ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN — POLONIA

VOL. XXIX/XXX, 5

SECTIO AA

1974/1975

Instytut Chemii Zakład Chemii Nieorganicznej i Ogólnej Kierownik: prof. dr Włodzimierz Hubicki

Michalina DĄBKOWSKA

Derywatograficzne badania termicznego rozkładu uwodnionych azotanów lantanowców. III. Termiczny rozkład azotanów Eu, Tb, Dy, Ho, Tm, Yb i Lu

Дериватографические исследования термического разложения гидратных нитратов редкоземельных элементов. III. Термическое разложение нитратов Eu, Tb, Dy, Ho, Tm, Yb, Lu

Derivatographic Investigations of Thermal Decomposition of Rare Earth Elements Nitrate Hydrates. III. Thermal Decomposition of Eu, Tb, Dy, Ho, Tm, Yb, and Lu Nitrates

Azotany pierwiastków ziem rzadkich, według danych Marsha [4], są bardzo dobrze rozpuszczalne w wodzie i krystalizują z niej (ewentualnie z roztworów kwasu azotowego) w postaci różnych hydratów w zależności od lantanowca. Azotany lantanowców lekkich tworzą na ogół sześciohydraty. Azotany Eu, Gd, Tb i Dy mogą krystalizować w postaci pięcioi sześciohydratów, przy czym na przykład Dy(NO₃)₃ · 6H₂O krystalizuje z wody, a Dy(NO₃)₃ · 5H₂O — z roztworów stężonego HNO₃. Natomiast azotany lantanowców ciężkich krystalizują przeważnie jako pięciohydraty. Ponadto Marsh [4] uzyskał w przypadku iterbu 5-, 4-, 3,5- oraz 3-hydraty azotanów tego pierwiastka, a w przypadku lutecu — Lu(NO₃)₃ · 5H₂O oraz Lu(NO₃)₃ · 4,5H₂O. Marsh stwierdził, że wymienione sole są higroskopijne i łatwo się odwadniają nad stężonym kwasem siarkowym.

W przypadku azotanów lantanowców ciężkich W e n d l a n d t i B e a r [6] uzyskali wyłącznie czterohydraty, gdy badane sole suszyli w eksykatorze nad H_2SO_4 . Autorzy ci badali termiczny rozkład azotanów pierwiastków ziem rzadkich, biorąc do pomiarów derywatograficznych próbki 80— 90 mg ogrzewane z szybkością 10,5°C/min do badań DTA i stwierdzili, że podczas termicznego rozkładu czterowodnych azotanów lantanowców ciężkich tworzą się, jako produkty przejściowe, tlenoazotany pierwiastków ziem rzadkich, z których tlenoazotany europu i dysprozu utrzymują się w zakresie pięćdziesięciu kilku stopni; tlenoazotany holmu, erbu i tulu są trwałe, ale w węższym zakresie temperatur; natomiast iterb i lutec podczas pirolizy nie tworzą zdefiniowanego przejściowego związku chemicznego, ale raczej mieszaninę LcONO₃ i Lc₂O₃. W przypadku termicznego rozkładu Ho(NO₃)₃ · 4H₂O autorzy ci stwierdzili możliwość pojawienia się bezwodnego azotanu holmu — jako produktu pośredniego przed utworzeniem się tlenoazotanu holmu.

Azotan dysprozu był badany także i przez D w o r n i k o w ą, S e w ostjanowa i Ambrożego [2], którzy stwierdzili, że ogrzewany Dy(NO₃)₃·5H₂O najpierw się topi w temp. 90°C, około 120°C wydziela część tlenków azotu i wodę; kolejno w temp. 230—250°C wydziela następną porcję tlenków azotu, a skład chemiczny pozostałej w tyglu substancji autorzy przedstawili stosunkami molowymi $1Dy_2O_3: 1,60N_2O_5:$ $:10H_2O$. D w o r n i k o w a i współprac. stwierdzili, że substancja ta traci wodę do 390°C, uzyskując w tej temperaturze skład $1Dy_2O_3: 0,68N_2O_5.$ Dalsze jej ogrzewanie prowadzi do powstania czystego tlenku dysprozu w temp. 765°C (ubytek masy 57,32%).

