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1. Introduction

The recent generalization of standard coherent state 
theory to a theory of vector cohererent states [l]-[7] has fur­
nished us with a powerful tool for the explicit construction 
of the irreducible representations of a number of important 
groups with applications to various branches of physics, [8], 
[9]. The vector coherent state method is particularly well 
suited for an analysis of the fermion pair algebra which has 
important applications in the nuclear shell model and in
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many-fermion systems in general and has long been identified 
as an S0(2n)=>U(n) algebra, [10)-[15]. This algebra has 
recently been discussed by Rowe and Carvalho [16] in terms of 
the vector coherent state technique. A full implementation 
of the vector coherent state method, however is limited in 
practice to those cases where the Wigner-Racah calculus of the 
core subalgebra, U(n) in the case of the fermion pair algebra 
S0(2n), is worked out in sufficient detail. One such example 
is the SO(8)z>U(4) LST-pairing symmetry for which the pioneer­
ing work was carried out by Flowers and Szpikowski [17], [18]. 
Recently it has been shown that the vector coherent state 
method can be used to generalize the earlier results to higher 
seniorities and can thus lead to a more general explicit con­
struction of n-nucleon states in the LST seniority scheme 
[19]. An almost parallel analysis [20] can be carried out 
for the Ginocchio SO(8)oU(4) symmetry model [21], a fermion 
pair model with S and D pairs only, which was originally in­
troduced as a "toy" model to study the fermionic foundation 
of the interacting boson model of lachello and Arima, but 
which is gaining new attention in connection with a fermion 
dynamical symmetry model [22]. Other recent applications of 
the vector coherent state method involve the neutron-proton 
quasispin group [23] and the USp(6) group, the latter in 
connection with attempts [20] to find a more sound fermionic 
foundation of the rotational or SU(3) limit of the interacting 
boson model. Both are again symmetries in which pioneering 
work was carried out by Szpikowski [24]. The importance of 
the early work of Pomorski and Szpikowski [25] on the 
USp((n+1)(n+2)) and USp(6)'symmetries is being highlighted 
by recent work on exact boson mappings for nuclear neutron 
or proton shell model algebras having an SU(3) subalgebra 
[26]. Many of these symmetries have also been discussed in 
terms of coherent state theory by Dobaczewski [27] in his 
functional representation analysis of boson expansion theo­
ries.

Very recently it has also been shown that vector coherent 
state theory can be used to reduce the Wigner calculus for 
U(n) in the canonical Gel'fand U(n)3U(n-l) chain to an exer­
cise in U(n-l) recoupling [28], often with multiplicity-free 
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recoupling coefficients evaluated through permutation group 
techniques. Indirect applications of vector coherent state 
theory, through the use of complementary Sp(2d,R) symmetries, 
have also been carried out in detail in the construction of 
group theoretically sound orthonormal bases for the nuclear 
rotational SU(3)oSO(3) scheme [29] and for the standard 
Wigner supermultiplet basis [30]. In these applications 
vector coherent state theory is used to resolve a missing 
quantum number or inner multiplicity problem.

Introduced originally for the evaluation of matrix 
elements of the Lie algebras of the discrete series represen­
tations of the noncompact Sp(2d,R) groups [1], [31], [32], 
the vector coherent state method has thus been used to great 
advantage in a number of other problems. Despite its many 
uses no specific applications have yet been given for one of 
the simplest fermion pair algebras, the SO(6)oU(3) algebra. 
This is a particularly nice example, since (1) the Wigner- 
Racah calculus for the U(3) subalgebra is fully worked out 
[33], (2) only multiplicity-free SU(3) couplings are needed, 

2and (3) the К -matrices which are a key feature of the vector 
coherent state method are all 1-dimensional. It is the pur­
pose of the present note to give two new applications of the 
SO(6)oU(3) algebra. The first involves a relativistic quark 
model of the nucleus, [34]-[37], and will be presented in 
section 2 together with the details of the vector coherent 
state construction for this symmetry. The second involves a 
Ginocchio-type toy model with neutron-proton pairs coupled to 
Jn=l+ and T=0. It constitutes part of a search for a fermio­
nic foundation for the 1+ neutron-proton scissors mode which 
has recently been introduced in interacting boson model 
studies of collective magnetic dipole excitations in deformed 
nuclei, [38]-[40]. It will be presented in section 3.

