ANNALES
UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

VOL. XI/XLI, 9
sectio afa
1985/1986

Instytul Fizyki Teoretycznej
Uniwersytet Warszawski

J. DOBACZEWSKI*

On the $\operatorname{SU}(6)$ Dynamic Symmetry in Nuclei

O dynamicznej symetrii $\mathrm{Su}(6)$ w jadrach

О динамической SU(6)-симметрии в ядрах

> Dedicated to Professor
> Stanisiaw Szpikowski on occasion of his 60 th birthday.

The Interacting Boson Model (IBM) [1] has been recently receiving a large interest in nuclear physics. The microscopic foundations of the model still remain, however, an open question. The basic assumptions of the simplest version of the model can be expressed as follows:

1) The set of quadrupole collective states of a given nucleus can be identified with a basis of the symmetric representation of the $S U(6)$ group.
2) The quadrupole collective Hamiltonian can be approximated by a scalar and time-even operator quadratic in the SU(6) generators.
[^0]The first assumption can be called a kinemaric one because it defines the Hilbert space of the collective quadrupole states. The second assumption is of a dynamic nature since it formulates an approximation for the nuclear many-body Hamiltonian projected onto the collective space. In the present study i will discuss the first assumpton and try to search for conditions under which such a space of collective states can be found in the Fock space for a fermion system.

In the IBM model one usually visualizes the SU(6) symmetric representation by using a set of six boson operators, five of them forming a quadrupole spherical tensor ($\mathrm{d}_{\mathrm{j}}^{+}$) and the sixth being a scalar (${ }^{+}$). However, this visualization is not the main point of the model. In fact it merely constitutes a calculational tool allowing to express the Hamiltonian and the collective states in an explicit way. Abstract symbols for the su(6) generators could have been used as well, allowing for the same group theoretical methods to be used when solving the Schrödinger equation. In this respect a direct search for the SU(6) dynamic symaetry in the fermion space is more fundamental than microscopic determination of the boson operators.

The interpretation of a boson as an approximated pair of fermions, which has motivated the introduction of the IBM, is used in the model only to fix the $S U(6)$ symmetric representation for a given nucieus. The representation containing N_{D}-boson states, where $N_{\hat{D}}$ is half of the number of valence fermions, is usually used. This prescription is neither absolutely necessary to reproduce the experimental data mor it is uniquely defined, especially for deformed nuclei where the concept of the valence shell has no clear-cut meaning. In what follows I will use the boson operators only as an lliustration, focusing attention directly on a determination of the $S U(6)$ representation space.

Let the states of the $S u(6)$ symuetric representation be visualized by:

$$
\begin{equation*}
\left.\left.\left|\Psi_{j}\right\rangle=\left(d_{j}^{+}\right)^{n} d_{(s}^{+}\right)^{n} s^{n} \mid 0\right) \quad, \quad n_{d}+n_{s}=N_{B} \tag{1}
\end{equation*}
$$

where $\mid 0$) is the boson vacum and the index f comprises all necessary labels used to number the states of the representation. All states of the representation can be obtained
by a successive application of the operators d_{μ}^{+}s on the state

$$
\begin{equation*}
\left.\left(\Psi_{0}\right)=\left(s^{+}\right)^{N_{B}} \mid 0\right) \tag{2}
\end{equation*}
$$

(the highest weight state). The representation space is thus defined by the highest weight state, having the property

$$
\begin{equation*}
\left.\left(\mathrm{d}_{\square}^{+} \mathrm{s}\right)^{+} \mid \Psi_{0}\right)=0 \tag{3}
\end{equation*}
$$

and by the algebraic relations between the "shift" operators $\mathrm{d}_{\mathrm{j}}{ }^{\mathrm{s}} \mathrm{s}$:

$$
\begin{align*}
i d_{\mu}^{+} s, d_{v}^{+} s & =0 \tag{4a}\\
{\left[d_{\mu}^{+} s,\left(d_{v}^{+} s\right)^{+}\right] } & =d_{\mu}^{+} d, \tag{Lb}\\
{\left[d_{u}^{+} d_{v}-\delta_{\mu v} s^{+} s, d_{u v} s s^{+} s\right.} & =\delta_{v k} d_{i}^{+} s+s_{u v} d_{k}^{+} s \tag{4c}
\end{align*}
$$