Temperatury topnienia badanych hydratów azotanów pierwiastków ziem rzadkich zostały oznaczone dokładniej przez Quilla i Robeya [5]:

$Dy(NO_3)_3 \cdot 5H_2O$		88°C
$Tb(NO_3)_3 \cdot 6H_2O$		89°C
Eu(NO ₃) ₃ ·6H ₂ O	2.	85°C

Z badań termicznych, które przeprowadził Dutta [1] wynika, że w przypadku termicznego rozkładu azotanu iterbu tworzy się pośredni produkt o składzie $3Yb_2O_3 \cdot 4N_2O_5$. K at o [3] wykazał swymi badaniami, że ogrzewany azotan iterbu przekształca się w tlenek iterbu poniżej temp. $590^{\circ}C$.

Celem tej pracy jest przedstawienie wyników pomiarów derywatograficznych azotanów lantanowców ciężkich, z wykazaniem pośrednich produktów termicznego rozkładu tych związków i zakresów temperatur ich istnienia, odnośnie których dotychczasowe informacje w literaturze nie są jeszcze kompletne.

CZĘŚĆ DOŚWIADCZALNA

Odczynniki chemiczne

Badane azotany uzyskiwano z tlenków poszczególnych lantanowców:

Eu₂O₃ o czystości 99,9%, firmy IE International Enzymes Limited Windsor-Berkshire, Anglia ${
m Tb}_4{
m O}_7$ o czystości 99,9%, firmy Fluka A. G., Buchs SG, Szwajcaria Dy₂O₃ o czystości 99,8%, produkcji Katedry Chemii Nieorg. UMCS, Ho₂O₃ o czystości 99,8%, produkcji Katedry Chemii Nieorg. UMCS, Tm₂O₃ o czystości 99,9%, firmy Koch-Light Laboratories LTD, Colnbrook-Bucks, Anglia,

Lu₂O₃ o czystości 99,9%, firmy Fluka A. G., Buchs SG, Szwajcaria.

Wymienione tlenki lantanowców roztwarzano na gorąco w 6-molowym kwasie azotowym (w przypadku tlenku terbu z dodatkiem H_2O_2) i odparowywano uzyskane roztwory przez ogrzewanie ich na łaźni wodnej aż do pojawienia się pierwszych kryształów. Końcową krystalizację azotanów przeprowadzono na powietrzu w temp. 30—35°C, z wyjątkiem azotanu lutecu, który jest higroskopijny i wymagał suszenia w eksykatorze nad CaCl₂.

Analitycznie stwierdzono, że uzyskano tym sposobem następujące hydraty azotanów lantanowców: $Eu(NO_3)_3 \cdot 5H_2O$, $Tb(NO_3)_3 \cdot 4H_2O$, $Dy(NO_3)_3 \cdot 5H_2O$, $Ho(NO_3)_3 \cdot 5H_2O$, $Tm(NO_3)_3 \cdot 4H_2O$, $Yb(NO_3)_3 \cdot 4H_2O$ i $Lu(NO_3)_3 \cdot 4H_2O$.

Aparatura i tok postępowania

Badania termicznego rozkładu poszczególnych azotanów lantanowców ciężkich wykonano przy pomocy derywatografu OD 102, systemu F. P a ulik — J. P a ulik — L. E r d e y, produkcji MOM Budapeszt.

Próbki poszczególnych azotanów o różnych masach od 80 do 1400 mg w tyglach platynowych przykrywano szklanką kwarcową przed wprowadzeniem ich do pieca i ogrzewano je w atmosferze powietrza z szybkością przyrostu temperatury 3 lub 10° C/min, przy włączonej pompie wodnej w celu odprowadzania lotnych produktów rozkładu badanych azotanów. Jako substancję wzorcową do analizy różnicowej stosowano alfa—Al₂O₃.

Przykłady uzyskanych derywatogramów są przedstawione na ryc. 1—6 i odpowiednie dane liczbowe odnoszące się do termicznej dysocjacji poszczególnych azotanów lantanowców ujęte zostały w tab. 1—7. Nietrwałość powstających w odpowiednich temperaturach produktów pośrednich rozkładu zaznaczona jest w tych tabelach umieszczeniem wzorów nietrwałych związków w nawiasach.

