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The Interacting Boson Model (IBM) [11 has been recently 
receiving a large interest in nuclear physics. The microscopic 
foundations of the model still remain, however, an open 

question. The basic assumptions of the simplest version of the 
model can be expressed as follows:

1) The set of quadrupole collective states of a given nucleus 
can be identified with a basis of the symmetric 
representation of the SU(6) group.

2) The quadrupole collective Hamiltonian can be approximated by 
a scalar and time-even operator quadratic in the SU(6) 
generators .
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The first assumption can be called a kinematic one because It 
defines the Hilbert space of the collective quadrupole states. 
The second assumption Is of a dynamic nature since it formulates 
an approximation for the nuclear many-body Hamiltonian projected 
onto the collective space. In the present study I will discuss 
the first assumption and try to search for conditions under 
which such a space of collective states can be found in the Fock 
space for a fermion system.

In the IBM model one usually visualizes the SU(6) 
symmetric representation by using a set of six boson operators, 
five of them forming a quadrupole spherical tensor (d ) and 

+ v
the sixth being a scalar (s ). However, this visualization is 
not the main point of the model. In fact it merely constitutes a 
calculational tool allowing to express the Hamiltonian and the 
collective states in an explicit way. Abstract symbols for the 
su(6) generators could have been used as well, allowing for the 
same group theoretical methods to be used when solving the 
Schrôdinger equation. In this respect a direct search for the 
SU(6) dynamic symmetry in the fermion space is more fundamental 
than a microscopic determination of the boson operators.

The interpretation of a boson as an approximated pair of 
fermions, which has motivated the introduction of the IBM, is 
used in the model only to fix the S0(6) symmetric representation 
for a given nucleus. The representation containing N -boson D 
states, where is half of the number of valence fermions, isD
usually used. This prescription is neither absolutely necessary 
to reproduce the experimental data nor it is uniquely defined, 
especially for deformed nuclei where the concept of the valence 
shell has no clear-cut meaning. In what follows I will use the 
boson operators only as an Illustration, focusing attention 
directly on a determination of the Sü(6) representation space.

Let the states of the S0(6) symmetric representation be 
visualized by: 

1^) - (d+)n<1(e+)ns|o)
n.+n = N- , (1)d s В ’

where |0) is the boson vacuum and the index j comprises all 
necessary labels used to number the states of the 
representation. All states of the representation can be obtained
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by a successive application of the operators

|t0) = (s+)N&|0)

d s on the state
U

(2)

(the highest weight state). The representation space is thus 
defined by the highest weight state, having the property

(d+s)+I®0) « 0 (3)

and by the algebraic relations between the "shift” operators 
d+s : 

P

[ d+s , d + s ) = 0 , (4a)
U V

[ d+s , (d+s)+ ! = d+d - 6 s+s , (4b)
U V ц V u V

[ d+d - <5 s + s , d + s ] « 5 d + s + 6 d + s . (4c)
U V uv к vk p pv к

If a set of the fermion collective states is to be 
identified with a symmetric SU(6) representation spsce one has 
to find a fermion highest weight state | Tq> (denoted by the 
angle bracket) and a fermion shift operator ?2,, fulfilling the 
condi tions:

[ > f2v 1 ° ° > (6a)

t f2b > f2v ’ ’ ’ <6b>

Equation (5) defines the highest weight state, eq, (6b) is the 
definition of the G operators and eqs. (6a) and (6c) are the 
commutation relations of the su(6) algebra formed by the 35 

operators: ^2u’ an<* ^uv*  ^et us notice that the shift

operators, and the other generators of the su(6) algebra, do not 
change the fermion number . t

The search for the dynamic SU(6) symmetry in a nucleus 
should proceed in the following way:
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1) Find a model for the shift operators
not able to write down an exact operator

One is certainly 
transforming one

collective state into another one (say the ground state of a 
spherical nucleus into the first excited 2+ state). The 

shell model arguments (based on the Tamm-Dancoff or RFA 
methods) can however be used to obtain a reasonable guess.