2. The J=0, T=0 Pair Algebra in a Relativistic Quark Model

The relativistic quark model of Bleuler et al. [34]-[37] 
describes the A-particle nuclear system as a system of ЗА 
quarks in a relativistic bag model. It begins with the
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Observation that the quark level sequence in a relativistic 
bag exhibits the characteristic features of the Mayer-Jensen 
shell model, and it contains the basic idea that each color 
singlet three-quark substructure in the low-lying nuclear 
states of a nucleus contains one quark pair coupled to J=0 
T=0 in its required color anti-triplet state.. The J, T- 
structure of an open-shell nucleus is thus determined by the 
A quarks not in J=0, T=0-coupled pairs and in particular by 
N such quarks in the unfilled j-subshell (rather than by 3N 
quarks). A J=0, T=0 pairing interaction is introduced to 
separate the "nonnucleonic" excitations, of û-type e.g., from 
the nuclear states so that the problem of too many states for 
open shell nuclei is avoided. Such a pairing interaction has 
also been related [37] to the quark-quark interaction derived 
by t'Hooft [41] from the instanton solution of QCD. Clearly, 
however, this quark model in its simplest form has many defi­
ciencies. In its most naive form it would predict 2, 3, and 
4-nucleon systems dominated by Os^^ configurations, whereas 
the clustering into three-quark nucleon substructures re­
quires strong excitations into the p and higher shells. For 
the 3-nucleon system, e.g., a three cluster configuration of 9 three-quark systems contains at most 0.4% of the (Os-^^) 
configuration [42]. Recently it has also been shown [43] that 
the isovector part of the nuclear magnetic moments increases 
too rapidly compared with the experimental values for high j. 
An improved quark model of the nucleus of the above type would 
probably require strong configuration mixing even in heavy 
nuclei in order to begin to develop the strong spatial corre­
lations into three-quark clusters which seem to be required 
for real nuclei.

In refs.[34]-[37] the quark-quark pairing interaction is 
treated in terms of a U(d)=SO(d) seniority chain, where 
d=2(2j+l) for quarks in the last (open) j-shell. Although 
this can in principle be generalized to d=2E(2j+l) for mixed 
configuration calculations, the more general terms of the 
quark-quark interaction [41] which are clearly heeded might 
be difficult to work out in such a basis. For a more reali­
stic treatment of this model it may therefore be advantageous 
to use the complementary symmetry, given by an SO(6)h>U(3) 
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chain; where this symmetry applies universally to all j-shells 
as well as to mixed configurations.

The SO(6)o(J(3) Lie algebra is now generated by the J=0, 
T=0, color antitriplet pair-creation and annihilation oper­
ators, combined with the color-U(3) subalgebra. To retain the 
standard notation and normalizations for S0(2n), (16], it will
be useful to define the J=0, T=0 pair-creation operators,
in terms of quark creation operators, a!; M xt мм 3 шт

1 W «J -
J"V

a?. z at m ?2-

biK= (AIK)ł
where ^ = -А.^ ' and
over subshells j is 
3Nj configuration.

i,k=l,2,3 are the color indices. A sum 
included but can be dropped for a pure 
Together with the U(3) subalgebra

these operators satisfy the commutation relations 
^11£>Ааь1= ^KaC'fct+^bC**"’ } (2a)

&CV,- <TCob > (2b)

and generate the group S0(6). Although the coherent state 
realization of the general S0(2n) fermion pair algebra has 
been given in ref.[16], the present algebra requires an 
instrinsic state vector |[a]a>. It will also be useful to 
introduce the 3-dimensional vector z*,  where z^, z2, z^ are 
complex variables. In terms of these the vector coherent 
state is defined by

- zf À13 + Asi -*•  2 * Au -

— q (3)

where [al^lo^Ojd^] is the intrinsic U(3)-color symmetry of the 
state which is entirely free of J=0, T=0-coupled quark pairs, 
so that

|[^]06> = 0 (4)
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for all subgroup labels a, a=l, dimension [a], of the 
vector |[o]a>. In the quark model of the nucleus [a]=[N00] 
for the "nucleonic" states with 3N quarks in open shells, and 
[a]=[Nll] or [Nit] for the "nonnucleonic" states involving 1 
or I nonnucleonic excitations of Û or more complicated type.