OMÓWIENIE WYNIKÓW

Termiczna dysocjacja azotanu europu

Pięciohydrat azotanu europu ogrzewany z jednostajnym przyrostem temp. 3°C/min (ryc. 1) w atmosferze powietrza najpierw ulega topnie-

51

niu ok. 80°C, następnie w reakcjach endotermicznych stopniowo traci wodę i część tlenków azotu, przekształcając się w tlenoazotan europu, który jest termicznie trwały w granicach dwudziestu kilku stopni (tab. 1). W badanych warunkach zwiększenie szybkości ogrzewania próbki powodowało zawężenie zakresu temperatur trwałości EuONO₃.

Kolejny etap, zaznaczony na krzywych derywatograficznych — to rozkład tlenoazotanu z wydzieleniem tlenków azotu i utworzeniem najpierw $EuONO_3 \cdot Eu_2O_3$, a następnie powyżej 650°C termicznie trwałego tlenku europu.

Termiczną trwałość EuONO₃ stwierdzili także W e n d l a n d t i B e a r [6] z podkreśleniem nawet szerszego zakresu temperatur utrzymywania się stałej masy tego związku. Natomiast autorzy ci nie zwrócili uwagi w

Zakres temp. °C	Masa %	Skład substancji	Teoret. %
Próbka	a 100 mg og	rzewana z szybkością 3°C/n	nin
20 - 80 80 - 130	100 96	Eu(NO ₃) ₃ • 5H ₂ O	100
130 - 220	83	(Eu(NO ₃) ₃ • 2H ₂ O)	83,16
220 - 320 320 - 390	76 54	(bezwodny)	78,95
390 - 425	54	EuONO ₃	53,72
500-520	45	EuONO3 · Eu2O3	45,31
520550 550-650	44 41	walk a so with the	1 AN
>650	41	Eu ₂ O ₃	41,10
Próbka	600 mg ogi	zewana z szybkością 10°C/r	nin
20-100	100	Eu(NO ₃) ₃ • 5H ₂ O	100
100 - 150 150 - 360	98,33 75,66	(bezwodny)	78.95
360-430	54,66		
430 - 460 460 - 540	53,83 46,33	EuONOg	53,72
540 - 550 550 - 680	45,99	EuONO ₃ · Eu ₂ O ₃	45,31
>680	41,50	Eu ₂ O ₃	41,10

Tab. 1. Termiczna dysocjacja azotanu europu

przypadku azotanu europu na tworzenie się następnego produktu pośredniego o składzie EuONO₃ · Eu₂O₃. We wszystkich dokonanych przeze mnie pomiarach uzyskiwałam na derywatograficznych krzywych DTG i DTA powtarzające się odpowiednie piki w danych zakresach temperatur, świadczące o przekształcaniu się tlenoazotanu i tworzeniu się najpierw układu EuONO₃ · Eu₂O₃, który nie zmieniał swojej masy w zakresie dwudziestu kilku stopni C przy wolniejszym ogrzewaniu próbki.

Na podstawie derywatogramu można stwierdzić, że $Eu(NO_3)_3 \cdot 5H_2O$ topi się w temp. ok. $85^{\circ}C$; pokrywa się to z oznaczoną temperaturą topnienia przez Quilla i Robeya [5].

Termiczna dysocjacja azotanu terbu

Z krzywych derywatograficznych wynika, że czterohydrat azotanu terbu ogrzewany z jednostajnym przyrostem temperatury 3° C/min w atmosferze powietrza ulega już od 50° C powolnemu odwodnieniu i zaczyna się

topić w temperaturze niższej od 80° C z równoczesną utratą wody krystalizacyjnej (tab. 2). Jeżeli badaną próbkę ogrzewa się szybciej (10° C/min), to utrata wody zaznaczona jest mniej wyraźnie na krzywych TG i DTG, natomiast temperatura topnienia Tb(NO_3)₃ · 4H₂O jest zaznaczona ostrym pikiem krzywej DTA z maksimum w temp. ok. 80° C.