If a set of the fermion collective states is to be identified with a symmetric SU(6) representation space one has to find a fermion highest weight state | ${ }_{0}$) (denoted by the angle bracket) and a fermion shift operator \hat{F}_{2} fulfilling the conditions:

$$
\begin{align*}
& \hat{F}_{2 L} \mid Y_{0}>=0 \quad \text {, } \tag{5}\\
& \left\lceil\hat{F}_{2 v}^{+}, \hat{F}_{2 v}^{+}\right]=0, \tag{fa}\\
& {\left[\hat{F}_{2 \mu}^{+}, \hat{F}_{2 \nu}\right]=\hat{G}_{\mu \nu} \text {, }} \tag{6b}
\end{align*}
$$

Equation (5) defines the highest weight state, eq. (Gb) is the definition of the G operators and eqs. (Ga) and (bc) are the commutation relations of the su(6) algebra formed by the 35 operators: $\hat{F}_{2 \mu}^{+}, \vec{F}_{2 \mu}$ and $\hat{G}_{u v}$. Let us notice that the shift operators, and the other generators of the su(6) algebra, do not change the fermion number $\quad N_{F}$.

The search for the dynamic SU(6) symmetry in a nucleus should proceed in the following way:

1) Find a model for the shift operators $\hat{F}_{2 \mu}^{+}$. One is certainly not able to write down an exact operator transforming one collective state into another one (say the ground state of a splerical nucleus into the first excited 2^{+}state). The shell model arguments (based on the Tamm-Dancoff or RPA methods) can however be used to obtain a reasonable guess.
2) Check (or assure if the guess for the shift operators contains some freedom) the su(6) commutation relations, eqs. ($6 a$) and ($6 c$). Again this probably cannot be achieved in an exact way. Dae should however keep in mind that these relations constitute the base of the dynamic SU(6) symmetry in auclei and their strong violation by "reasonable" shift operators should be considered as a strong argument to abandon the idea of such a symmetry at all. In what follows I will try to fulfil these relations exactly, because it seems plausible that an approximate algebra closure can take place only for a set of operators not very different from an exact algebra.
3) Kaving constructed the su(6) algebra in the Fock space one can split this space into a sum of the irreducible representations of SU(6). This in principle can be achieved by diagonalizing the Cartan subalgebra consisting of the $\hat{G}_{\mu \mu}$ operators and analyzing the resulting eigenvalues. One should note that the entire Fock space will thus be decomposed into the sum of the $S U(6)$ representations while we are interested only in one candidate for the collective space. Two conditions can be used to select the proper representation: i) a mean energy (for example the trace of the nuclear many-body Hamiltonian calculated fa the collective representation) should be small [2], if) the auclear Hamitonian should weakly couple the collective and any other representation. None of the two conditions is easy to be implemented. One should however keep in mind that the choice of the collective representation is in priaciple the matter of a derivation; for the chosen shift operators and nuclear Hamilonian one should check whether the collective space is well approximated by a symmetric representation - and if it is so - which symmetric representation is the best candidate.
4) The profection of the nuclear Hamlitonian on the collective

SU(6) representation should be identified with the collective Hamiltonian. Such a projection can always be in the chosen representation expressed as a function of the su(6) generators. Hence again it is a matter of a derivation whether this function can be approximated by an expression quadratic in the generators.
The scheme presented by the steps 1)-4) is certainly very difficult to be realized and definite answers cannot be expected to come out very soon. However, a microscopic justification of the IBM should probably follow the presented outine or should refer to it when aecessary approximations are done.

