
the collective motion as it is seen in another context in 
the width of giant resonances.

(ii) Since the velocity of the fission motion is finite, there 
will be also a direct coupling Va = V(a,x) between the 
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fission coordinate <x and the internal degrees of freedom x. 
The damping associated with this type of coupling has some 
similiarity to friction because it is directly related to 
the velocity of the fission motion.

The determination of the precise form of the coupling terms 
Tcj and and the evaluation of is a difficult pro­
blem which is far from being solved. For our purposed where the 
effective interaction enters only in an average way the following 
procedure appears to be reasonable:

The operators Vл and Vq are sums of single particle ope­
rators. We apply them to the wavefunction (x,q, <x ) and obtain

Wv>'a)=5cmv (3.2)

(q,xj ) is the wavefunction of a state where either where W m,)xv
a ph-pair )U , у has been created "on top of" the phonon state 
or of a noncollective ph state which is orthogonal to the col­
lective state Wm. Taking matrix elements of H ff(S) we obtain

* £ < *t  14,1 wqBy \ < w;.MV I W» ><wK;(,v l*x>.

*£ I rferlvIv<»I 

Д/ (3.3)

The matrix elements in this equation are defined by integrations 
over X and q; they depend parametrically on ex .

In the following we shall consider only diagonal elements 
of the effective operator. Clearly in principle there will be 
also nondiagonal matrix elements, so that one would have to per­
form a diagonalization of Heffp) in the space | w > . Due to 
phase cancellation effects the nondiagonal matrix elements should 



370 В. Nwrio-Pomorwka, К. Pomorski

be on the average much smaller than the diagonal ones. Therefore 
the main effect of the second an third term on the r.h.s. of Eq.
(3.3) will be on the diagonal matrix elements. Also for phase con- 
cellation reasons we hare neglected the interference terms between 
V» and Vq.

In order to eraluate the matrix elements of the resolvent 
(E-QHQ )”1 we proceed as follows:

which is familiar from shell model calculations.

(ii) We replace the sum over )i and f by an integration over 
the corresponding energy variable introducing the density of 
states j*  (w ). 7e can then write Eq. (3.3) in the form

i . . » % *|Va(i;w;a)| Z
<И(|н«и(Е)|Н(>«^(и)+/0ну(и;ос) —77Ę7^.w>iS

(3.4)
2 2Va(i,w,a) and Vq(i,w,ct) are averages of the squares of 

the matrix elements.
Por the real and imaginary part of (3.4) we obtain

. • $(rt,d)£|Vai +|Va(i ;«,«)| ]
Re <w;j E) W; > « dw Re -------- ■■■■_ - ■  --------------------

J E-bJaJ-w

(3.5a) 
г 2 i

(3.5b)

The real part implies a renormalization of the phonon energies 
which can be discarded for the following. The imaginary part 
makes the phonon energies complex or, in other words, leads to 
the appearance of an imaginary part in the fission potential} 
it describes the weakening of the amplitude и^(х) V1(q,x,<x ) 
in the course of the fission process.
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It is a difficult problem to estimate the coupling matrix 
elements V and. . Ze propose the following approximate Q 
treatment: For fixed coordinate q and the constituent par- 
tides see a mean potential U (ao> qoi ?n) acting on particle n. 
A displacement a0 -*  a or q0 —eq leads to a change of the 
potential (a - a0) -|~ | a = 0 and (q - q0) | q = q0
respectively.

For the asymmetry coordinate q the perturbation 
(q " qo>T^ I q 3 q_ leads to the conventional form of the о 
particle-phonon coupling and the resulting damping width will be 
the width of the asymmetry phonon.

For small deformations, i.e. for small values of q, the 
quantity I Vq|2 can be estimated rather reliably from the widths 
of giant resonances. The matrix elements are typically of the 
order of 0.1 Me7. For large deformations there may be considerable 
deviations from these values} at the moment we do not consider 
such deviations but they should be taken into account in future 
more refined studies.

