ANNALES
UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

VOL. XI/ $/ \mathrm{XLI}, 11$
sectio afa
1985’1986
University of Sussex
Brighton

T. EVANS

A Recursion Relation for Coefficients of Fractional Parentage in the Seniority Scheme

Rekurencyjne związki między wspótczynnikami genealogicznymi w schemacie seniority

Рехуррентные соотношения между генеалогическими коэффициентами в модели синьорити

1. Introduction

```
    In the seniority scheme [1], the states of n identical
fermions of angular momentum J are classified by the
irreducible representations of the groups in the chain
    Su(21 + 1) DSp(21 +1) Do(3)
and the states defined in this basis may be denoted by
In(v)ajM>.Here, v is the seniority, which may be thought of
as the number of fermions remaining when as many J=0 paire
OP fermions as possible have been removed from the state. The
quantum number x is required only if there is more than one
state of angular momentum J and seniority v. For n particies
the geniority is restricted by v= vmax, vmax - 2,\ldots.. or o.
where vmax = J + M - I I- w/2-nI.
```

```
    An Analogous elaselfication for bosons can be made
using the chain
    Su(21 + 1)=0(21+1)>o(3).
    For bosons, v=n,n-2,\ldots..1 or 0.
    Coefficients of fractional parentage (efp) are uged in
voth the Nuciear Shell Model [1] and the Interecting Boson
Model [2] Por the calculation of tha matrix elements of
one-body operatorg. (They may also be uged in the caleulation
of two-body operatora.) A zreat advantage of the geniority
scheme is that each of these coeffieients may bewwitten as
the product of two factors. one of which is very simple in
form and contains the entire dependence of the coefficient
on the particie number n. The restdual factor is a efp
between statez in which the perticle number ig equel to the
seniority, ie its minimum posaible value. These residual
factors may be termed *reduced cfov. For any civen number of
parilcles the reduced crp are par lewer in number than the
general cfp with n\geqslantv. Moreover. in view of the simple
connection between tha two sets the greater part of the
complexity of a many femmon or boson problem resides in the
reduced cip. This mey be especially well mppreciated by
noting that a method has been developed [3.h] for carrying
out full Nuclear Shell Model calculationg in a conficuretion
of both neutrons and protons. which employs only reduced cig
for identical nucleons, but works in g besis navine cood
angular momentum and isospin.
```

The particie number dependence is digcugsed in section
2. usine ideas of quasispin [5]. which is equivalent to
seniority. The recursion relation is introduced in eection 3
and applied to some simple 11lustrative examples in sections 4 and 5 .

The reduced matrix elemente of single oarticie
creation operators are closely related to cip. Thus the cep

$$
\left.\left[y^{n-1}\left(v_{2}, a_{2} J_{2}\right): 5 \mid\right) j^{n}(v) a j\right]
$$

19 equal to

$$
(-) n-1\left(n(v) a_{J}\left\|a_{1}+\right\| n-1\left(v_{1}\right) a_{1} J_{1}\right) / \sqrt{n}
$$

for fermions, and to

$$
\left(n(v) a_{j}\left\|b_{j}+\right\| n-1\left(v_{1}\right) a_{1} J_{1}\right) / \sqrt{n}
$$

for bosons. These reduced matrix elements rather than the cPp will be used in the remainder of this article.

2. Quasiapin Formalism

Por fermions of semi-inteser angular momentum 1 we dePine the quasiapin operators by

$$
\begin{align*}
& Q_{0}=v_{2} \sum_{m} s_{y m}+a_{y m}-v_{y}(2 y-1) \tag{1}
\end{align*}
$$

Where ajm 18 the creation operator for a femion in the
 operators are scaleris. 1etney commute with the ancular momentum operators of the syatem. Their commutation relations with each other are exactiy thome of the analogous ancular momentum operators viz.

$$
\left[Q_{+} \cdot Q_{-}\right]=2 Q_{0} \quad\left[Q_{0} \cdot Q_{ \pm}\right]= \pm Q_{ \pm}
$$