Dalsze ogrzewanie powoduje stopniową dehydratację próbki (ok. 260° C) z równoczesnym częściowym rozkładem bezwodnego azotanu terbu. Trzeba zaznaczyć, że żaden z produktów pośrednich dysocjacji badanego azotanu terbu nie jest trwały termicznie. Temperaturę ewentualnego pojawienia się TbONO₃ (ok. 370° C) można wyznaczyć tylko dzięki

Zakres temp. °C	Masa %	Skład substancji	Teoret. %
Próbka	100 mg ogr	zewana z szybkością 3°C/min	a strate
20 - 40 40 - 105	100 96	$Tb(NO_3)_3 \cdot 4H_2O$	100
105 - 150 150 - 270 270 - 360	91 81	$(Tb(NO_3)_3 \cdot 2H_2O)$ (bezwodny)	91,36 82,37
360 365 365560	55 55 45	(TbONO ₃)	56,58
>560 Próbka	44,5 600 mg ogrz	Tb4O7 zewana z szybkością 10°C/min	44,64
20 - 98 98 - 150	100 98,33	Tb(NO ₃) ₃ · 4H ₂ O	100
150 - 200 200 - 260	91,63 83,33	(Tb(NO ₃) ₃ · 2H ₂ O) (bezwodny)	91,36 82,37
260 - 380 380 - 620	56,64 46,64	(TbONO ₃)	56,58
>620	45,14	Tb ₄ O ₇	44,64

Tab. 2. Termiczna dysocjacja azotanu terbu

zaznaczonym pikom na krzywych DTG i DTA, powtarzających się we wszystkich pomiarach.

Około temp. 550° C badany związek przekształca się (w danych warunkach) w trwały termicznie tlenek terbu o składzie Tb₄O₇, a więc z częściowym utlenieniem Tb(III) do Tb(IV).

W przypadku tym zauważa się dużą analogię termicznego zachowania się azotanu terbu i azotanu cerawego [7], który także nie tworzy żadnych trwalszych produktów pośrednich i od razu przekształca się przy ogrzewaniu w CeO₂.

Jak dotychczas, w literaturze nie było szczegółowszych danych o termicznym zachowaniu się azotanu terbu. Wynikająca z krzywych derywatograficznych wartość temperatury topnienia $\text{Tb}(\text{NO}_3)_3 \cdot 4\text{H}_2\text{O}$ jest nieco niższa od wyznaczonej przez Quilla i Robeya [5] dla sześciohydratu tej soli (89°C).

Termiczna dysocjacja azotanu dysprozu

Wyniki przeprowadzonych derywatograficznych badań termicznego rozkładu pięciohydratu azotanu dysprozu (ryc. 3, tab. 3) w zasadzie pokrywają się z wnioskami Wendlandta i Beara [6], którzy badali rozkład termiczny $Dy(NO_3)_3 \cdot 4H_2O$, ale odbiegają od wyników Dwora-

Ryc. 3. Derywatogram Dy(NO₃)₃·5H₂O m=600 mg, T=900°C, v=10°C/min czułości: TG=1:5, DTG=1:5, DTA=1:10

k o w e j i współprac. [2]. Temperatura topnienia $Dy(NO_3)_3 \cdot 5H_2O$ (ok. 90°C) pokrywa się z temperaturą oznaczoną przez M a r s h a 88—92°C [4].

Wśród produktów rozkładu, poza stosunkowo trwałym tlenoazotanem dysprozu (wymienionym przez W e n d l a n d t a, nie wymienionym przez D w o r a k o w ą) zaznacza się na krzywych derywatograficznych także układ DyONO₃ · Dy₂O₃, mniej trwały termicznie, o którym wspominał także D u t t a [1] przy ogólnym omawianiu azotanów lantanowców ciężkich.

Termiczna dysocjacja azotanu holmu

Badane derywatograficzne próbki pięciohydratu azotanu holmu, o różnych masach, ogrzewane z różnymi przyrostami temperatur na minutę, wykazują analogiczny przebieg termicznej dysocjacji (ryc. 4, tab. 4).

