ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. XXVI/XXVII, 39

SECTIO AA

1971/1972

Instytut Chemii UMCS Zakład Chemii Nieorganicznej i Ogólnej Kierownik: prof. dr Włodzimierz Hubicki

Michalina DABKOWSKA, Maria KALBOWIAK

Derywatograficzne badania termicznej dysocjacji octanów lantanowców lekkich

Дериватографические исследования термической диссоциации ацетатов легких лантанидов

Derivatographic Investigations of the Thermal Dissociation of Light Lanthanon Acetates

Preparatyka krystalicznych uwodnionych i bezwodnych octanów pierwiastków ziem rzadkich była przedmiotem badań wielu autorów [6, 9, 10, 15, 16, 18]. Octany lantanowców cięższych krystalizują z roztworów wodnych najczęściej z czterema drobinami wody, natomiast octany lantanowców lżejszych tworzą kryształy niżej zhydratyzowane. Ilość drobin wód krystalizacyjnych zależy także od metody uzyskiwania odpowiednich octanów pierwiastków ziem rzadkich; w tab. 1 zostały zestawione dane piśmiennictwa dotyczące ilości drobin wód krystalizacyjnych badanych octanów.

T	2	h	P	1	2	1
	a	2	0	*	a	-

and Social and States	$Ln(CH_3COO)_3 \cdot n H_2O$					
Autor	La	Ce	Pr	Nd	Sm	Ln ciężkie
Czudnowicz [3]	1,5	O oraz	H d,I -,	1000,H	ale Ce(achownnie .
Cleve [2]	1,5	strand edg	Risk (1823)	BALL STATE	Nodel Protection	Prov 66'81
Scheele [14]	unnilloq.	ast Maja	2	disson -	1. 102.2011	to any the
Vesterberg [11]	1,5	1,5	1,5	4?	4	4
Wolff [19]	1,5	1,5	Croite/T	O.H.vn	5. dech	dinha woob
Sarkar [13]		- inhada	a line a	1	the athur	alfent (collo
Pascal [cyt.: 11]	1,5	1,5	3	1	4	4

Na temat termicznej trwałości octanów poszczególnych pierwiastków ziem rzadkich niewiele jest danych w dotychczasowej dostępnej literaturze chemicznej. Vesterberg [17] w pracy swojej na temat octanu lantanu stwierdził między innymi, że krystaliczny półtorawodny octan lantanu traci w 100° C trzecią część zawartej w nim wody, czyli przechodzi w monohydrat.

Od dawna wiadomo także, że ogrzewane octany lantanowców przechodzą w końcowym stadium w tlenki danych lantanowców. K a to [5] wykazał, że ogrzewanie octanu lantanu prowadzi do wytworzenia się tlenku lantanu poniżej 760 °C.

Szczegółowsze badania wykonane przez Maksimowa, Nowoselową i Semenko [7] wykazały, że kryształy La $(CH_3COO)_3 \cdot 1.5 H_2O$ pozostają bez zmian przy ogrzewaniu do 50°C, w zakresie temp. 50—110°C przechodzą w jednohydraty (zgodnie z wynikami badań Vesterberga i także Clevego). W 110°C, równocześnie z utratą wody pozostałej, octan lantanu zaczyna się rozkładać wg reakcji:

 $La(CH_3COO)_3 \cdot 1 H_2O \rightarrow LaOCH_3COO + (CH_3CO)_2O + H_2O.$

Po wydzieleniu drobiny bezwodnika kwasu octowego powstały metaoctan lantanu zachowuje masę bez zmiany w zakresie temp. $250-300^{\circ}C$; po czym przebiega już w temp. $305-310^{\circ}C$ rozkład metaoctanu z dużą stratą masy.

Maksimow, Nowoselowa i Semenko [7] prześledzili także termiczną trwałość oddzielnie uzyskanego octanu lantanu w stanie bezwodnym. Okazało się, że bezwodny La(CH₃COO)₃ zaczynał ulegać rozkładowi w temp. około 300°C, przekształcając się (z wydzieleniem bezwodnika kwasu octowego) w metaoctan lantanu. Autorzy ci zwrócili uwagę, że bezwodny octan lantanu w temp. pokojowej na powietrzu jest niehigroskopijny.