It Pollows that Q.. Q and Qo are the eenerators of an $S U(2)$ group, the quasispin eroup. The ireeducible representations
of this group. charactarised by the guasispin q. span
multiplets in which the $2 q+1$ gtates are distinguighed by the number of $J=0$ paira which they contain. This ia because the "ladder" operatora, Q_{+}and Q_{-}op the quasispin create and aninilate respectively pairg of fermions with $3=0$. The gtate la, mp contains \quad - mq paira, where
$I_{q} \mid=q, q-1, q-2 \ldots{ }_{q} \ldots$ or 0. The total number, n of fermiona in the system is therefore given by

$$
\begin{equation*}
n=1+1 / 2+2 m_{Q} \tag{2}
\end{equation*}
$$

The geniority, v, which la the number of unpaired fermions. 1s clearly

$$
\begin{equation*}
v=n-2(a+m q)=1+n-2 a \tag{3}
\end{equation*}
$$

The operators $a_{j m}{ }^{+}$and $a_{j m} m(-)^{y-m} a_{j,-m}$ form a quasispin doublet. 1e

$$
\begin{equation*}
\left[Q_{+.} a_{j m}\right]=a_{j m}+\quad\left[Q_{+\cdot} a_{j m}+\right]=0 \tag{4}
\end{equation*}
$$

The Wigner-Eckart theorem for auasispin implies that the matrix elements of these operatore are proportional to su(2)
Clebseh-Gorden coefficients. Thus

$$
\left(n(v) a J M\left|a_{\rfloor m}+\right| n-1(v-1) a^{\circ} J^{*} M^{\prime}\right)
$$

$$
=\frac{\left(q+1 / 2, m_{q}-1 / 2,1 / 2,1 / 2 \mid q, m_{q}\right)}{(q+1 / 2,-q-1 / 2,1 / 2,1 / 2 \mid q,-q)}\left(v(v) a_{J M I} a_{j m}+1 v-1(v-1) a^{\prime} J^{\prime} M^{\prime}\right)
$$

$=\sqrt{\frac{2 J+3-n-v}{2 J+3-2 v}}\left(v(v) a J M 1 a_{j m} \mid v-1(v-1) a^{\prime} J^{\prime} M^{\prime}\right)$. Application of the Wigner-Eckart theorem [6] for angular momentum then gives immediately

$$
\begin{aligned}
& {\left[Q_{0}, a_{j m}+\right]=y_{2} a_{j m}+\quad\left[Q_{0}, \hat{a}_{j m}\right]=-y_{2} \dot{a}_{j m}} \\
& {\left[Q_{\ldots,} \tilde{\theta}_{j m}\right]=0 \quad\left[Q_{-}, a_{j m}+\right]=\vec{a}_{j m}}
\end{aligned}
$$

$\left(n(v) a j\left\|j^{+}\right\| n-1(v-1) a^{\prime} j^{\prime}\right)$

$$
\begin{align*}
& =\sqrt{\frac{2 j+3-n-v}{2 j+3-2 v}}\left(v(v) a j\left\|a_{j}{ }^{+}\right\| v-1(v-1) \alpha^{\prime} j^{\prime}\right) \text {. } \tag{5}\\
& \text { S1milarly } \\
& \text { (} \left.n(v) a \mathrm{JMI} \mathrm{a}_{\mathrm{jm}}{ }^{\top} \operatorname{In-1}(v+1) a^{\prime} J^{\prime} M^{\prime}\right) \\
& =\sqrt{\frac{n-v}{2}}\left(v+2(v) a j M\left|a_{j m}\right| v-1(v-1) a^{\prime} J^{\prime} M^{\prime}\right) \\
& =\sqrt{\frac{n-v}{2 J+1-2 v}}\left(v(v) a J M I\left[Q_{-}, a_{j m}+\right] \mid v-1(v-1) x^{\prime} J^{\prime} M^{\prime}\right) .
\end{align*}
$$

Now, using (4) and applying the Wigner-Eckart theorem, we find
($n(v) a j$ \|l $\left.a_{j}{ }^{*} \| n-1(v+1) a^{\prime} j^{\prime}\right)$
$=(-)^{j+J^{\prime}-j \sqrt{\frac{\left(2 J^{\prime}-1\right)(n-v)}{(2 J+1)(2 J+1-2 v)}}\left(v+1(v+1) a^{\prime} j^{\prime}\left\|a_{j}{ }^{*}\right\| v(v) a j\right) .}$

For bosons. with integer angular momentum j the
quasispin operators are defined by equations of the same form as (1) with ajm and ajm reolaced by the boson creation and anninilation operators bjm ${ }^{\top}$. bjm. However, becauee theee obey boson commutation rules

$$
\left[b_{j m} \cdot b_{j m}\right]=\delta_{m m}
$$

the commutators of the Q operators are

$$
\left[Q_{0}, Q_{ \pm}\right]= \pm Q_{*}, \quad\left[Q_{*}, Q_{-}\right]=-2 Q_{0}
$$