The change of the fission coordinate <x leads to dissipation 
of the fission kinetic energy via onebody and twobody dissipation. 
The resulting friction force F = - ]-<x is related to the imagi­
nary part of the optical potential via the damping time: The 
friction force leads to a damping of the energy of the fission
motion with the relaxation time Ту = m/2T where 
responding inertia parameter. On the other hand an

m is the cor- 
imaginary part

W in the optical potential implies a damping of the energy with 
the relaxation time t_ = Kj ZZ. The counter part of the friction 
force in the optical potential is therefore an imaginary part

W = h f/m . (3.6)

For low energy fission the motion is slow enough that the 
friction coefficient can be calculated in the framework of linear 
response theory as discussed in refs.[l2 , 15]. A calculation of 
y in this spirit has been performed in ref.[14] for moderate de­
formations (around the second minimum of the fission potential) 
and extended to large deformations by Uarcev (priv. communication). 
The calculated friction coefficient is an energy dependent quan- 
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tity r ( w )» The large width of the energy distribution - of the 
order of 10 LieV - implies a memory time of the order of 10 sec 
which is short compared to characteristic times of the fission 
motion. Therefore memory effects can be safely neglected and 
у (w—» o) defines the friction coefficient in the ordinary sense.

4. RESULTS AND DISCUSSIONS .

4.1 In order to separate the effects of mode-coupling and of dis­
sipation we have first made a calculation where dissipation 
was completely neglected. The calculations are done for the 
nucleus The ground state fission barrier is double 
humped; in the region of the first maximum and the second 
minimum the system follows a symmetric path and nonadiabatic 
effects are believed to be small before the second maximum. 
For this reason we assume the interaction operator Tna<^ to 
vanish to the left of the turning point ct-Qj (see Fig. 1 ) 
belonging to ground state fission. The wave function Ут? we 
are looking for contains in addition to the adiabatic wave 
function ф " '.her contributions  I л 1 Q-Ь *

0 ■ J4-1)
fl«i

The coefficients cn;2,E’) are determined from a variational 
principle in the following, way: We make the an sat s

НЯ' / P - P1 \ l E - E'
c„ (E.E'l ■ S2 а„Л Hr ”₽ ■( ~*Г)  J . (4-2>

K. =3

which allows the system to gc off shell in the fission energy 
up to |e - E’| - the function h^ is the Hermite poly­
nomial of order k. Since we go up to к = 10 the form(4.2) 
garantees a great flexibility for the functional dependence 
of cn on the off-shell energy E*  - E. The coefficients a^ 
are determined from the requirement
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[/Y*  "(a) dadq] = О (4.3)

which leads to the following system of linear equations for 
the coefficients an^:

* ♦^rno*  

k=<
Akn afc.n, = bkn (4.4)

•nil ’

The normalisation factor a2 (a ) = | U(ft )|“2 is introduced 
for the following reason: In the classically forbidden region 
the’fission wave function decays very rapidly with increasing 
ОС. Therefore, without the factor | U(ft)|2, the integral in 
eq. (4.3) receives practically no contribution from regions 
of X which are far away from the turning point Otjjj and the 
variational method is consequently only sensitive to details 
of the wavefunction in the vicinity of <X jjj. Multiplication 
by n2 (ft ) corrects for this defect and leads to equal weights 
of the internal wavefunction in the entire intervail of the 
OC-integration.
The matrix A is determined as

with

-(H-E)[dE'h.( Fif-) e«p[- ^T']%ed(».j)

ad
where H-E acts on ^(a >4).

The vector b is given by

The width is determined from the requirement that the 
norm of (H - B) 4iE(oC,q) should be as small as possible. 
ffe found â„ ~ 0.6 MeV.
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The probability distributions for the masses of the fission 
fragments are obtained from the solution of eq. (4.1) for 
» ‘ “.0=

Ipe(4)|! ' We -asc.<t>r w-5)

Unfortunately the scission point 
in our calculation. But we found 
mass distributions do not change 
we therefore calculated the mass 
with cc = 1.85.

ä= 2.5 can not be reached 
that beyond a ~ 1.75 the 
significantly (see fig. 2)j 
distribution from eq. (4.5)

gig. 2. Dependence of 
mass distribution on 
the fission coordinate 

for 25 ^J.

In order to give an idea of the level spacings of the phonon 
states associated with the asymmetry mode we show in fig. 4. 
the energies of the 10 lowest phonons as a function of a . 
It is seen that they follow without much fluctuations the po­
tential surface belonging to the groundstate. It is clear 
from the figure that the number of phonons that one has to 
include will increase almost linearly with the fission energy.

In fig. 3 we show for the nucleus 2^^U the mass distribution 
probability following from the adiabatic wave function - which 
is of course independent of the fission energy - and the mass 
distribution probability following from nonadiabatic mode
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Fig. 3. Dependence 
of mass distribution 
on the fission co­
ordinate for 236ц

Fig. 4. Effective fission poten­
tial for the 10 lowest symmetry 
phonon states.

coupling for E = 2, 4 and 6 MeV. 
It is seen that with increasing 
fission energy the curves become 
broader and develops a shoulder 
towards more symmetric fission. 
The small bump for A ~ 133 is 
probably a numerical effect 
being due to a still too small 
phonon space.