Zakres temp. °C	Masa %	Skład substancji	Teoret. %
Próbka	100 mg ogi	zewana z szybkością 3°C/m	in
20 - 70	100	Dy(NO ₃) ₃ • 5H ₂ O	100
70 - 140	98		a providence
140 - 290	78,5		
290 - 300	78	$(Dy(NO_3)_3)$	79,46
300-380	55,5		1
380 - 420	55	DyONO ₃	54,84
420 - 490	47	Richt	A Share
490 - 500	47	DyONO ₃ · Dy ₂ O ₃	46,63
500 - 590	43	LE COM LA TRANSFORME	
> 590	42	Dy ₂ O ₃	42,52
Próbka	200 mg ogi	zewana z szybkością 4°C/m	in
20-70	100	Dy(NO ₃) ₃ ·5H ₂ O	100
70 - 142	98		1 1 1 1 1 1
142 - 235	88	(Dy(NO ₃) ₃ • 2H ₂ O)	87,68
235 - 323	76	(bezwodny)	79,46
323 - 380	55,2		1.1.11.21.5.1
380 - 425	55	DyONO ₃	54,84
425 - 500	. 47	anopor or	1.1.1.1.
500 - 505	47	$DyONO_3 \cdot Dy_2O_3$	46,63
505 - 600	43		
> 600	42	Dy ₂ O ₃	42,52
Próbka	600 mg ogr	zewana z szybkością 10°C/n	nin
20-90	100	Dy(NO ₃) ₃ ·5H ₂ O	100
90 - 270	85		- A-
270 - 350	75,84	$(Dy(NO_3)_3)$	79,46
350-432	55,00	a share sh	
432 - 440	55,00	DyONO ₃	54,84
440 - 535	46,67		A State
535- 542	46,17	DyONO ₃ · Dy ₂ O ₃	46,63
542 - 630	43,00	I I I I I I I I I I I I I I I I I I I	A sadyym p
> 630	42,50	Dy ₂ O ₃	42,52

Tab. 3. Termiczna dysocjacja azotanu dysprozu

Temperatura topnienia $Ho(NO_3)_3 \cdot 5H_2O$, odczytana z krzywych derywatograficznych, wynosi ok. 90°C. Jako pośredni produkt termicznie trwały, tworzy się tlenoazotan holmu ok. 400°C, utrzymujący masę bez zmian w zakresie ponad 30°C. Następnie pojawia się jeszcze $HoONO_3 \cdot Ho_2O_3$, ale o wiele mniej trwały termicznie.

W przypadku termicznego rozkładu azotanu holmu osiągnięte wyniki z badań nie pokrywają się z wnioskami Wendlandta i Beara [6], według których podczas rozkładu powstawał trwały bezwodny azotan hol-

Michalina Dąbkowska

Ryc. 4. Derywatogram $Ho(NO_3)_3 \cdot 5H_2O$ m=1400 mg, T=900°C, v=4°C/min czułości: TG=1000 mg, DTG=1:5, DTA=1:15

mu. W żadnym przypadku w badanych przeze mnie warunkach derywatograficznych nie pojawiły się nawet małe odchylenia krzywych derywatograficznych TG i DTG, które mogłyby wskazywać na pojawienie się azotanu holmu bezwodnego (teoret. 79,57% masy wyjściowej próbki) ani sugerowanej przez Wendlandta i Beara postaci $Ho(NO_3)_3 \cdot HoONO_3$ (67,33%).

Termiczna dysocjacja azotanu tulu

Badany derywatograficznie czterowodny azotan tulu ulega najpierw topnieniu w temp. 70°C, następnie stopniowej dehydratacji z równoczes-

Zakres temp. °C	Masa %	Skład substancji	Teoret. %
Próbka	100 mg og	rzewana z szybkością 3°C/m	in
20-74	100	$H_0(NO_3)_3 \cdot 5H_2O$	100
74-145	94,5		
145-180	90,5	(Training and a state of the	
180 - 320	75,0	(Ho(NO ₃) ₃)	79,57
320-370	55,0	A CONTRACT OF A	
370 - 420	55,0	HoONO3	55,08
420 - 495	47,5	THORE	1
495 - 510	46,6	HoONO3 · Ho2O3	46,92
510 - 570	43,5	LEWERTON FROM LA	
>570	42,6	Ho ₂ O ₃	42,84
Próbka	600 mg ogr	zewana z szybkością 10°C/r	nin
20-70	100	$H_0(NO_3)_3 \cdot 5H_2O$	100
70 - 95	99,17		
95 - 170	95,00	$(Ho(NO_3)_3 \cdot 4H_2O)$	95,91
170 - 335	76,17	(Ho(NO ₃) ₃)	79,57
335 - 410	55,33	and the second sec	
410-430	54,17	HoONO3	55,08
430 - 520	47,00	Macine	and the second
520 - 535	46,33	HoONO ₃ · Ho ₂ O ₃	46,92
535 - 605	43,33		
>605	42,50	Ho ₂ O ₃	42,84
Próbka	1400 mg og	grzewana z szybkością 4°C/r	nin
20-100	100	$Ho(NO_3)_3 \cdot 5H_2O$	100
100-120	99,43	southing the statist	and a grankfirst
120 - 400	54,29	of ogramming problem (Dec. 10°C
400 - 435	54,29	HoONO ₃	55,08
435-510	.46,43	A STAR SHOW SHOW THE ALL AND	A START
510-520	46,43	HoONO ₃ · Ho ₂ O ₃	46,92
520 - 600	42,85		Dal ur orals
>600	42,85	Ho ₂ O ₃	42,84