State vectors |ф> are then mapped into z-space functional 
representations, [1]-(3J, [16],

IW> - <Z|V>= e“ (5a)

with

~ ’ (5b
and operators О are mapped into their z-space realizations, 
ri©),

z- В
Г(0) |цг>

= Oe =

This leads to

and summation convention for repeated indi-

Г(ЬЦ) = (7a)

Г(Сц) = (7b)

= - ZK (tr Cj - j (7c)

(with ab ! 3k>' 
ces.

The group generators have therefore been mapped into a
direct sum of a 3-dimensional harmonic oscillator (or 
Heisenberg-Weyl) algebra, generated by z^,
sic U(3) algebra, , 
the intrinsic vector |

Эк, and an intrin­
which acts only on the components of

[o]a>. The intrinsic commute with
the z^ and 3^. Since the z-space realization, (7), of the 
operator algebra is a nonunitary or Dyson realization, it will 
be useful to make a transformation to a unitary or Holstein- 
Primakoff realization, y(O), via a hermitian U(3)-invariant 
operator K, (K+=K),
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це>41)=к‘г<ьчж, «Сч>,пс^>

where the requirement y(A. . ) = (у(В. . ) )*  leads, (with Ov)'* ’= 
1J 1J к

zk), to

K’lr<A4i>K » Кц<1,к‘,

“ Г(А,)Кг = .К.‘бч«г«. <9Ь'
2The key to the solution of this equation for К in the Toronto

vector coherent state method, [1]—[3], comes through the
introduction of an operator, %P with the property

l°e?>2Û ~ “ 24(-brC)-Z.(7^).<10>

' This is satisfied by

лв? = zĄ С (11)

and eq.(9b) is transformed into

( fiop z. - z. Q,? )£*  = KV . (12)

In the z-space realization the orthonormal eigenstates 
of an S0(6) irreducible representation [a] are given by

[z = i,s(ÎJ ; ll3,
where the square bracket denotes U(3) coupling,[ a] x [ ppO] *[h]  = 
[h^hjhj], and is ą convenient set of subgroup labels for 
[h]. The symmetric polynomial of degree p in the z's, 
zlppO)(zj, must transform according to the U(3) representa­
tion [ppO] since the vector д transforms according to the 
antitriplet representation [110]. It will also be convenient 
to use Elliott SU(3) quantum numbers; with (laUa)=(°i~°2' 
а2-Оз)' ^hUh^=*hl"h2' h2-h3*'  and with tPP01*(0p),  [110]*  
(01). It is important to note that the product (^aUQ)x(0p)*  
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(Ähuh) is multiplicity-free and that p is uniquely determined 
by the quantum numbers (0,0,0,) and (h-^hjhj), so that p serves 
as a good quantum number, and the К operation is merely
multiplication by a normalization factor.

With the 0(3) generators built from "intrinsic" compo­
nents , and z.
CcoU’, with

13

Э.-dependent or "collective" components,

Coll. о _ |ull r,co^-
~ ~ * °^г/^ > ^4 ~ + Cq <> <14)

4 J u ' •» « J

cf. eq.(7b), the Q operator can be put into the form

Пор = 

Since <za3a> has the simple eigenvalue p, the eigenvalue
ПOP 
the

in the basis (13) is
intrinsic and of the

given by the Casimir invariants 
full or final 0(3) symmetry.

of
of

5 + 2 ?<5>*  V (16)z

with
j Л 2 • a
Cpt ~ + (17)

where
o=2Zl C2j+i;} (18)

. « r
and the h^ are the number of squares in the ith row of the 
Young tableau describing the final (full) 0(3) symmetry, cf. 
eq.(16). For the most general intrinsic state (0^0303] the 
final tableau [hj^hj] can in general be obtained by adding 
a squares to rows 2 and 3, b squares to rows 1 and 3, and c 
squares to rows 1 and 2 of the intrinsic tableau [a^c^dj]; so 
that

Ч=б1+'°+С'- °2+a + C> ^3 ~ ”з+ <x + '° ; 0,+ lo+c. = p . (19)

With this prameterization it is easy to take matrix elements 



New Applications of SO(ô) D U(3) Algebras 213

of eq.(12) between states of type (13) and a,b,c on the right, 
a',b',c' on the left, leading to

z
Q - Q. = (J-<5t-<+2-Q, =- «-И be (20a)

0.+Ł be 1 л rza.