2) Check (or assure if the guess for the shift operators
contains some freedom) the su(6) commutation relations, eqs.
(6a) and (6c). Again thlf probably cannot be achieved in an 
exact way. One should however keep in mind that these 
relations constitute the base of the dynamic SU(6) symmetry 
in nuclei and their strong violation by "reasonable" shift 
operators should be considered as a strong argument to 
abandon the idea of such a symmetry at all. In what follows I
will try to fulfil these relations exactly, because it seems 
plausible that an approximate algebra closure can take' place
only for a set of operators not very different from an exact
algebra.

3) having constructed the su(6) algebra in the Fock space one
can split this space into a sum of the irreducible represen­
tations of SU(6). This in principle can be achieved by diago­
nalizing 
tors and

the Cartan subalgebra consisting of the
analyzing the resulting

G opera- uu
eigenvalues. One should note

that the entire Fock space will thus be decomposed into the
sum of the SU(6) representations while we are interested only
in one candidate for the collective space. Two conditions can 
be used to select the proper representation: 1) a mean energy 
(for example the trace of the nuclear many-body Hamiltonian 
calculated fn the collective representation) should be small
[2], 11) the nuclear Hamiltonian should weakly couple the
collective and any other representation. None of the two
conditions is easy to be implemented. One should however keep 
in mind that the choice of the collective representation is 
in principle the matter of a derivation; for the chosen shift
operators and nuclear Hamiltonian one should check whether 

the collective space is well approximated by a symmetric 

representation - and if it is so - which symmetric 
representation Is the best candidate.

4) The projection of the nuclear Hamiltonian on the collective
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SU(6) representation should be identified with the collective 
Hamiltonian. Such a projection can always be in the chosen 
representation expressed as a function of the su(6) 
generators. Hence again it is a matter of a derivation 
whether this function can be approximated by an expression 
quadratic in the generators.

The scheme presented by the steps l)-4) is certainly very 
difficult to be realized and definite answers cannot be expected 
to come out very soon. However, a microscopic justification of 
the IBM should probably follow the presented outline or should 
refer to it when a necessary approximations are done.

THE ANGULAR MOMENTUM

As It was mentioned in the previous section, the fermion 

Fjy generators are assumed to form a quadrupole spherical 
tensor. By definition, the shift operators should thus fulfil 
the following condition:

RdDF^R (Q) - X2Dv/0)F2v ' <7)

where R(Q) is the rotation operator,

R(0) “ ,ехр(-1фЗ )exp(-10J )ехр(-1фЗ ) , (8)z у z

which depends on the Euler angles й = {ф ,0 ,ф } and on the 
* * Xphysical angular momentum operator J, and is the Wigner

function. Equation (7) is equivalent to the following 
commutation relation:

1 5b> ’ ₽2P 1 " <2tJ1',l2u+v>f2u+v • <9>

where are the spherical covariant components of the physical 
angular momentum operator which form the so(3) algebra:

* >The name "physical" is used to stress that the J operator is 

the generator of the real rotations in the three-dimensional 

space.
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1 3lp ’ 3lv 1 “ -/2 <lwlvl1,j+'')3lp+v • (10)

An angular momentum operator can also be constructed 
inside the su(6) algebra [1]. For this let us replace the 
operators, eq. (6b), by:

= <' ?2 • h ’ <₽242>lu-(-1)X(h>i?l)XP (11)

for >. « 0,1,2,3,4, where F. = (-if F, and the symbol 2 у 2-p
( « ) ^ denotes the vector coupling to the angular momentum Ä 
and the projection p. A little calculation allows to show that 
the vector operator = /10 P^ generates the so(3)
subalgebra of the su(6),

1 hp ’ hv 1 ■ -/2 (12)

and that it rises and lowers the magnetic indices of the F^ч
F and P.>P2p operators exactly in the same way as the physical
angular momentum operator does:

Iv F2p - /6 (2plv|2u+v)F* u+v (13)

This observation plays a crucial role in the following 
discussion, so it is worthwhile to stress the origin of the two 
different angular momenta: 1) the physical angular momentum 
operator enters into the analysis of the problem because
the su(6) generators form spherical tensors with respect to the 
physical rotations, 11) the angular momentum operator 1^ is 
one of the generators of the su(6) algebra and its commutation 
relations are a consequence of the su(6) commutation relations. 
Depending on the choice of the F* y operators, the Î 

operator is or is not equal to the physical angular momentum 
operator 3 .

It is clear that instead of considering the su(6) algebra 

alone one has to deal with a larger algebra which also includes
the physical angular
K. , Iv ’

momentum operator. Defining the operator

К Iv Jlv “ Xlv (14)
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one can - easily show that It fulfils the so(3) commutation 
relations, analogous to those of eqs. (10) and (12), and 
commutes with the su(6) generators. The algebra one has to 
consider is thus equal to the direct sura so(3) © su(6) where 
so(3) is generated by the operators and su(6) by the ,

and P^ operators. The physical angular momentum operator 
is equal to the sum of the and 1^, operators, which
commute with each other, and the eigenstates of J2 can be 

*2 -2obtained by the vector coupling of the К and I 
eigenstates. We have thus arrived to the same construction 
scheme as used by other authors [3-5], who Introduced arbitrary 
pseudo-orbital (K) and pseudo-spin (I) angular momenta. Of 
course the final goal is to use the model angular momentum 1 
to measure the physical angular momentum J. This means that
the interesting representations of the S0(3) (*)  SU(6) group are 
those which are the scalar ones with respect to the angular 
momentum K.

THE SINGLE-PARTICLE SU(6) SHIFT OPERATORS

Let me first study the simplest approximation for the 
shift operators, namely the approximation by single-particle 
opera tors :

S+ = £ (2U)+ + fISlF2U kl Fkl akal ’ (15)

where the indices к and 1 number a suitable finite set of 
( 2 u ) +the single-particle states and F^æ is a matrix. This

approximation includes all possible solutions of the 
particle-hole Tamm-Dancoff or RPA methods. Because the bifermion 

operators aka£ form the unitary algebra,

* + + + +( a, a, , a a ] « 6 , a, a - 6 , a a, , (16)к 1 m n Im к n knml ’

the matrix commutation relation

[[F(2p)+jF(2v)1>F(2<)+] = 6 f(2p)+ + ó f(2<)+ (17)
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Is the sufficient and necessary condition for the commutation 
relation (6c) to be fulfilled in the Fock space. This means that 
every matrix representation of the SU(6) group will give a 
closed su(6) algebra of the single-particle operators in the 
Fock space. By listing the irreducible SU(6) representations and 
multiplying them by the S0(3) representations one can obtain all 
possible so(3) Ф su(6) single-particle algebras. In verifying 
their applicability to the justification of the IBM one should 
follow the following steps:
1) Take an SU(6) matrix representation and find all possible 

values of the angular momentum I in this representation.
2) Couple all values of I to a chosen value of the angular 

momentum К to obtain the possible physical angular momentum 
values and their multiplicities.

3) Check whether the obtained set of the physical angular 
momentum values is identical with a set constituting the 
valence shell for a given range of the proton and neutron 
numbers.

4) Find all possible SO(3) ® SU(6) representations in the 
many-fermlon space constructed from, the found set of the 
single-particle states.

5) Pick out all scalar (K=0) representations.
By following above procedure one can verify that non of the 
matrix SU(6) representations can provide a correct set of the 
single-particle angular momenta and/or that the symmetric SB(6) 
representations are missing in the corresponding Fock spaces. 
This constitutes a proof that the shift operators F^ of the 
hypothetical SU(6) dynamic symmetry canno t be single-particle 
operators.