Tab. 4. Termiczna dysocjacja azotanu holmu

nym przekształceniem się ok. temp. 400° C w TmONO₃, który jest mniej trwały termicznie niż poprzednio wymieniane tlenoazotany lantanowców ciężkich. W temp. ok. 470° C pojawia się z kolei nietrwały produkt o składzie TmONO₃ · Tm₂O₃, który powyżej 520°C przekształca się w Tm₂O₃ — końcowy produkt rozkładu.

W przypadku azotanu tulu uzyskano bardzo dużą zgodność z wynikami Wendlandta i Beara [6]. Dokładniejsze zakresy temperatur,

071-00-"

dotyczące rozkładu termicznego $Tm(NO_3)_3 \cdot 4H_2O$ w oparciu o uzyskane derywatogramy przy różnych szybkościach ogrzewania badanej próbki, są podane w tab. 5.

Termiczna dysocjacja azotanu iterbu

Z uzyskanych krzywych derywatograficznych czterohydratu azotanu iterbu wynika, że przebieg dysocjacji termicznej tego związku zależy w większym stopniu niż w przypadkach innych lantanowców od szybkości ogrzewania i masy badanej próbki.

Derywatogramy uzyskane z badań małej próbki Yb $(NO_3)_3 \cdot 4H_2O$ (100 mg), ogrzewanej z szybkością przyrostu temperatury $3^{\circ}/min$, wskazują na

Zakres temp. °C	Masa %	Skład substancji	Teoret. %		
Próbka	Próbka 100 mg ogrzewana z szybkością 3°C/min				
20- 55	100	$Tm(NO_3)_3 \cdot 4H_2O$	100		
55 - 95 95-140	98	(Tm(NO ₂) · 3H ₂ O	05.79		
140-220	87	(1111(1103/3 01120	35,10		
220-290	73	1 Contraction of the second	A states		
290 - 365	57	TmONO	57.09		
410-465	47	monog	51,02		
465-470	46,5	$(\text{TmONO}_3 \cdot \text{Tm}_2\text{O}_3)$	49,4		
470 - 520 > 520	44,5	Tm.O.	45.18		
Próbka	600 mg ogr	zewana z szybkościa 10°C/m	10,10		
TIONIA		20 valia 2 szybroscią 10 C/m	1		
20 - 60 60 - 110	100	$Tm(NO_3)_3 \cdot 4H_2O$	100		
110-170	96,67	$(Tm(NO_3)_3 \cdot 3H_2O)$	95,78		
170-250	88,33				
250 - 375 375 - 410	60,00	(bezwodny)	83,12		
410-430	54,69	TmONO ₃	57,82		
430-495	48,67	$(\text{TmONO}_3 \cdot \text{Tm}_2\text{O}_3)$	49,40		
495-550	45.00	Tim O	45.10		
> 000	44,67	$1 \text{ m}_2 \text{ O}_3$	45,18		

Tab. 5. Termiczna dysocjacja azotanu tulu

możliwość tworzenia się YbONO₃ — nawet termicznie trwałego w zakresie temp. $370-410^{\circ}$ C (tab. 6). Natomiast gdy badania derywatograficzne prowadzi się z większą i szybciej ogrzewaną próbką (750 mg, 10° C/min) — tlenoazotan iterbu raczej nie występuje w czystej formie (ryc. 5). W takich warunkach uzyskiwano na krzywych TG tylko wygięcia, które mogą świadczyć o powstawaniu nietrwałych produktów, których skład i temperatury są wymienione w tab. 6. Z produktów tych na uwagę zasługuje przede wszystkim Yb(NO₃)₃ · 5YbONO₃.

O tworzeniu się trwałych na powietrzu azotanów lantanowców o składzie $Ln_6O_5(NO_3)_8$ wspominał Marsh [8]. Dutta [1] przedstawił skład tych związków wzorem $3Yb_2O_3 \cdot 4N_2O_5$. Wendlandt i Bear [6] stwierdzili, że azotan iterbu podczas dysocjacji termicznej nie tworzy zdefiniowanego produktu rozkładu, lecz mieszaninę YbONO₃ i Yb₂O₃.