TEE ANGULAR MOMENTUM

As it was mentioned in the previous section, the fermion $\stackrel{\rightharpoonup}{F}_{2 \mu}^{+}$generators are assumed to form a quadrupole spherical tensor. By definition, the shift operators should thus fulfil the following condition:

$$
\begin{equation*}
\hat{R}(\Omega) \hat{F}_{2 \mu}^{+} \hat{R}^{+}(\Omega)=\sum_{\nu=-2}^{\hat{2}} D_{\nu \mu}^{2}(\Omega) \vec{F}_{2 v}^{+} \tag{7}
\end{equation*}
$$

where $\hat{R}(\Omega)$ is the rotation operator,

$$
\begin{equation*}
\hat{\mathbb{R}}(\Omega)=\exp \left(-1 \dot{\phi} \hat{\mathbf{J}}_{z}\right) \exp \left(-1 \theta \hat{\mathbf{J}}_{y}\right) \exp \left(-\mathbf{i} \psi \hat{\mathbf{J}}_{z}\right) \tag{3}
\end{equation*}
$$

Which depends on the Euler angles $\quad \Omega=\{\phi, \theta, \psi\}$ and on the physical* angular momentum operator \vec{J}, and $D_{v \mu}^{\lambda}$ is the Wigner function. Equation (7) is equivalent to the following commutation relation:

$$
\begin{equation*}
\left\lfloor\hat{J}_{1 \nu}, \hat{E}_{2 \mu}^{+}\right\rfloor=\sqrt{6}(2 \mu 1 v \mid 2 \mu+v) \hat{F}_{2 L+v}^{+} \tag{9}
\end{equation*}
$$

where \mathcal{J}^{1} are the apherical covariant components of the physical angular momentum operator which form the so(3) algebra:

[^1]\[

$$
\begin{equation*}
\left\{\hat{J}_{1 \nu}, J_{1 v} \mid=-\sqrt{2}(1 \mu|v| 1 \mu+v) \hat{J}_{1 \mu+v}\right. \tag{10}
\end{equation*}
$$

\]

An angular momentum operator can also be constructed inside the su(6) algebra [1]. For this let us replace the $\hat{\mathrm{G}}_{\mu \mathrm{s}}$ operators, eq. (Gb), by:

$$
\begin{equation*}
\hat{\vec{F}}_{\lambda L}=\left(\left\{\hat{\mathrm{F}}_{2}^{+}, \hat{\vec{F}}_{2} \int\right)_{\lambda_{\mu}}=\left(\hat{\vec{F}}_{2}^{+} \times \hat{\vec{F}}_{2}\right)_{\lambda_{\mu}}-(-1)^{\lambda}\left(\hat{\vec{F}}_{2} \times \hat{\vec{F}}_{2}^{+}\right)_{\lambda \mu}\right. \tag{11}
\end{equation*}
$$

for $=0,1,2,3,4$, where $\hat{F}_{2 \mu}=(-1)^{\mu} \hat{F}_{2-\mu}$ and the symbol ($x)_{\lambda \mu}$ denotes the vector coupling to the angular momentum λ and the projection μ. A little calculation allows to show that the vector operator $\hat{\mathrm{I}}_{1 v}=\sqrt{10} \hat{\mathrm{P}}_{1 v}$ generates the so (3) subalgebra of the su(6),

$$
\begin{equation*}
\left\{\hat{\mathrm{I}}_{1 u}, \hat{\mathrm{I}}_{1 v}\right]=-\sqrt{2}(1 \mu 1 v \mid 1 \mu+v) \hat{\mathrm{I}}_{1 \mu+v} \tag{12}
\end{equation*}
$$

and that it rises and lowers the magnetic indices of the \hat{F}_{2}^{+}, $\hat{F}_{2 ;}$ and $\hat{P}_{\lambda_{j}}$ operators exactly in the same way as the physical angular momentum operator does:

$$
\begin{equation*}
\left|\hat{\mathrm{I}}_{1 v}, \hat{\mathrm{~F}}_{2 v}^{+}\right|=\sqrt{6}(2 \mu 1 v / 2 u+v) \hat{\mathrm{F}}_{2 u+v}^{+}, \tag{13}
\end{equation*}
$$