Z badań Ambrożego i Lucznikowej [1] nad termicznym rozkładem bezwodnych octanów lantanowców lekkich wynika, że rozpad octanów i całkowite przekształcenie ich w odpowiednie tlenki zachodzi w następujących zakresach temperatur: w przypadku octanu lantanu w 140–440°C, octanu cerawego w 230–320°C, octanu prazeodymu w 200–450°C, octanu neodymu w 215–500°C i octanu samaru w 195–438°C.

M a k s i m o w i S e m e n k o [8] przebadali szczegółowiej termiczne zachowanie się Ce(CH₃COO)₃ · 1,5 H₂O oraz Nd(CH₃COO)₃ · 4 H₂O. Stosując do badań metody: termograficzną, termograwimetryczną i rentgenograficzną, autorzy ci doszli do wniosku, że półtorawodny octan cerawy utrzymuje swój stan do 50°C, następnie traci 2,4% masy początkowej, co odpowiada 0,5 drobiny H₂O. Następnie monohydrat rozpada się w 130— 140°C (całkowite odwodnienie soli zachodzi w 136°C). Duży endotermiczny efekt, zarejestrowany ok. 260°C, odnosi się do rozkładu octanu ceru i niemal zlewa się z następnym efektem cieplnym w temp. 280°C, związanym z utlenieniem się Ce⁺³ w Ce⁺⁴.

W przypadku ogrzewania czterohydratu octanu neodymu Maksimow i Semenko [8] stwierdzili, że w zakresie temp. 50—100°C traci on trzy drobiny wody krystalizacyjnej; następnie powyżej 120°C zaczyna się rozkład jednowodnika, z tym że równocześnie z utratą wody zachodzi hydroliza octanu neodymu, która prowadzi do utraty 1/6 drobiny kwasu octowego zawartego w badanej soli. Ogrzanie do 300°C powoduje utworzenie się metaoctanu neodymu NdOCH₃COO, który z kolei rozkłada się do Nd₂O₃ ok. temp. 330°C.

Dla uzupełnienia warto jeszcze dodać, że Paul, Bains i Ghotra [12] podjęli badania termicznego rozpadu karboksylanów pierwiastków ziem rzadkich przy użyciu automatycznej termowagi (model Stanton AD-2) i między innymi przebadali także octany lantanu i ceru. W wyniku badań autorzy ci przedstawili następujący mechanizm reakcji zachodzących podczas dysocjacji termicznej octanu lantanu:

Według tych badaczy, krystaliczny metaoctan lantanu jest trwały w wąskim zakresie temperatur ok. 300°C, natomiast zasadowy węglan lantanu jest stabilny w zakresie temp. 400—650°C. Oba pośrednie związki mogą być wyizolowane. Na marginesie jeszcze można dodać, że inne karboksylany nie wykazują na termogramach tworzenia się metakarboksylanów, przekształcają się od razu w zasadowe węglany.

Karboksylany ceru (III) rozkładają się podczas ogrzewania bez tworzenia pośrednich produktów, przekształcają się wprost w dwutlenek cerowy. Według Paula, Bainsa i Ghotra [12] mechanizm dysocjacji termicznej octanu cerawego można oddać równaniem:

$2 \operatorname{Ce}(\operatorname{CH}_3\operatorname{COO})_3 \xrightarrow[z \text{ powietrza}]{} 2 \operatorname{CeO}_2 + (\operatorname{CH}_3\operatorname{CO})_2 \operatorname{O} + 2 (\operatorname{CH}_3)_2 \operatorname{CO} + 2 \operatorname{CO}_2$

Celem tej pracy jest przedstawienie wyników badań termicznej dysocjacji octanów lantanowców lekkich przy użyciu derywatografu OD 102, systemu F. Paulik-J. Paulik-L. Erdey, porównanie wyników z osiągniętymi przez innych autorów w tej dziedzinie oraz uzupełnienie danych dysocjacji termicznej octanów prazeodymu i samaru, których brak jeszcze w dotychczasowym piśmiennictwie.