Temperatura topnienia Yb(NO₃)₃ · $4H_2O$, odczytana z derywatogramów, wynosi ok. 70°C. Według danych Marsha, temperatury topnienia pięciohydratu i czterohydratu azotanu iterbu leżą w granicach 88-92°C.

Ryc. 6. Derywatogram $Lu(NO_3)_3 \cdot 4H_2O$ m=600 mg, T=900°C, v=10°C/min czułości: TG=500 mg, DTG=1:5, DTA=1:5

Termiczna dysocjacja azotanu lutecu

Rozkład termiczny czterohydratu azotanu lutecu (ryc. 6) w przeprowadzonych warunkach pomiarów, hiezależnie od szybkości ogrzewania próbki, odznacza się pojawieniem nietrwałego produktu o składzie $Lu_6O_5(NO_3)_8$, odpowiadającym $Lu(NO_3)_3 \cdot 5LuONO_3$ i następnie trwalszego termicznie produktu $2LuONO_3 \cdot Lu_2O_3$ (tab. 7). Całkowite przekształcenie w tlenek Lu_2O_3 następuje ok. temp. 510° (540° — przy szybkim ogrzewaniu).

Temperatura topnienia $Lu(NO_3)_3 \cdot 4H_2O$, odczytana z derywatogramów, wynosi ok. $60^{\circ}C$. Przy tym warto zauważyć, że czterowodny azotan lute-

Zakres temp. °C	Masa %	Skład substancji	Teoret. %		
Próbka	Próbka 100 mg ogrzewana z szybkością 3°C/min				
20 - 45	• 100	Yb(NO ₃) ₃ • 4H ₂ O	100		
45- 80	98,8		100-14		
80-100	98,8	Yb(NO3)3 · 3,5H2O	97,91		
100 - 205	91,0	$(Yb(NO_3)_3 \cdot 2H_2O)$	91,64		
205-290	76,0	88	240-33		
290 - 340	62,0	GOMMAN AND AND AND AND	Wieldelinth		
340 - 370	5,8,0	LO. THONGAS AND	War Rost		
370 - 410	57,5	YbONO ₃	58,23		
410 - 460	49,0	(YbONO ₃ · Yb ₂ O ₃)	49,88		
460-510	45,5		OF SHE STATE		
>510	45,5	Yb ₂ O ₈	45,70		
Próbka	750 mg ogrze	ewana z szybkością 10°C/mi	n		
20- 80	100	Yb(NO ₃) ₃ • 4H ₂ O	100		
80-120	99,33	ne were presented to	Carlos I		
120 - 180	97,33	(Yb(NO ₃) ₃ · 3,5H ₂ O)	97,91		
180 - 260	88,93	and a second			
260-370	62,26	COLOR DE COLOR			
370-371	62,26	(Yb(NO ₃) ₃ ·5YbONO ₃)	62,41		
371 - 420	53,46	C. O.a.i anes	a need a		
420 - 430	52,93	2YbONO ₃ · Yb ₂ O ₃	51,97		
430 - 470	51,33	Out Char	(all all all all all all all all all all		
470 - 478	50,33	YbONO ₃ · Yb ₂ O ₃	49,88		
478 - 550	46,13				
>550	45,60	Yb ₂ O ₃	45,70		

Tab. 6. Termiczna dysocjacja azotanu iterbu

cu podczas topnienia nie ulega rozkładowi i nie traci wody hydratacyjnej przy ogrzewaniu nawet do 100° lub nieco wyżej.

W przypadku azotanu lutecu pojawia się analogiczny produkt o składzie $Ln_6O_5(NO_3)_8$, jaki uzyskiwał Marsh [8] podczas preparatyki azotanów lantanowców na powietrzu. Wendlandt i Bear [6] w swojej pracy zwrócili tylko uwagę, że azotan lutecu podczas ogrzewania zachowuje się podobnie jak azotan iterbu.

Porównanie termicznego zachowania się poszczególnych azotanów lantanowców i uogólnienie wniosków będzie tematem następnej pracy, po przeprowadzeniu derywatograficznych badań wszystkich azotanów lantanowców w analogicznych warunkach.