This observation plays a crucial role in the following discussion, so it is worthwhile to stress the origin of the two different angular momenta: 1) the physical angular momentum operator $\hat{J}_{1 v}$ enters into the analysis of the problem because the su(6) generators form spherical tensors with respect to the physical rotations, 11) the angular momentum operator $\hat{\mathrm{I}}_{\mathrm{lv}}$ is one of the generators of the su(6) algebra and its commutation relations are a consequence of the su(6) commutation relations. Depending on the choice of the $\hat{\mathrm{F}}_{2 \mu}^{+}$operators, the $\hat{\mathrm{I}}_{\mathrm{lv}}$ operator is or is not equal to the physical angular momentum operator J_{10}.

It is clear that instead of considering the su(6) algebra alone one has to deal with a larger algebra which also includes the physical angular momentum operator. Defining the operator $\hat{K}_{1 v}$ 。

$$
\begin{equation*}
\hat{\mathrm{k}}_{1 v}=\hat{\mathrm{J}}_{1 v}-\hat{\mathrm{I}}_{1 v} \tag{14}
\end{equation*}
$$

one can easily show that it fulfils the so(3) commutation relations, analogous to those of eqs. (10) and (12), and commutes with the su(6) generators. The algebra one has to consider is thus equal to the direct sum so(3) \oplus su(6) where so(3) is generated by the $\hat{K}_{1 v}$ operators and su(6) by the $\hat{F}_{2,}^{+}$, $\hat{F}_{2 L}$ and $\hat{P}_{\lambda \mu}$ operators. The physical angular momentum operator is equal to the sum of the $\hat{K}_{1 v}$ and \hat{l}^{v} operators, which commute with each other, and the eigenstates of \vec{j}^{2} can be obtained by the vector coupling of the \hat{K}^{2} and \hat{I}^{2} eigenstates. We have thus arrived to the same construction scheme as used by other authors [3-5], who introduced arbitrary pseudo-orbital (K) and pseudo-spin (I) angular momenta. Of course the final goal is to use the model angular momentum I to measure the physical angular momentum J. This means that the interesting representations of the $S O(3)$ ($\operatorname{SU}(6)$ group are those which are the scalar ones with respect to the angular momentur K.

THE SINGLE-PABTICLE SU(6) SHIFT OPERATORS

Let me first study the simplest approximation for the shift operators, namely the approximation by single-particie operators:

$$
\begin{equation*}
\hat{\mathbf{F}}_{2 \mu}^{+}=\sum_{k<1} F_{k 1}^{(2 \mu)+} a_{k}^{+} \tag{15}
\end{equation*}
$$

where the indices k and 1 nuber a suitable finite set of the single-particle states and $\quad \mathrm{F}_{\mathrm{k} 1}^{(2 \mu)+}$ is a matrix. This approximation includes all positble solutions of the particle-hole Tamm-Dancoff or RPA methods. Because the bifermion operators $a_{k}^{+} a_{1}$ form the unitary algebra,

$$
\begin{equation*}
\left[\dot{a}_{k}^{+} a_{1}, a_{n_{n}^{+}}^{a_{n}}\right]-\delta_{1 n^{a_{k}^{+}} a_{n}}-\delta_{k n^{a}}^{a^{a}} 1 \tag{16}
\end{equation*}
$$

the matrix comautation relation

$$
\begin{equation*}
\left[\left\{F^{(2 \mu)+}, F(2 v)\right], F(2 k)+\right]=\varepsilon_{\nu K^{F}} F^{(2 \mu)+}+\delta_{\mu v^{P}}(2 k)+ \tag{17}
\end{equation*}
$$

is the sufficieat and necessary condition for the comutation relation (6c) to be fulfilled in the Fock space. This means that every matrix representation of the $S U(6)$ group will give a closed su(6) algebra of the single-particle operators in the Fock space. By listing the irreducible $S U(6)$ representations and multiplying them by the $S O(3)$ representations one can obtain all possible so(3) \oplus su(6) single-particle algebras. In verifying their applicability to the justification of the IBM one should follow the following steps:

1) Take an $\operatorname{su}(6)$ atrix representation and find all possible values of the angular momentum I in this representation.
2) Couple all values of I to chosen value of the angular momentum k to obtain the possible physical angular momentum values and their multiplicities.
3) Check whether the obtained set of the physical angular momentum values is identical with a set constituting the valence shell for a given range of the proton and neutron numbers.
4) Find all possible $S O(3) \otimes S U(6)$ representations in the many-fermion space constructed from the found set of the single-particlestates.
5) Pick out all scalar ($K=0$) representations.