The conclusion from these 
findings is that nonadiabatic 
coupling is unimportant for 
E < 3 MeV but becomes quite 
important for higher fission 
energies. However, for ener­
gies above 4 MeV our approxi­
mation begins to fail because 

diabatic level crossing becomes a very important effect which 
dominates the process of energy dissipation [15].

4.2 A second type of calculations was done in order to isolate 
the effects of the dissipative terms in eq. (2.S). They were 
done only in the region a > à since the increasing fission 
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velocity in this region is believed to lead to large friction 
effects. In addition, the classically forbidden region is quite 
uninteresting in this context since the damping of the fission 
wave function due to barrier penetration is at any rate much 
stronger than the damping due to the imaginary part of the fis­
sion potential. In these calculations we have neglected the 
nonadiabatic coupling Tnad; therefore there is only one channel 
- in which the q-mode is in its ground state - which is treated 
explicitely.

This procedure is justified a posterori by the findings 
that: a) JKC is only slightly affected by the frictional damping 
of the at -mode, b) The loss by DMC is small compared to the 
friction induced energy loss of the fission motion.

In ref.[14] the friction coefficient was calculated with 
a coupling parameter Го = 0.03 MeV-1 which was fitted in ref. 
[16] to optical potential data in an energy range of 5-0 MeV. 
However the main contributions to у comes from much smaller 
energies for which the value Го = 0o03 leads to notoriously 
too small spreading width of the quasiparticle states* Пе there­
fore have chosen Г= 0.15 which yields much better results for 
the spreading width of states close to the Fermi surface. Hith 
Г 0 = 0.15 MeV’1 ле obtain 50 â» For the mass para­

meter we took m = 100 S2/MeV which corresponds to 70 a.ia.u.
It is interesting to compare these figures to the results 

of pure onebody dissipation obtained from the wall formula [17]. 
Taking a mean value for the multipolarity I = 3 - which ap­
pears reasonable for the large deformation between saddle and 
scission point - one obtains T’-yj. % 300 h and и % 80 ti /MeV.

The value of = 50 h comprises the effects of the 
moving walls and of residual interactions, i.e. one- and two- 
body dissipation. Therefore it might look surprising that one- 
body dissipation within the wall formula yields a much larger 
friction coefficient. However, one must realize that the wall 
formula is based on a single particle picture for the motions 
of the nucleons where all nucleons participate in the same 
manner in the interaction with the moving walls. In reality 
the single particle like states are quasiparticle states. They 
possess only a finite lifetime . Only for states
close to the Fermi energy is this lifetime large compared to
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“22a typical nucleon passing tines of 10 “ sec. For states lying 
=-10 MeV below the Ferai energy the imaginary part of the quasi­
particle self-energy attains ~ 5 MeV [16] corresponding to

ÙT4.P. = 
energy At

-2°10 sec. For increasing distance froc tne Feral
, „ falls rapidly below the passing time. For the 4 • “ »

interaction process underlying the wall formula this means that
during the time Intervall in which a quasiparticle enters into 
the diffuse surface region of the nucleus and leaves it again it 
dissolves into a multitude of long range (n ♦ 1 ) particle -n hole 
configurations - which partly correspond to dynamical degress of 
freedom of the nuclear surface - while the single particle com­
ponent dies out very quickly. Therefore the effective number of 
particles which have to be counted in the application of the wall 
must be considerably smaller than the nucleon number A. A quanti­
tative evaluation of the effect of the quasiparticle decay on one 
onebody dissipation is difficult but qualitatively the discre­
pancy between and is not astonishing.

With our choice of parameters we obtain 1 = 0.8 MeV for 
the imaginary part of the optical potential.

Sue to the large collective mass the fission wavefunction 
can be calculated in the ftKB approximation. The changes which 
become necessary due to the presence of an imaginary part in the 
potential are rather straightforward. fte discuss them in App. C.

The value of ft = 0.8 MeV implies a strong damping of the 
elastic channel. For instance, for ground state fission the pro­
bability damping factor (see eqs. (05) and (C6)) 

P г exp bawp ' (4.6)

becomes ?$ап1р * 6.10“S consequently there are practically no 
cold fission fragments left when the system arrives at the scis­
sion configuration.