-ß. , , "P. u = = ^aMc <20b)
a brio 13 ■ д

<xbc

Л«ЛсИ ■ = a-ci”<^-c = (20c)
„ Kabc
2With Kqqq=1, (assuming a normalized intrinsic state), this 

leads to

= (0-^-6^2)! to-^-^+L)! (21,

°-'oc (o-ci-ö'j+i-b)! co_<4-«4-е)'.

Since the unitary form of the z-space operators is given by

ПАЧ) = Ke^zKK (22)

see eqs.(8) and (9a), the SU(3)-reduced matrix elements of 
y(A) between states of type (13) are given by

‘ j г(д)И V(25«4PrOftM?

K«!bV tP+1

^•abc

z Г[сп î?P0] [П

. LO] Ш03 [Iio]
[o'] [p+lp+10] Lt'] • J

11 2 II Vt2) )

(Lp4 p+iO]||Z||[pPO]) (23)

where the unitary form of the U(3) 9-[:’:-] symbol arises in the 
usual way from the action of the purely collective operator z 
in the basis formed from the coupling of an intrinsic symmetry 
(a] with a collective symmetry [ppO]. The SU(3)-reduced 
matrix element of £ in its own collective space has the sim­
ple oscillator value [p+l]''’^2. The 9-(-':‘J symbol with one [0] 

entry can be expressed in terms of a standard SU(3) Racah
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coefficient. Finally, since the z-space operator у(А^) is 
the unitary form of this operator and the 4>(z) of eq.(13) form 

an orthonormal set with respect to the z-space scalar product, 
the result (23) is representation-independent. Transforming 

to a standard orthonormal basis

11Г<5-] ,< tp-pO]] [LI, 0ćŁ^> (24)

the SU(3)-reduced matrix elements of the J=0, T=0-pair crea­
tion operators of eq.(l) are thus given by

= (01)5^)(Орф) [p+i?2 (25)
JtVatc K * >

where the К-ratio is given by eqs.(20), and the multiplicity- 

free Racah coefficient is known numerically from ref.[33] and 

analytically from ref.[44] or Appendix ПВ of ref. [28].

Finally, the orthonormal basis, eq.(24), can be con­

structed by the action of a symmetric polynomial of degree p 

in the standard pair-creation operators A of eq.(la), by 

using the inverse of eq.(22), (with Knnn=l), to convert
CëxZx...xZ/PP°l 

[K‘lĄK-K AK*  ..1*K  AK] = KatcZ(A)

s° that -1 г rppOl -1
= KaUc |Z(A) <26)

where the replacements zi">A23' •••' are to ma<^e to convert 
the symmetric polynomial Z(z) into the corresponding Z(A).

The pairing interaction of refs.[34]-[37] can be written 
as
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3
= -3^*  A.. £>A (27a)

P J «г(5=1 '
and has eigenvalue

r-[OrMp+i p+10]] [ ej
2.

= _ 3 <№4p+LMoi№ 11A II №Foj]K]> ( 27b 1

The 3N-quark states must be color singlets with [h']=
[NNN], so that (Ifo i■) = (00). The intrinsic symmetry is 

[a]=[N00] for the "nucleonic" states and [o]=[Nii] for "non- 

nucleonic" states with Ł nonnucleonic excitations of A or

more complicated type. Therefore p+l=N-A, with abc=(N-l-1)00.
The Racah coefficient with (X. ,u, ,)=(00) has the trivial h h

value, 1. Eqs.(25) and (20a) thus yield

E =-3t<j-u+5-e.XM-e) = - eto-г+ь)] 2 (27c>

the result obtained through the U(œ)sS0(œ) symmetry chain in 

refs.[34]-[37]. However, with the present method it will be 

easier to evaluate matrix elements of a more general two-body 

interaction.