By following above procedure one can verify that non of the matrix $S U(6)$ representations can provide a correct set of the single-particle angular momenta and/or that the symmetric $S U(6)$ representations are missing in the corresponding Fock spaces. This constitutes a proof that the shift operators \hat{F}_{2}^{+}of the hypothetical SU(6) dynamic symatry cannot be single-particle operators.

Let me present this proof for the simplest case when the chosen $S U(6)$ matrix representation is the one given by the Young diagram \square. The angular momentum I can then be equal to 0 or 2. By choosing the angular momentum K equal to $1 / 2$, one obtains the sequence of single-particle physical spins: $\quad 1 / 2$, 3/2, 5/2. An obvious example of such sequence is found in the nuclear s-d shell. In this particular case the angular momentum I can be identified with the orbital angular momentur and K With the intrinsic nucleon spin. Another example is given by the $P_{1 / 2}$, $P_{3 / 2}$ and $f_{5 / 2}$ orbits where the I and K angular
momenta have no physical interpretation.
Denoting the $\langle K=1 / 2\rangle \otimes[$ representation by $(1 / 2) 0 / 1\}$, where [1] is the partition corresponding to the Young dis?ran [], one can 11st all allowed $\operatorname{so}(3) O S U(6)$ representations for arbitrary fermion number N_{F}, see table I. One can ses that the scalar $(\mathbb{K}=0)$ representations of $S O(3)$, occurring ior even values of $N_{\bar{r}}$, are not the symmetric representations of Su(b) (apart from $N_{F}=2$ where however $N_{B}=2$ too) and cannot thus be considered as IBM collective quadrupole spaces.

Coupling the representation \square with $K=3 / 2$ one would obtain the physical angular momenta $1 / 2,3 / 2,3 / 2,5 / 2$ and $7 / 2$. The double-occurence of the $3 / 2$ value makes it difficult to apply this case to the nuclear shell model. The same rype of argument can also be used to distegard still higher values of k or bigger $S U(6)$ matrix representations as $\quad I=$ $0,0,2,2,4)$ or $-(I=1,2,3)$, where the multiple $j-v a l u e s$ are very common. For any assumed matrix $S U(6)$ representation one obtains two unwanted results: 1) the physical single-particie angular momentum values occur more than once iri a given SO(3) © SJ(6) matrix representation and ii) in the fock space there are no symetric S (6) representations which would fulfil the requifements of the IBM. Hence one has to end up with the conclusion that the $S U(6)$ dynamic symmetry in nuclei cannot be built upon the single-particle shift operators \hat{F}_{2}^{+}.

After stating this rigorous result one should remark that the assumption which have led to it is quite restrictive. The shift operators have been assumed to be equal to single-particle operators when acting on all states of the fock space. In fact this requirement should be reduced to a very limited subspace namely the very subspace of the collective quadrupole states Which we just want to describe:
where \hat{P} is the corresponding (scalar) projection operator and $\hat{\mathrm{F}}_{2}+$ is an arbitrary quadrupole operator. Such shift operator is not a single-particle operator and one cannot calcuiate che mecessary commutators from the algebraic properties oine bifermion operators
$a_{k}^{*} a_{1}$. In looking for the microscop:

Decomposition of the $j=1 / 2,3 / 2,5 / 2$ nuclear shell into the $S O(3) \otimes \operatorname{SU}(6)$ representations. X_{F} denotes the fermion number and k is the value of the angular momentum K (see text).

justification of the IBM one is thus forced to deal explicityy with operators much more complicated than the single-particle ones. From the mathematical point of view one has to search for the su(6) closed algebras not in the su($\sum_{1}\left(2 j_{i}+1\right)$) algebra but in fts enveloping algebra \{6\}, which is much larger and complicated and much less studied than the bifermion algebra itself.