Let me present this proof fot the simplest case when the 
chosen SB(6) matrix representation is the one given by the Young 
diagram | | . The angular momentum I can then be equal to 0 

or 2. By choosing the angular momentum К equal to 1/2, one 
obtains the sequence of single-particle physical spins: 1/2, 
3/2, 3/2. An obvious example of such sequence is found in the
nuclear s-d shell. In this particular case the angular momentum 
I can be identified with the orbital angular momentum and К 
with the intrinsic nucleon spin. Another example is given by the 

₽l/2’ ₽3/2 and ^5/2 orbits where the I and К angular
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momenta have no physical interpretation.
Denoting the (K=l/2) ® | | representation by (1/2)0(11, 

where [11 is the partition corresponding to the Young diagram 
J , one can list all allowed S0(3) © SU(6) representations 

for arbitrary fermion number N$., see table I. One can see that 
the scalar (K=0) representations of S0(3), occurring 'or even 
values of N , are not the symmetric representations of SU(6) Г
(apart from Nr = 2 where however N =2 too) and cannot thus be Г D
considered as IBM collective quadrupole spaces.

Coupling the representation | | with К = 3/2 ona would 
obtain the physical angular momenta 1/2, 3/2, 3/2, 5/2 and 7/2. 
The double-occurence of the 3/2 value makes it difficult to 
apply this case to the nuclear shell model. The same type of 
argument can also be used to disregard still higher values of К 
or bigger SU(6) matrix representations as j ; ; ( I = 
0,0,2,2,4 ) or р-j ( I = 1,2,3 ), where the multiple j-values 

are very common. For any assumed matrix Sil(6) representation one 
obtains two unwanted results: 1) the physical single-particle 
angular momentum values occur more than once in a given 
S0(3) © SD(6) matrix representation and 11) in the Fock space 
there are no symmetric S0(6) representations which would fulfil 
the requirements of the IBM. Hence one has to end up with the 
conclusion that the SU(6) dynamic symmetry in nuclei cannot be 
built upon the single-particle shift operators F*  ■

After stating this rigorous result one should remark that 
the assumption which have led to it is quite restrictive. The 
shift operators have been assumed to be equal to single-particle 
operators when acting on all states of the Fock space. In fact 

this requirement should be reduced to a very limited subspace - 
namely the very subspace of the collective quadrupole states 

which we just want to describe: 

F2p < Л Fkl akal>F + r2u (1’₽) (18)

where P is the corresponding (scalar) projection operator and 
?2+ is an arbitrary quadrupole operator. Such shift operator Is 

not a single-particle operator and one cannot calculate the 
necessary commutators from the algebraic properties of the 
bifermion operators a^a^. In looking for the microscopic
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Table I

Decomposition of the j = 112, 3/2, 5/2 nuclear 
shell into the S0(3)(x) SU(6) representations. 
denotes the fermion number and к is the value of 
the angular momentum К (see text).

nf (k) ® [ SU(6) partition ]

1 (|) ® ID

2 (0) Q [2]

(1) ® (111

3 (|) ® (21]

(|) 0 (UH

4 (0) ® [22]

(1) ® [211]

(2) 0 [1111]

5 (|) ® [221]

(|) ® [2111]

(|) 0 [11111]

6 (0) 0 [222]

(1) ® [2211]

(2) © [21111]

(3) © [111111]
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justification of the IBM one is thus forced to deal explicitly 
with operators much more complicated than the single-particle 
ones. From the mathematical point of view one has to search for 
the su(6) closed algebras not in the su(Z(2j^+l)) algebra but in 
its enveloping algebra [6], which is much larger and complicated 
and much less studied than the bifermion algebra itself.