The group generated by these operators is the non-compact group $S U(1,1)$. The unitary irreducible representations are now of infinite dimension with $\mid m \mathrm{~m}=0 . q+1, q+2, \ldots$ In place or (2) and (3) Por the particle number and seniority we have

$$
\begin{align*}
n & =2 m q-1-y_{2} \\
v & =2 q-1-y_{2} . \tag{7}
\end{align*}
$$

The number of pairs of bosons with $J=0$ is given by $m_{q}-$ - Equations (5) and (6) become in this case (n(v)aj\| $\left.\mathrm{b}_{j} \| n-1(v-1) a^{\prime} j^{\prime}\right)$
$=\sqrt{\frac{n \cdot v-2 j-1}{2 v+2 j-1}}\left(v(v) a j\left\|b_{j}\right\| v-1(v-1) a^{\prime} J^{\prime}\right)$
and

$$
\begin{equation*}
\left(n(v) a J\left\|b_{j}\right\| n-1(v+1) a^{p} J^{\prime}\right) \tag{9}
\end{equation*}
$$

$$
=\sqrt{\frac{(n-v)\left(2 J^{\prime}+1\right)}{(2 J+2 v+1)(2 J+1)}}(-) J^{\prime}+j-J\left(v+1(v+1) a^{\prime} j \cdot \| b_{j} H v(v) a J\right) .
$$

3. Recursion Relation

In order to deduce a recursion relation for the unknown factors in equations (5) and (6), we consider a state of v fermions constructed by adding a fermion to a parent state of $V-1$ fermione and seniority $v-1$. viz. I (v-1) $a_{1} J_{1} \cdot J: v J M>$
$=\sum_{M_{1}, m}\left(J_{1} M_{1}, J m \mid J M\right) a_{j m}+\mid v-1(v-1) a_{1} J_{1} M_{1}>$
(10a)
$=\sum_{v^{\prime}, a} \mid v\left(v^{\prime}\right) a j M>\left(v\left(v^{\prime}\right) a j\left\|a_{j}^{+}\right\| v-1(v-1) a_{1} J_{1}\right)$.
(10b)

The extra particle has been vector coupled to the parent state to sive definite J. Equation (10 O) is obtained by intrducing a complete set of states of v fermiona, and applying the Wigner-Eckart theorem. It should be noted that the summation over v^{\prime} in (lob) has only two terma with $v^{\prime}=v$ and $v-2$. Now using (10a) and (10b) we obtain the
scalar product

$$
\left((v-1) a_{1} \prime J J_{1} \cdot J ; v \text { JMI }(v-1) a_{1} J_{1} \cdot J ; v J M\right)
$$

In two different forms.

$$
\begin{align*}
& \sum_{v^{\prime}, a}\left(v\left(v^{\prime}\right) a J\left\|a_{j}^{+}\right\| v-1(v-1) a_{1} J_{2}\right)\left(v\left(v^{\prime}\right) a j\left\|a_{j}+\right\| v-1(v-1) a_{1}^{\prime} J_{1}^{\prime}\right) \\
& =\delta\left(J_{1}, J_{1}^{\prime}\right) \delta\left(\alpha_{1}, \alpha_{1}^{\prime \prime}\right)+(-) J_{1}+J_{i}^{\prime} \sqrt{\left(2 J_{1}+i\right)\left(2 J_{2}^{\prime}+1\right)}, \sum_{J_{2}, \alpha_{2}}\left\{\begin{array}{ccc}
J_{j} & J_{2} & J_{2} \\
j & J & J_{1}
\end{array}\right\} \\
& \left(v-1(v-1) a_{1} J_{1}\left\|a_{j}+\right\| v-2(v-2) a_{2} J_{2}\right) \\
& \text { - }\left(v-1(v-1) a_{1}^{\prime} J_{1}^{\prime}\left\|a_{j}+\right\| v-2(v-2) a_{2} J_{2}\right) \text {. } \tag{11}
\end{align*}
$$