THE SU(6) SHIFT OPERATORS BASED ON THE GINOCCHIO MODEL

There exists one example of the closed su(6) algebra in the fermion Fock space, which is generated by the non-single--particle shift operators and has symmetric representations in the Fock space. Its construction is based on the Ginocchio [4] model in which one defines the monopole (\hat{S}^{+}) and the quadrupole (\hat{D}_{μ}^{+}) pairs of fermions in such a way that the operators $\hat{S}^{+}, \hat{D}_{\mu}^{+}, \quad\left[\hat{S}^{+}, \hat{\mathrm{D}}_{\mu}\right], \quad\left[\hat{\mathrm{S}}^{+}, \widehat{S}^{\prime}\right]$ and $\left[\hat{\mathrm{D}}_{-}^{+}, \hat{\mathrm{D}}_{\mathrm{u}}\right]$ together with their hermitian conjugations form the so(8) algebra. The generator

$$
\begin{equation*}
\hat{I}_{1 v}=\frac{1}{4} \sqrt{10}\left(\left[\hat{D}^{+}, \hat{\bar{D}}\right]\right)_{1 v} \tag{19}
\end{equation*}
$$

acts in the so(8) algebra in the same way as the physical angular momentum $\mathrm{J}_{1 v}$ and thus the operator

$$
\begin{equation*}
\hat{\mathbb{k}}_{1 v}=\hat{J}_{1 v}-\hat{\mathrm{I}}_{1 v} \tag{20}
\end{equation*}
$$

commutes with all the so(8) generators and forms the so(3) subalgebra. Instead of the $S 0(8)$ group one has thus to consider the direct product $S O(3) \otimes S O(8)$.

In the single-particle basis the pair operators can be expressed as:

$$
\begin{align*}
& \hat{s}^{+}=\frac{1}{2}{\underset{k 1}{\sum} s_{k 1}^{+} a_{k}^{+} a_{1}^{+}}_{\hat{D}_{\mu}^{+}=\frac{1}{2}}^{\sum_{k 1}^{\Sigma} D_{k 1}^{(\mu)+} a_{k}^{+} a_{1}^{+}} \tag{2la}
\end{align*}
$$

where S^{+}and $D^{(\mu)+}$ are antysymetric matrices. By using the doubled dimension of the fermion single-particle space [7],

$$
\begin{equation*}
c=\binom{a^{+}}{a^{+}} \quad, \quad c^{+}=\left(s^{+}, a\right) \tag{22}
\end{equation*}
$$

one can represent these operators in the form

$$
\begin{align*}
& \hat{S}^{+}=\frac{1}{2}{\underset{K L}{L}} J_{K L}^{+} c_{K}^{+} c_{L} \tag{23a}\\
& \hat{D}_{H}^{+}=\frac{1}{2} \sum_{K L} D_{K L}^{(\mu)+} c_{K}^{+} c_{L} \tag{23b}
\end{align*}
$$

where the capital indices K and L assume twice as much values as the ordinary single-particle indices k and \quad, and the matrices J^{+}and $\sum^{(k)+}$ read

$$
J^{+}=\left(\begin{array}{ll}
0 & S^{+} \tag{24}\\
0 & 0
\end{array}\right) \quad D^{(u)+}=\left(\begin{array}{ll}
0 & 0^{(u)+} \\
0 & 0
\end{array}\right)
$$

Similarly, all other generators of the so (8) algebra can be represented by matrices of doubled dimensions. Every such matrix A, fulfilling the condition
$\mathcal{F} \mathcal{A F}=-\mathcal{A}^{T}$ where $\mathcal{F}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \quad$, (25ab)
is in one-to-one correspondence with a bifermion operator $\hat{A}=\frac{1}{2} \underset{K}{5} \mathcal{A}_{K L} c_{K}^{+} c_{L}$. It is easy to show that the commutation relations between the bifermion operators \bar{A} are equivalent to the respective relations between the matrices \mathcal{A}. Every matrix representation of the $s o(3) \oplus$ so (8) algebra will thus generate the corresponding so (3) \oplus so (8) algebra ia the Fork space, provided the matrix representation consists of matrices fulfilling condition (25a).