CZĘŚĆ DOŚWIADCZALNA

Preparatyka octanów lantanowców lekkich

Jako preparaty wyjściowe stosowano węglan cerawy o czystości 99,98% oraz tlenki La_2O_3 , Pr_6O_{11} , Nd_2O_3 i Sm_2O_3 o czystości 99,8%, wszystkie produkcji Katedry Chemii Nieorganicznej UMCS.

Odpowiednie tlenki pierwiastków ziem rzadkich ewentualnie węglan cerawy rozpuszczano w 50% wodnym roztworze CH₃COOH (cz.d.a produkcji POCh Gliwice). Poszczególne roztwory odparowywano do sucha na elektrycznej łaźni wodnej w temp. 75° C, odpowiadającej krystalizacji ich soli. W przypadku preparatyki octanów ceru i prazeodymu do zawiesin tlenków tych pierwiastków w CH₃COOH dodawano parę kropli nadtlenku wodoru w celu całkowitej redukcji do Ce⁺³ i Pr⁺³.

Analitycznie stwierdzono, że uzyskane tym sposobem krystaliczne octany lantanowców stanowią następujące hydraty: $La(CH_3COO)_3 \cdot 1 H_2O$; $Ce(CH_3COO)_3 \cdot CH_3COOH \cdot 1,5 H_2O$; $Pr(CH_3COO)_3 \cdot 1,5 H_2O$; $Nd(CH_3COO)_3 \cdot 1 H_2O$ i $Sm(CH_3COO)_3 \cdot 1 H_2O$.

Aparatura i tok postępowania

Do pomiarów stosowano derywatograf typ OD 102, system F. Paulik-J. Paulik-L. Erdey. Krystaliczne octany poszczególnych lantanowców ucierano w moździerzu porcelanowym; do badań derywatograficznych pobierano próbki w różnych ilościach od 200 do 1000 mg. Pomiary przeprowadzano przy czułościach TG maksymalnych, DTG — 1:5 lub 1:10 oraz DTA — 1:10 lub 1:20, stosując przy tym różne szybkości ogrzewania pieca: 3° , $4,5^{\circ}$ lub 6° C na minutę. Jako substancję wzorcową do analizy różnicowej stosowano Al₂O₃. Obie próbki w jednakowych tygielkach przykrywano szklanką kwarcową przed umieszczeniem ich w piecu. Pomiary wykonywano w atmosferze powietrza bez włączania pompy wodnej podczas badań próbek umieszczonych w pięciu płaskich talerzykach platynowych.

Uzyskane derywatogramy są przedstawione na ryc. 1—8; dane zaś liczbowe, dotyczące termicznej dysocjacji poszczególnych octanów lantanowców, oraz skład uzyskiwanych substancji pośrednich w odpowiednich zakresach temperatur zawierają tab. 2—10.

OMÓWIENIE WYNIKÓW

Termiczna dysocjacja octanu lantanu

Jak wynika z uzyskanych derywatogramów, $La(CH_3COO)_3 \cdot 1,5 H_2O$ ogrzewany w badanych warunkach przechodzi w temp. ok. $100^{\circ}C$ (do

 120° — zależnie od szybkości ogrzewania próbki) w monohydrat, który nie jest trwały i z kolei traci drobinę wody w reakcji endotermicznej, uzyskując stan bezwodny. Octan lantanu nie zmienia swojej masy podczas stopniowego ogrzewania w zakresie temp. 200—260°C. Wyniki te wykazują dużą zgodność z danymi cytowanymi przez Vesterberga [17], Clevego [2], Maksimowa, Nowoselową i Semenko [7], mimo odmiennych warunków przeprowadzania pomiarów.