The energy absorption is governed by the relation

E(a+Sa) = E(a)exp[-^-S<x] = E(a)e*P[-i~Sa]  , .

(4.7)
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where va is the collective velocity, ^ith E 
obtains

= •$ v2 one

= - ГЪd
(4-8 )

which is the classical relation following from the Rayleigh dis­
sipation function. Our optical model treatment together with a 
quasiclassical treatment of the motion leads ns back to the 
classical problem of the motion of a particle which moves in an 
external field and feels viscous damping. The quantum nature of 
the problem enters only via the determination of the friction 
coefficient.

The numerical treatment of the fission motion leads to the 
following results (for ground state fission):

■•О О
(i) The time required to go from to ^sc 1аТда% 2210  

sec.
*

(ii) The gain in kinetic anergy of the fission mode in going 
from cc T _ to a Is ~ 10 MeV. It is seen that the motion IV -sc
is not as crrepy as predicted by the wall formula.

(iii ) The intervail from a to a 1.85 where ПК is most ef- 
fective is passed within 7*10  sec. The collective velo­
city at <X = 1.85 is ® = у». = O.O39*1O 2i" sec'^ compared 
to va =0.050*10  sec for f ~ 0*  The collective ener­
gy loss at a = 1.85 is ~ 3.5 MeV. The small relative change 
which results from switching on friction shows that the 
damping of the fission mode has only a small effect on ШС.

(iv) The typical period of the asymmetry oscillations T 
—2215 10 sec is only slightly smaller than , so that

there is just enough time for one period while the system 
goes from aæy to ®sc* During this time the asymmetry 
phonons do not have sufficient time to fully thermalize 
because with a typical width of 0.1 to 0.2 MeV - estimated 
from speading widths of low lying collective states - the 
thermalization time lies between 30 and 60 10“22 sec.
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APPENDIX À

Estimation of the geodetic potential

On the Hamiltonian defined in Eq. (2.5) we perform a 
transformation with the help of the function

VÔ s-Jm* (<M) Мя (cr,q ) ' (A.1 )

in the following way:

Htp = —— {d h (id) 1 Vo = EVo*  if (a.2)

The new Hamiltonian and wavefunctions are H = \Td H (’Id) 
and ф = JF ф respectively. Apparently the transformation con­
serves the energy eigenvalues. The transformation of the first 
term

= _£ i a I Mą ’ э
a 2 У M^' Эа 4 M*  9a ’ '

gives

a ~Mą~’ a \
3a pj Md 3a -^MaMq

_3_- _L_ 1_ + Ve“’
2 3a Md 3a û (A.4)

where

<* ’ * _1_+ dL. J___L_ _L d—Jn
" 2 Ma^U 3a2 VF1 VF 3a \ D I 3<X Ma V .

г (Ą,5)
From the second term g^(A.6)
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one obtains
~ . ft J___ 1___ 1

■' г Ц 3<j
tt)

VG (A.7)

(A.8 )

Finally one gets for the transformed Hamiltonian

fi2 э j_ 3
2 да Мд За 2 5Г иd Of “ о 3(|

C«) W
, t и ö G

(A.9)

The quantity Vg(a,q) = V& 1 ’ + vjq is the last term appear­
ing in Eq. (2.6) on the r.h.s. Numerical estimates show that it 
can be neglected compared to the other iierms in H.
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APPENDIX В

.valuation of the fission ware function in WKB approximation

The collective Hamiltonian connected with the coordinate
describing the fission mode is assumed in the following form:

! _ àl J_ J—L_ 4. [j (a). £ в u (a) - it 
[ Z 3a M(a) da. L' k J U k ' (B.1)

where M(s) is the collectire mass parameter and U(<x) is the 
collective potential which consists of the two parts:

U (a) = V(a) + i W(a) (3.2)

The real part V of the potential is the fission barrier and the 
imaginary part Я is responsible for nuclear dissipation.

The first order WEB approximation gives the following general 
solution for U(a):

U(a)=C £xp ■ fT d<x]exp I i w dac ' 2arc W)t

(B.3)

as will be shown in Appendix C. 
Here

p(«) ’^M(a)[Е-VH♦ ^(E-V(*)) 2+W2(«) ] (В.За)

and
И (<xl lAl(a)

Я р(а) (В.3b)

The collective velocity v is given by
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tf(a) =
I р(*)|  

М(а)
(В.Зс)

Let us make the following assumption about the real part of 
collective potential

constsV (<xgr) for а < ®gr

v(a ) = < for а 
gr 4 CB»4)

const=V(aec) for sr > a. sc

the ground statewhere agr corresponds to
°C to the scission point. The potential sc

configuration and 
(4) is shown in fig. 1

The last assumption in (4) (for <x > a sc) means that the omit 
the Coulomb tail.