THE SU(6) SHIFT OPERATORS BASED ON THE GINOCCHIO MODEL

There exists one example of the closed su(6) algebra in
the fermion Fock space, which is generated by the non-single-

1 n-particle shift operators and has symmetric representations
the Fock space Its construction is based on the Ginocchio (4]
model in which one defines the monopole (S ) and the
quadrupole pairs of fermions In such a way that the
operators [s ,s ) together
with their hermitian conjugations form the s о(8 ) algebra. The

S , D U
[§ ,DJ and [D , D J

generator

Hu |/10 (( D l>lv (19)D

acts in the so(8) algebra in the same way as 
angular momentum 3^ and thus the operator

K, = J - Î 1 V 1V 1 V

the physical

(20)

commutes with all the so(8) generators and forms the so(3) 
subalgebra. Instead of the S0(8) group one has thus to consider 

the direct product S0(3) ® S0(8).
In the single-particle basis the pair operators can be 

expressed as:

where S+ and D(U) +

2 k! Sklakal

D(u)+a+a+
Ukl akal

(21a)

(21b)

are antysymmetric matrices. By using the

S

D 1 r
2 kl

doubled dimension of the fermion single-particle space [7],
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c+ « ( a+ , a ) , (22)

one can represent these operators in the form

$ ” 2 KL ^KLCKCL ’ (23a)

°U “ 2 j?L ^Kl/ CKCL ’ (23b)

where the capital indices К and L assume twice as much 
values as the ordinary single-particle indices к and 1, and 
the matrices "i+ and read

Ó* -
О S+') 
0 0/ (24)

Similarly, all other generators of the so(8) algebra can be 
represented by matrices of doubled dimensions. Every such matrix 
Л , fulfilling the condition

ïiAf - - ДТ where 'У - (j > ■ (25ab)

is in one-to-one correspondence with a bifermion operator 
Â = i 1 A„,ctc.. It is easy to show that the commutation 

x KLK.L
relations between the bifermion operators A are equivalent to 
the respective relations between the matrices A . Every matrix 

representation of the so(3) © so(8) algebra will thus generate 
the corresponding so(3) Ф so(8) algebra in the Fock space, 
provided the matrix representation consists of matrices 
fulfilling condition (25a).

The Ginocchio model is based on the (k) matrix
representation of S0(3) 0 S0(8), where к is a value of the 
angular momentum К and the S0(8) representation is denoted by 
its highest weight vector. Among the representations of the 
S0(3) ® S0(8) group in the Fock space there is the
representation (0) ® [(|fi)000) (B»2(2k+1)), which is schemati­

cally presented in fig. 1 for k=2 (9 = 10). This representation 
contains states with various fermion numbers from Nj. = O to 
Ny=2o. There are ( N^/2 + 5 ) ! / (Nj, ! 5 ! ) independent states for
NpS9 and (9-N /2 + 5)!/((9-N /2 ) ! 5 ! ) independent states forГ г г
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Fig. 1. A schematic visualization of the lower 
part (ti-SC) of the SO(3)0 S0(8) representation Г
(0) X [5000]. Six boxes symbolize the symmetric 
SU(6) representations with the corresponding 
partitions Indicated on the right and the fermion 
numbers Indicated on the left. In each box the 
constituting S0(6) representations are denoted by 
their partitions. The arrows denote: 1) the action 
of the SO(3) generators S and D (S and D ), 
which transfer states up (down) between different 
SU(6) representations, 11) the action of the S0(6) 
generators [ 5*,  64, j and [D*,S],  which transfer 

states inside one S0(6) representation, and ill) 

the action of the D S operators which transfer 
states from one S0(6) representation to another 

one and are missing in the S0(8) algebra.
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N >Я. This means that all states F
2(n +n.)=N_ are linearly Independent s d F
N -fermion states in the discussed S0(8)Г
are boson states in the N -th symmetricD

П + П , , 
(S ) S(D*)  d|0>

and there are as
for

many
representation as there
representation of SU(6)

for 
the

Ng*2Np.  Although the number of states agrees with that of 
IÈJV, there is no SU(6) subgroup of the S0(8) group and one

may wander how the dynamic S0(6) symmetry can be implemented in 
the S0(8) representation.