Michalina Dąbkowska

Zakres temp. °C	Masa %	Skład substancji	Teoret.
Próbka	100 mg ogi	rzewana z szybkością 3°C/mir	1
20-100	100	Lu(NO ₃) ₃ ·4H ₂ O	100
100 - 140	98	1. A.M.C 1	A - 6F
140 - 205	92	$Lu(NO_3)_3 \cdot 2H_2O$	91,68
205 - 240	90	0.100 0.100 0	
240-340	66	0.01	
340 - 350	64	Lu(NO ₃) ₃ · 5LuONO ₃	62,57
350 - 390	54	0.83	
390 - 440	52	$(2LuONO_3 \cdot Lu_2O_3)$	52,06
440 - 520	46	DISCOULT AND	
> 520	45,5	Lu ₂ O ₃	45,94
Próbka	480 mg ogr	zewana z szybkością 10°C/mi	n
	I Calore Nie	This is a set of a set	
20 - 40	100	$Lu(NO_3)_3 \cdot 4H_2O$	100
40-110	98,96	100	
110 - 140	98,96	Contraction of the second	
140 - 240	90,62	50.00	
240-355	63,54	-	
355 - 360	63,12	Lu(NO ₃) ₃ · 5LuONO ₃	62,57
360 - 410	52,70	1 10 10 10	
410 - 475	52,08	Lu ₂ O ₃ • 2LuONO ₃	52,06
475 - 540	45,83	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	
>540	45,83	Lu ₂ O ₃	45,94

Tab. 7. Termiczna dysocjacja azotanu lutecu

PIŚMIENNICTWO

- 1. Dutta N.: J. Indian Chem. Soc. 22, 107-110 (1945).
- Дворникова Л. М., Севостянов В. П., Амброжий М. Н.: Ж. неорган. хим. 14, 2325—2328 (1969).
- 3. Kato T.: J. Chem. Soc. Japan 52, 774-777 (1931).
- 4. Marsh J. K .: J. Chem. Soc. 1941, 561-562.
- 5. Quill L. L., Robey R. F.: J. Am. Chem. Soc. 59, 1071-1073 (1937).
- 6. Wendlandt W. W., Bear J. L.: J. Inorg. Nucl. Chem. 12, 276-280 (1960).
- 7. Dąbkowska M., Boksa H.: Ann. Univ. M. Curie-Skłodowska, Lublin, sectio AA, 28, 119-132 (1973).
- 8. Marsh J. K .: J. Chem. Soc. 1947, 1084-1086.

РЕЗЮМЕ

Исследования термической диссоциации следующих гидратных нитратов редкоземельных: $Eu(NO_3)_3 \cdot 5H_2O$, $Tb(NO_3)_3 \cdot 4H_2O$, $Dy(NO_3)_3 \cdot 5H_2O$, $Ho(NO_3)_3 \cdot 5H_2O$, $Tm(NO_3)_3 \cdot 4H_2O$, $Yb(NO_3)_3 \cdot 4H_2O$, и $Lu(NO_3)_3 \cdot 4H_2O$

проводились на дериватографе OD 102 системы Ф. Паулик — Я. Паулик — Л. Ердей.

Термическая стойкость и пределы температур существования (в исследованных условиях) промежуточных продуктов разложения нитратов отдельных лантанидов представлены в табл. 1—7. Полученные результаты сравнены с результатами исследований других авторов.

SUMMARY

Investigations of the thermal dissociation of the following lanthanon nitrate hydrates: $Eu(NO_3)_3 \cdot 5H_2O$, $Tb(NO_3)_3 \cdot 4H_2O$, $Dy(NO_3)_3 \cdot 5H_2O$, $Ho(NO_3)_3 \cdot 5H_2O$, $Tm(NO_3)_3 \cdot 4H_2O$, $Yb(NO_3)_3 \cdot 4H_2O$ and $Lu(NO_3)_3 \cdot 4H_2O$ were made by means of the derivatograph OD 102, of the system of F. Paulik — J. Paulik — L. Erdey.

The thermal stability and ranges of temperatures of existence (under the examined conditions) of intermediate decomposition products of nitrates of the particular lanthanons were presented in Tables 1—7. The results obtained were compared with those of other authors.

brankien alitin (1), a takte reakcion acylowania (3) i cyjanostylewania

anGastan/-