Finaliy the term on the left hand side of equation (11) corresponding to $v^{\prime}=v-21 \varepsilon$ expreseed in terme of the grandparent to parent (1e. $v-2$ to $v-1$) parentare coefficients using (6) and trangferred to the right hand side of the equation. The result is
$\sum_{a}\left(v(v) a j\left\|a_{j}{ }^{*}\right\| v-1(v-1) a_{1} J_{2}\right)\left(v(v) a j\left\|a_{1} *\right\| v-1(v-1) x_{1}{ }^{p} J_{1}^{\prime}\right)$
$=\delta\left(J_{1}, J_{2}^{\prime}\right) \delta\left(\alpha_{1}, \alpha_{1}^{\prime}\right)$
$+\left(-J_{1}+J_{1}^{\prime} \sqrt{\left(2 J_{1}+1\right)\left(2 J_{1}^{\prime}+1\right)} \cdot \sum_{J_{2} \cdot a_{2}}\left[\left\{\begin{array}{lll}J & J_{1}^{\prime} & J_{2} \\ J & J_{1} & J\end{array}\right\}+\frac{2(-)^{v} \delta\left(J_{\cdot} J_{2}\right)}{(2 J+1)(2 J+5-2 n)}\right]\right.$

$$
\begin{align*}
& \cdot\left(v-1(v-1) a_{1} J_{1}\left\|a_{j}{ }^{+}\right\| v-2(v-2) a_{2} J_{2}\right) \\
& \quad \cdot\left(v-1(v-1) a_{1} J_{1}+\left\|a_{1}+\right\| v-2(v-2) a_{2} J_{2}\right) \tag{12}
\end{align*}
$$

and this is the desired recurrence relation.
The use of this reletion is straightiorward. The right
hand side of equation (12) contains only the grandparent to Darent coefficients. Which are assumed known from the previous step of the calculation. The left hand side $1 s$

```
clearly a matrix whose rows and columns are labelled by the
parents a J J . If we sesume that. As is often the cage. a 1s
redundant this matrix nas a single eigenvalue equal to n.
the remainder all being zero. The parentage coefficients for
the offspring atate of n fermiong are the components of the
corresponding elgenvector normalised to norm n. In fact, ag
the matrix 1s factorable they can be obtained together with
their relative phases from the matrix elements in a single
row. If however ther are r offspring states distinguished by
\alpha=1,2.....r the matrix will have r elgenvaluea equal to n
and the parentage coefficients are given by r orthogonal
eigenvectorg each with norm n. Thig procedure defines the
states IV(v)ajM> to within a unitary trangeormation, this
Arbitrariness being reflected in the dereneracy of the
e1genvalues.
    For bosons an analogous derivation leads to
\sum{\mp@code{a}
= 8(J
    \sum {\mp@code{_,J_2}
                                    (13)
.(v-1(v-1) \mp@subsup{a}{1}{\prime}\mp@subsup{J}{1}{}||\mp@subsup{b}{1}{*}|v-2(v-2)\mp@subsup{a}{2}{}\mp@subsup{J}{2}{})
```

 . \(\left(v-1(v-1) a_{1}^{\prime} J_{1} \prime\left\|b_{j}+\right\| v-2(v-2) a_{2} J_{2}\right)\).
 4. Application to Fermions
 For \(v=1\) and 2 equation (12) gives immediately
 \(\left(1(1) j\left\|\mathrm{aj}_{\mathrm{j}}\right\| O(0) 0\right)=1\) and
 For atates of seniority $3(J>y)$ aquations (12) and (14) now sive
$\sum_{a}\left(3(3) \alpha J\left\|a_{j}+\right\| 2(2) J_{1}\right)\left(3(3) a_{J}\left\|a_{j}+\right\| 2(2) J_{1}^{\prime}\right)$
$=6\left(J_{1} \cdot J_{1}\right)+2 \sqrt{\left(2 J_{1}+1\right)\left(2 J_{1}^{\prime}+1\right)}\left[\left\{\begin{array}{lll}j & J & J_{1} \\ 1 & J & J_{1}\end{array}\right\}-\frac{2 \delta(J .1)}{\left(4 J^{2}-1\right)}\right]$
 The trace of this matrix must be $3 r$ where r is the number of states of spin J and seniority 3 in the conficuration 13. Thus
$x=\frac{1}{3} \sum_{J_{1}=1 J-1!}^{J+j}\left[1+2\left(2 J_{1}+2\right)\left[\left\{\begin{array}{lll}1 & y & y_{1} \\ y & 3 & y_{1}\end{array}\right\}-\frac{2 s(1.3)}{\left(4 j^{2}-1\right)}\right]\right]$
where J_{1} runs over even values.