3. A Ginocchio-type Model Built from 1 Fermion-pairs

In the Ginocchio S, D fermion-pair algebras the single

nucleon creation operators а^т for a mixed configuration of

j-values are given in terms of pseudo angular momenta к and 

i, with k+i=j. With k=l, 1 = 3/2 the single particle j-quantum 
numbers take on the values j=l/2, 3/2, 5/2. Similarly, 

with k=2, i=3/2 : j=l/2, 3/2, 5/2, 7/2 
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with k=l, i=l/2 and 7/2 : j=l/2, 3/2, 5/2, 7/2, 9/2
with k=l, i = 3/2 and 9/2 : j=l/2, 3/2, 5/2, 7/2, 9/2, 11/2 
with k=l and 5, i=3/2 : j=l/2, 3/2, 5/2, 7/2, 9/2, 11/2, 13/2

The i=3/2 algebras with к-spins
K=0 lead to identical fermion S

coupled to two-fermion value 
and D pairs with 1=0 and 2

which generate an SO(8) = U(4) fermion pair algebra. The k=l 
algebras with i-spins coupled to two-fermion value 1=0, on 
the other hand, generate a USp(6)sU(3) S,D fermion pair 
algebra. In ref.[20] an attempt was made to increase the 
maximum allowed values of the SU(3) quantum numbers < Äu) of 
this algebra by combining the collective S,D-pair (Xu)'s with 
an intrinsic (^QUa). However, instead of an increase in the 
maximum possible values of X+u, the introduction of intrinsic 
(Àouo)'s led to a decrease instead.

In view of recent IBM studies of collective magnetic 
dipole excitations in deformed nuclei [38]—[40] it may be of 
some interest to construct a Ginocchio-type fermion pair 
algebra generated by 1 proton-neutron pairs. Such an algebra 
is generated by the J7T=1+ T=0 pair creation and annihilation 
operators

a iz . г.. - г.. a+. )

that is, by a k=l algebra with two-particle I spins coupled 
coherently to 1=0 and two-particle isospin T=0 which restricts 
the two-particle К spin to’ the single value K=l, (with MR=1, 
0, -1 for mm'=10, 1-1, 0-1). Together with the U(3) sub­
algebra

c ,=z zClt . CL , _ L о (29a)
mm Xm- m, Im mt im ? mm j

with <0 = 2zÇ(2C+-l) } (29b) 

these operators generate an SO(6)oU(3) algebra with commuta­
tion relations given by eqs.(2).

Since the SO(6)OU(3) state construction given in section
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2 was completely general it applies to any SO(6)oU(3) 
algebra. The matrix elements of the pair-operators can be 
read from eq.(25), and the state vector construction follows 
at once from eqs.(20) and (26). The possible (Xp)-values are 
shown in table 1 for the k=l i=3/2, j=l/2 3/2 5/2-shell for 
the case [°] = [000], that is with no intrinsic U(3) excita­
tions. In this case a=b=0; the maximum possible c-value, c=w, 
follows at once from eq.(20c). Table 1 shows the (Xu)-values 
for the full 0(6) symmetry with S0(6) particle and hole 
branches. The table also compares the 1 T=0-pair group with 
the S,D-pair group with USp(6) symmetry. It is interesting 
to note that both reach the same limiting X+u-values of 8. 
(Since the S,D-pair group applies to identical nucleons the 
neutron and proton (40) representations can be coupled to 
resultant (80)). For arbitrary excitations in the j=l/2 3/2 
5/2 shell, on the other hand, the Pauli principle permits 
excitations as high as X+u=12 in the Elliott SU(3) model. 
Eqs.(20) also show that the introduction of an intrinsic U(3) 
symmetry lowers (rather than raises) the maximum possible 
X+u-value, a phenomenon already observed for the USp(6) S,D- 
pair symmetry, [20]. Both the 1+ T=0-pair and the S,D-pair 
groups thus differ radically from the Sp(6,R) symmetry, [1] 
[31], where the combination of intrinsic and collective exci­
tations serves to increase the X+u-values. Table 2 shows the 
possible (Xu)-values for the j=l/2 3/2 5/2 shell with one 
pair coupled to an intrinsic SU(3) symmetry (Xouo)=(01). 
(This intrinsic symmetry would be quite natural in higher 
shells with more than one single-particle i-spin where there 
would be more than one antisymmetrically coupled pair with 
1=0). Again, eqs.(20) can be used to see that in this case, 
with 0^=02=!, the maximum c-value is ш-2, leading to highest 
SU(3) representations of (0,ш-1) with аЬс=00ш-2 and (1,ш-2) 
with аЬс=01ш-2. Apart from its inability to reach highly 
rotational (Xu)-values the 1+, T=0 fermion pair symmetry also 
suffers from another deficiency. It contains no operators 
which lead naturally to Ml transition probabilities propor­
tional to the isovector (gp-gn)2 factor. The search for a 
sound fermionic foundation of the IBM 1+ scissors-mode exci­
tation may therefore have to continue.
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Table 1
Possible (Au)-Values. Comparison of neutron-proton l+-pair 
and identical-nucleon S,D-pair groups for the k=l, i=3/2, 
(j=l/2 3/2 5/2)n configurations. ()=(00).
1+ T=0-Pair Group S,D Pair Group
0(6)-symmetry (444) USp(6)-symmetry (222)
n Possible (Au) (Identical nucleons)