The Ginocchio model is based on the
(k) \& $\left[\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}\right]$ matrix representation of $S O(3) \odot S O(8)$, where k is a value of the angular momentum K and the $S O(8)$ representation is denoted by its highest weight vector. Among the representations of the $S O(3) \otimes S O(8)$ group in the Fork space there is the representation (0) $\otimes\left[\left(\frac{1}{2} \Omega\right) 000\right] \quad(\Omega=2(2 k+1))$, which is schematicoly presented in fig. 1 for $k=2(\Omega=10)$. This representation contains states with various fermion numbers from $\quad N_{F}=0 \quad$ to $N_{F}=2 \Omega$. There are $\left(N_{F} / 2+5\right)!/\left(N_{F}!5!\right)$ independent states for $N_{F} \leq \Omega$ and $\left(\Omega-N_{F} / 2+5\right)!/\left(\left(\Omega-N_{F} / 2\right)!5!\right)$ independent states for

Fig. 1. A schematic visualization of the lower part $\left(N_{F} \leq \Omega\right)$ of the $S O(3) \otimes S O(8)$ representation (0) $\times[5000]$. Six boxes symbolize the symmetric SU(6) representations with the corresponding partitions indicated on the right and the fermion numbers indicated on the left. In each box the constituting $S O(6)$ representations are denoted by their partitions. The arrows denote: i) the action of the $S O(S)$ generators \hat{S}^{+}and \hat{D}^{+}(\hat{S} and \hat{D}_{y}), Which transfer states up (down) between different SU(6) representations, 11) the action of the $S O(6)$ generators $\left[\hat{D}_{\mu}^{+}, \hat{D}_{v} j\right.$ and $\left[\hat{D}_{\mu}^{+}, \hat{S}\right]$, which transfer states inside one $\operatorname{SO}(6)$ representation, and 111) the action of the $\hat{\mathrm{D}}^{+} \hat{\mathrm{S}}$ operators which transfer states from one $S O(6)$ representation to another one and are missing in the $S O(8)$ algebra.
$N_{F}>\Omega$. This means that all states $\left(\hat{S}^{+}\right)^{n} s\left(D_{\mu}^{+}\right)^{n} d|0\rangle$ for $2\left(n_{s}+n_{d}\right)=N_{F}$ are linearly independent and there are as many N_{F}-fermion states in the discussed $\operatorname{so(8)}$ representation as there are boson states in the $N_{\bar{B}}$-th symmetric representation of Su(6) for $N_{s} \mathrm{H}_{\mathrm{F}}$. Although the number of states agrees with that of the $1 \mathbb{B} h$, there is no $S U(6)$ subgroup of the $S O(8)$ group and one may wander how the dynamic $\operatorname{su}(6)$ symmetry can be implemented in the $\operatorname{so(8)}$ representation.

In order to discuss this question let us consider the aingle-particle generators belonging to the so(8) algebra, i.e the operators $\left[\hat{D}_{\mu}^{+}, \hat{S}\right]$ and $\left[\hat{D}_{\mu}^{+}, \hat{D}_{v}\right]$, which form the so(6) subalgebra of so(8) [4]. Among the $N_{\vec{F}}$-fermion states ($\mathbb{N}_{\bar{F}}$ [Ω) one can find the $S O(6)$ symmetric representations corresponding to the highest weight vectors (000) for $0=N_{\vec{F}} / 2$, $N_{F} / 2-2, \ldots, 1$ or 0 (see fig. 1). The same $S O(6)$ representations can be found in the SU(6) symmetric represeatation of the IBM [1]. There is however a substantial difference between the so(8) and su(6) algebras. Whereas among the $s u(6)$ generators there are such which transform states from one $S(6)$ representation to another one, for example the shift operator d_{j}^{+}, the corresponding operator in the fermion space $\hat{D}_{\hat{S}}^{+}$is not an so(8) generator and it does not form a closed algebra when added to the fermion so(6) algebra.