AB an example conalder the case $J=1$, so that
$J_{1}=2.4,6 \ldots, 21-1$. Equation (16) gives $m=0$ for $\leq \leq \frac{7}{2}$ and $r=1$ For $1=\frac{9}{2} \cdot \frac{11}{2}$ and $\frac{13}{2}$. Thus for any of these last three s-values equation (12) gives

$$
\begin{align*}
& \left(3(3) j\left\|a_{1}+\right\| 2(2) 2 j-1\right)=\sqrt{1-\frac{4(4 j-1)}{\left(4 j^{2}-1\right)}+2(41-1)\left\{\begin{array}{lll}
1 & 2 j-1 \\
1 & 1 & 2 j-1
\end{array}\right\}} \\
& =\sqrt{1-\frac{4(4 J-1)}{\left(4 J^{2}-1\right)}+\frac{(2 J)!(2 J-1)!}{(4 J-2)(4 J-4)!}} . \tag{17}
\end{align*}
$$

(NB. This expresilon vanishes for ali $1<\frac{9}{2}$.) The remaining coefriciente are given by

$$
\left(3(3) f\left\|a_{1}+\right\| 2(2) J_{1}\right)
$$

$=2 \sqrt{\left(2 J_{1}+1\right)(4 j-1)}\left[\left\{\begin{array}{lll}j & 1 & J_{1} \\ j & j & 2 j-1\end{array}\right\}-\frac{2}{\left(4 j^{2}-1\right)}\right] /\left(3(3) j\left\|a_{1}+\right\| 2(2) 2 j-1\right)$

```
for J J = 2,4,6,\ldots.,2J-3.
```


4. Application to Bosons

A system of n identical p-bosona $(J=1)$ has total angular momentum given by $J=n, n-2, n-4, \ldots$ or 1 . Thus since a state of $v=0$ has $J=0$. the only possible J for a state of $V=213$ 2. Similarly three bosons have $J=1$ or 3 and since $J=1$ must correspond to $v=1$, it follows that $J=3$ corresponds to $v=3$. It may be inferred that, in general $J=v$ for p-bosons. Equation (13) then leada immediately to

$$
\left(J(J) J\left\|b_{1}+\right\| J-1(J-1) J-1\right)=\sqrt{J}
$$

Now ueing (8) and (9) we find the familiar reaults,
$\left(n(J) J\left\|b_{1} *\right\| n-1(J-1) J-1\right)=\sqrt{\frac{J(n+J+1)}{2 J+1}}$
$\left(n(J) J\left\|b_{1}+\right\| n=1(J+1) J+1\right)=\sqrt{\frac{(n-J)(J+1)}{2 J+1}}$.

The coefflcienta in (19) are closely related to the reduced matrix elementa of x between eigenstates of a apherical harmonic oscillator. Thes are also relevant to IEM3 [7]. Which is a version of the IBM involving isovector bogons. In this case, J would represent isospin rather then engular momentum.

The case $1=2$ 1s of particular interest in ralation to the IBM. In this model it is assumed that some low-lying
collective states of nuclel can be represented as states of a system of s-bogons $(1=0)$ and d-bosons $(j=2)$.

Calculations in the model are usually performed usint the seniority basis for the d-bosons. The statea are therefore defined by IN.N.V.JM>. where N ia the total number of bosons, n the number of d-bosons and v the d-boson Beniority. Specific Pormulas for the parentage coefficients Which are important in the "vibrationsi inmit of the model. 1e close to the scheme defined above. have been given in reference [2] (ec. figure 5). These results are readily ilven by equation (13). Moreover application to transitions Involving the x, band is straightforward. In this case we find, usins d^{+}for convenience instead of bo
$\left(v(v) 2 v-4\left\|d^{+}\right\| v-1(v-1) 2 v-2\right)=$
$(v-1) \sqrt{\left.1+(4 v-7)\left\{\begin{array}{lll}2 & 2 v-4 & 2 v-2 \\ 2 & 2 v-4 & 2 v-2)\end{array}\right]-\frac{2}{(2 v+1)(4 v-7)}\right]}$
and
$\left(v(v) 2 v-4\left\|d^{\top}\right\| v-2(v-1) J_{1}\right)=$

$$
\begin{gathered}
(-) J_{1} \sqrt{\left(2 J_{1}+1\right)(4 v-7)}\left[\left\{\begin{array}{ccc}
2 & 2 v-4 & 2 v-2) \\
2 & 2 v-4 & J_{1}
\end{array}\right\}-\frac{2}{(2 v+1)(4 v-7)}\right] \\
\cdot \frac{\left(v-1 \cdot(v-1) J_{1}\left\|d^{+}\right\| v-2 \cdot(v-2) 2 v-4\right)^{2}}{\left(v(v) 2 v-4\left\|d^{T}\right\| v-1 \cdot(v-1) 2 v-2\right)}
\end{gathered}
$$

for $J_{1}=2 v-2,2 v-4.2 v-5.2 v-6$.