24 — (00) n Possible (Au)
22 — (10) 12 (00)
20 — (20) 10 (02)
18 — (30) 8 (04) (20)
16 (08) (40) 6 (22) (00)
14 (07) (50) 4 (40) (02)
12 (06) (60) 2 (20)
10 (05) (70) 0 (00)
8 (04) (80)
6 (03) —
4 (02) —
2 (01) —
0 (00) —

Table 2
The 1 T=0-pair group with intrinsic
SU(3)-symmetry (Aqijo) = (01) 
0(6)-symmetry (433)

n Possible (Au)
22 (10)
20 (20X01)
18 (30X11)
16 (16) (40X21)
14 (07) (15) (50X31)
12 (06) (14) (60X41)
10 (05X13) (70X51)
8 (04X12) (61)
6 (03X11)
4 (02X10)
2 (01)
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4. Concluding Remarks

The S0(6) SU(3) fermion pair algebra is the simplest non­
trivial fermion pair algebra. It has the following attractive 
features: The Wigner-Racah calculus for its U(3) subgroup is 
fully available through the computer code of Draayer and Aki­
yama [33]. Only multiplicity-free SU(3)-couplings are needed 
for the S0(6) эU(3) state construction. The -matrices are 
all 1-dimensional, so that the state construction by vector 
coherent state mthods can be carried out in complete analyti­
cal form. Of the two new examples given for the SO(6)r>U(3) 
symmetry, the relativistic quark model of the nucleus proposed 
by the Bonn group may be an application where the use of 
SO(6)oU(3) vector coherent state methods may simplify detailed 
calculations. It is hoped that further useful examples of the 
simple SO(6) = U(3) symmetry will be discovered.

This work was carried out while the author was a guest at 
Niigata University through the invitation of the Japan Society 
for the Promotion of Science. It is a pleasure to acknowledge 
valuable discussions with Profs. A. Arima, K. Yazaki, Y. Suzu­
ki, and Y. Akiyama and to thank Prof. K. Ikeda and Niigata 
University for their kind hospitality.
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STRESZCZENIE

Dyskutowano w pracy dwa nowe zastosowania algebry Lie 
par fermionowych w łańcuchu SO (6 ) э U (3 ): (1) relatywistyczny 
model kwarkowy jądra zaproponowany przez grupę w Bonn i (2 ) 
model typu Ginocchia zbudowany z par fermionowych J=1+ i T=0. 
Zostały skonstruowane w pełni analityczne stany w obrębie ko­
herentnej teorii.

РЕЗЮМЕ

В работе рассматриваются два новые применения алгебры Ли 
фермионных пар в цепочке SO (6) о 0(3): 1° релятивистская 
кварковая модель ядра предложена группой из Бонн и 2° модель 
типа Гиноккио построена из фермионовских пар j = 1+ и T = О 
Сконстуированы полностью аналитические состояния в рамках ко­
герентной теории.