The imaginary part of the potential is assumed in the fol­
lowing form

•
0 for O'- <

w (<X ) = 4 »«(<*) for ® Г 4 01 4 æ 3C

0 for * > at sc
L.

(B.5)

It means that we assume the presence of nuclear dissipation in 
the region from the right turning point <xT (see Fig. 1) to the 
scission configuration <* вс. Уш(а) and Wm(<x ) are the micro­
scopic estimates of the real and imaginary parts of the collec­
tive potential respectively. This choice of the potential ensures 
that the incoming (for Ct < gT) a“*1 outgoing ( Л > Qtec) wave 
functions are plane waves. The WKB wave function which corresponds 
to the potential (4) and (5) is given by (see e.g. Landau and 
Lifshitz, Quantum Mechanics)
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0(a)«

for ot > ar
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APPENDIX С

WKB for complex potential and variable mass

Ге start from the Schrodinger equation

[’T ir ïïlïj ~h*  (U(a)’E)] U(apir (C.1)

with the complex potential

U (4) = V(a) + i IN («)
Taking the ansatz

U (<x) exp ( i £(a)/fi) (c.2aj

with . i • _,к
6(a) = 6 (a) + t 6 (a) (C.2b)

one obtains the following equation for 6 (a )

-I
2M(<x)

/ d6 \'2_ Lti Г d2^ 
\ dot J 2N(a) j. da2

d In M(dt) d6"~ 
da dor E-U(a)

re. 5 ;
Making the usual expansion

6 .б"”^б‘М

we obtain after a lengthy but straightforward calculation the 
following expressions for Б (° ) and G A

6<0)(a) =i /* p(<x)da t C1 '

6 <0\o.) = i У<|.(a) dec t
(C.4)

?/p2(a) t ą2(a) ' r

M (a) 3
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where C2> C^, are arbitrary integration constants 
and p(a) and q(a) are defined as

PW
, , Ufa)

<Иа)-" p(«)

(C.5-)

Thus one obtains the following form for 6 (<x) = +

I

\p2(«)+q2(«) . r 
-----777)----- + C2-^C5

This gives the Ш wave function

H(ct)
{p^aj+q2'd) '

D,exp- h 1 q(a)~ 
2arC^ ?(«).

where and Dg are arbitrary constants which have to be chosen 
in accordance with the boundary conditions. In our case where we 
have a plane incident wave coming from the left we put Dg = 0 
(recall that W < 0 ).
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(v) Comparing the effects coming from BMC and damped fission 
motion one sees that the energy loss is primarily determined 
by the frictional type of damping of the fission modej com­
paratively little energy goes into the excitation of asym­
metry phonons. On the other hand the latter process governs 
the fission fragment distribution. It is formed in an early 
stage of the decent towards scission where the motion is 
slow and the energy loss via friction is small so that the 
frictional energy dissipation has little influence on mass 
distributions.

Eveiyghing that has been said is valid only for small 
fission energies probably not higher than 3 or 4 MeV. Above 
this limit nonadiabatic level crossing becomes so important 
that it invalidates the whole approach so that a completely 
different theory must be envisaged.
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STRESZCZENIE

Praca dotyczy oceny rozkładu mas jąder fragmentów rozszcze­
pienia i dyssypacji energii jądra 2^^ü. Obliczenia są wykonane 
w przybliżeniu adiabatycznym, ale dyskutowane są także: a) po­
prawki do rozkładu mas ze względu na nieadiabatyczne sprzężenie 
z fononami asymetrycznych wibracji, b) tłumienie ruchu do roz­
szczepienia poprzez dyssypację jedno- i dwuciałową ze współczyn­
nikami tarcia obliczonymi na drodze mikroskopowej.
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РЕЗЮМЕ

Работа посвящена оценке распределения масс осколков де­
ления и диссирации энергии деляющегося ядра и Расчёт ос­
нован на адиабатическим приближении но мы учитываем тоже: 
а) добавки к распределении масс из за неадиабатического спа­
ривания фононов ассиметрических вибраций; б) задержание де­
ления из за 1 - и 2-частичной диссипации, где параметр трения 
определён по микроскопической теории.