The results are shown in the pigure which provides an
extension to figure 5 of reference [2] by taking
$n_{d}=v-1 . T h e$ reduced matrix elemente of reference [2] differ by a factor of $\sqrt{4 v-7^{2}}$ from those of (20) and (21). This

Factor has been inciuded in the Pigure.

Figure. Reduced matrix elements of a^{+}.

Another of the three dynamical symmetries [8] of the IBM, namely the $O(6)$ limit. corresponds to a seniority scheme. The relevant group chain is

$U(6)>O(6)>O(5)>O(3)$

and the states are labelled by IN(v)oJM>, where v is the $O(6)$ seniority, and the $O(5)$ or d-boson seniority is now denoted by σ. The parentage coefficients

$$
\left(v(v) \sigma J\left\|a^{+}\right\| v-1 \cdot(v-1) \sigma_{1} J_{1}\right)
$$

and

$$
\left(v(v) \sigma J\left\|g^{+}\right\| v-1 \cdot(v-1) \sigma J\right)
$$

```
can be calculated from a modifled form of equation (13). For
this case the factor (2v+2v-3) in the denominator in (13)
becomes 2v + 2. The states derined in this gcheme do not nave
definite numbers of d-bosons as the pairs are of the form
(d*}\cdot\mp@subsup{d}{}{*})-(\mp@subsup{s}{}{*}\mp@subsup{s}{}{*})\mathrm{ . However as this expression is invariant
under O(5) as well as O(6), o remains a good guantum number.
    A similar six-boson problem occurs in IBM4 [9].
where the bosons have either T m 1, S=0 or T=0, S = 1. Here
T 1s the isospin and S is an intrinsic spin possessed by the
Dosong in audition to their orbital angular momentum of o or
2. As long as only symmetric orbital stateg are considered
the spin-isospin variables can be treated in isolation. In
this case 1t is more natural to exploit the well known
isomorphism between O(6) and sU(4) and write the rroup chain
as
    U(6)DSU(4)\LongrightarrowSU(2)TxSU(2)S
Application of equation (13) to this case leads to the SU(4)
W1gner coefficients given in table A2.1 of reference [10].
```


References

1. de Shalit A. Talmi I.: Nuclear Shell Theory, New York 1963.
2. Arima A. Iachello F.: Ann. Phys. 1976. 99. 253.
3. E1110tt J.P. Evans J.A.: Phys. Lett., 1970. 31B. 157.
4. Hecht K.T. Szo1kowski S. Nucl. Phys. 1970. A158. 1449.
5. Ring P. Schuck P.: The Nuclear Many Body Problem. New York 1980.

6．Brink D．．Satchler G．R．：Angular Momentum．Oxtord 1962.
7．Evans J．A．，Elilott J．P．，SEplkowski S．：Nucl．Phys．．
1985．A435． 317.
8．Elilatt J．P．Reports on Progress in Physics，1985．48．
171.

9．Halee P．．Elliott J．P．．Evane J．A．：Nuel．Phys 1984. A417． 301.

10．Pang S．C．．Hecht K．T．．：J．Matn．Phys．．1967．8． 1233.

STRESZC2ENIE

F ariykiste dyskutuje sie ściezkı rekurencyjne mieqdzy ＂з Јci azjnnikami éenea－oficznymi n schemacie seniority．Fyzna－ ここクna zaんモíność zredukomanych spółczynnikćq od licaby cząstek
 czenia i rodzenia pi unzadach fermionów bądz bozonóm．

$$
\text { PE } 3: 10
$$

В статъе оосудлаптся ренуррентные соотнопения метду геневло－
 пость приведенных коэйलициентов от числа частиц поэваляет легко находитв матричные элемезтะ операторов роддения и аннилилядии в迹ерионннх систеках．