In order to discuss this question let us consider the 
single-particle generators belonging to the so(8) algebra, l.e 
the operators [D^.S 1 and [ > $v 1 > which form the so(6)

subalgebra of so(8) [ 4 J. Among the N-fermion states ()Г г
one can find the S0(6) symmetric representations corresponding 
to the highest weight vectors (oOO) for о = N /2, Г
Np/2-2,..•,1 or 0 (see fig. 1). The same S0(6) representations 
can be found in the SD(6) symmetric representation of the IBM 
[1]. There is however a substantial difference between the so(8) 
and su(6) algebras. Whereas among the su(6) generators there are 
such which transform states from one S0(6) representation to 
another one, for example the shift operator d+s, the 
corresponding operator in the fermion space D+S is no t an 

so(8) generator and it does not form a closed algebra when added 
to the fermion so(6) algebra.

In order to convince ourselves that there exists a fermion
shift operator, which forms the su(6) algebra when commuted with
the so(b) generators, we have to Invoke the theory of boson
expans ions. It is known [8-10] that the fermion states of the
Ginocchio model admit the boson mapping, 
representing the pair creation operators 
of boson creation operators s' and d+:

which is achieved by
S and D,, in terms

S +

D+
p

2
s + (ß+ 2N ) - ( I d+d + -s + s + )s

B v = - 2 V v
2

d*(  Й+ 2N ) + ( I d*d*-s +s+)d
u d \a = — 2 v v p

( 26a )

(26b)

Every fermion state obtained by a multiple action on the fermion 
vacuum with the pair creation operators is mapped onto the boson 
state obtained by a corresponding action on the boson vacuum 
with the boson images (26). The orthogonality of fermion states 
and hermitian conjugation of fermion operators are not 
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preserved, but they can be restored by an appropriate similarity 
transformation (11]. Since the mapping is faithful, there must 
exist a fermion image of the boson shift operator d+s. Together 

u
with the fermion image of the boson-like [11] hermitian 
conjugation, s d , it will generate the fermionic s u ( 6 ) algebra 
in the Ginocchio S0(8) representation. Both images are not 
mutual fermion-like hermitian conjugations but this can be 
restored by a suitable similarity transformation in the fermion 
space. The derivation of such su(6) generators in a closed 
algebraic form can be a challenging but probably not an easy 
task and such form is not known so far. From the general 
considerations of this study one knows however that such suffi) 
algebra exists and is composed of non-single-par tide operators.

CONCLUSION

In the present study a possible construction of the su(6)
algebra in 
argued that 
Interacting

the fermion Fock
in order to find

space has been discussed, 
a microscopic justification of the

Boson Model one should cons true t the
fermion-number-conserving shift operator F u
fermion su(6) algebra a role analogous to the

playing in the

d s generator of
the boson realization of su(6), and that the boson operators

1 s

itself need not to have a microscopic significance. It is shown 
however that such shift operator canno t be a single-particle 
operator. An example of a non-single-partlcle su(6) shift 
operator is provided by the Ginocchio model but a closed 
algebraic form of it is difficult to unveil.
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STRESZCZENIE

V 
dyskutowana

nawiązaniu do modelu oddziałujących 
od₽oewSitadanc1ych"jeSjk0nrSetrrU°Wanła * algebry

przestrzeni Focka dla fermi x- Prezentacji symetrycznych w 
.......sblad ; - <• -u.b..

bozontfw (IBM)
su(6) i

РЕЗЮМЕ

В связи с моделью взаимодействующие бозонов (IBM) анали­
зируется возможность построения фермионной алгебоы su (6 ) и 
соответствующих ей представлений, симметричных для фермионов 
в пространстве Фока. Доказывается, что алгебры того типа нель­
зя составить из одночастичных операторов.