In order to convince ourselves that there exists a fermion shift operator, which forms the su(6) algebra when commuted with the so(o) generators, we have to lavoke the theory of boson expansions. It is known $[8-10]$ that the fermion states of the Ginocchio model admit the bosor mapping, which is achieved by representing the pair creation operators \hat{S}^{+}and \hat{D}_{j}^{+}ir terms of boson creation operators s^{+}and d_{j}^{+}:

$$
\begin{align*}
& s^{+} \Longleftrightarrow s^{+}\left(\Omega+2 N_{B}\right)-\left(\sum_{V=-2}^{2} \tilde{d}_{v}{ }_{v} d^{+}+s^{+}{ }_{s}{ }^{+}\right)_{s} \quad, \quad(26 a) \\
& \hat{D}_{\mu}^{+} \Leftrightarrow d_{\mu}^{+}\left(\Omega+2 N_{B}\right)+\left(\sum_{v=-2}^{2} d_{v}^{+} d_{v}^{+}-s^{+} s^{+}\right) \tilde{d}_{j} \quad \text {, } \tag{26b}
\end{align*}
$$

Every fermion state obtained by multiple action on the fermion vacuum with the pair creation operators is mapped onto the boson state obtained by a corresponding action on the boson vacuum with the boson images (26). The orthogonality of fermion states and hermitian conjugation of fermion operators are not
preserved, but they can be restored by an appropriate similarity transformation [11]. Since the mapping is faithful, there must exist a fermion image of the boson shift operator d_{j}^{+}s. Together with the fermion image of the boson-like \{11\} hermitian conjugation, $s^{+} d_{y}$, it will generate the fermionic su(6) algebra in the Ginocchio SO(8) representation. Both images are not mutual fermion-like hermitian conjugations but this can be restored by a suitable similarity transformation in the fermion space. The derivation of such $s u(6)$ generators in a closed algebraic form can be a challenging but probably not an easy task and such form is not known so far. From the general considerations of this study one knows however that such su(6) algebra exists and is composed of non-single-particle operators.

CONCLUSION

In the present study a possible construction of the su(6) algebra in the fermion fock space has been discussed. It is argued that in order to find a microscopic justification of the Interacting Boson Model one should construct the fermion-number-conserving shift operator \vec{F}_{μ}^{+}, playing in the fermion $s u(6)$ algebra a role analogous to the $\mathrm{d}_{\mathrm{y}}^{+}$s generator of the boson realization of su(6), and that the boson operators itself need not to have a microscoplc significance. It is shown however that such shift operator cannot be a single-particle operator. An example of a non-single-particle su(6) shift operator is provided by the Ginocchio model but a closed algebraic form of it is difficult to unveil.

REFERENCES

STRESZCZENIE

W nawiazaniu do modelu oddziałujacych bozonow (IBM) dyskutowana jest molliwose skonstruowania ferafonovej algebry su(6) 1 odpowiadajacych jej reprezentacji symetrycznych w przestrieni Focka dia fermion6w. Podany jest dow 6 d, ze algebra taka nie moie sie skiadae z operator σ jednoczastkowych. P E 3 N W E

В связи с иоделью взаицодействуюних бозонов (I BM) анализируется возижность построения Фермионной алгебры Sо (6) и соответствующх ей представлений, сиилетричных для Фермионов в пространстве фока. Доказывается, что алгебры того типа нельзя составить из одночастичннх операторов.

[^0]: Supported in part by the Ministry of Scieace and High Education under contract no. CPBPO1.09.

[^1]: *The name "physical" is used to stress that the J operator is the generator of the real rotations in the three-dimensional space.