Ryc. 1. Derywatogram octanu lantanu m=250 mg, $T=900^{\circ}$, $v=4,5^{\circ}$ C/min; czułości: TG — 200 mg, DTG=1:5, DTA=1:20

W temp. ok. 290° zaczyna się rozkład do metaoctanu lantanu LaOCH₃COO z wydzieleniem bezwodnika kwasu octowego w reakcji silnie egzotermicznej (czego nie podkreślili dotychczasowi badacze) do tego stopnia, że temperatura próbki o masie ok. 200 mg raptownie podwyższa się z 340° do 430° C i potem dopiero stopniowo się obniża do zrównania z temperaturą ogrzewanego pieca. Dla wyjaśnienia należy dodać, że w tab. 2 i także następnych, dotyczących zakresu temperatur rozpadu związków pośrednich, wymienione są temperatury stopniowego ogrzewania pieca, natomiast gwałtowne przyrosty temperatur próbek zaznaczone

Michalina Dąbkowska, Maria Kalbowiak

Zakres temp.	Masa próbki		an beswodny, Octan lant	Teoret.
°C	mg	%	- Skład substancji	%
15—60	250	109,19	La(CH ₃ COO) ₃ · 1,5H ₂ O	108,55
60—100	247	107,88	n roawarse CipCOOR (e	a La produ
100—120	246	107,44	$La(CH_3COO)_3 \cdot 1H_2O$	105,70
120—200	232	101,33	La(CH ₃ COO) ₃	100,00
200-260	231	100,89	La(CH ₃ COO) ₃ stabilny	100,00
260—298	226	98,71	La(CH ₃ COO) ₃ cz. rozł.	Constanting
298—315	215	93,91	MCH/COOP 14 H-O	
315-370	154	62,26	LaOCH ₃ COO	67,70
370-420	139	60,71	ak postepoyania	
420-440	137	59,84	La ₂ O ₂ CO ₃	58,51
440-575	135	58,96	La ₂ O ₂ CO ₃ stabilny	58,51
575—790	118	51,54	La ₂ O ₃	51,54
790-900	118	51,54	La ₂ O ₃	51,54

Tab. 2.	Termiczna	dysocjacja	octanu	lantanu
---------	-----------	------------	--------	---------

są tylko gwiazdkami w danych zakresach temperatur, w których obserwuje się silnie egzotermiczną reakcję.

W przeprowadzonych przez nas badaniach metaoctan lantanu okazał się niestabilny i w kolejnej reakcji silnie egzotermicznej w zakresie temp. 340-420 °C ulega przekształceniu w stosunkowo bardzo trwały dwutle-nowęglan lantanu, utrzymujący się bez zmian w szerokim zakresie temp. 420-575 °C.

$2 \text{ LaOCH}_3\text{COO} \rightarrow (\text{CH}_3)_2\text{CO} + \text{La}_2\text{O}_2\text{CO}_3.$

Powyżej temp. 575°C dwutlenowęglan lantanu ulega końcowemu rozkładowi, przekształcając się całkowicie w temp. 790°C w tlenek lantanu. Wyniki nasze pokrywają się w dużej mierze z wynikami P a u l a, B a i ns a i G h o t r a [12]; także końcowa temperatura całkowitego przekształcenia się octanu lantanu w La₂O₃ zbliżona jest do wartości podanej przez K a t o [5]. Natomiast wydaje nam się, że temp. 440°C, którą cytują A m b r o ż y j i L u c z n i k o w a [1], jest zbyt niska, by bezwodny octan lantanu mógł ulec całkowitej dysocjacji do tlenku; według naszych pomiarów w temperaturze tej może istnieć dwutlenowęglan lantanu.

Termiczna dysocjacja octanu ceru

Uzyskany przez nas preparat $Ce(CH_3COO)_3 \cdot CH_3COOH \cdot 1,5 H_2O$, ogrzewany z szybkością 3°C na minutę (także i 4,5°C na minutę) traci drobinę kwasu octowego poniżej 100°C. Półtorawodnik octanu lantanu istnieje w bardzo wąskim zakresie temperatur (115—120°C), przechodzi w mono-

Ryc. 2. Derywatogram octanu cerawego (w tyglu platynowym) m = 300 mg, T = 600°C, v = 3°C/min; czułości: TG — 200 mg, DTG=1:5, DTA=1:20

Ryc. 3. Derywatogram octanu cerawego (w płaskich talerzykach platynowych) m = 500 mg, $T = 600^{\circ}$ C, $v = 3^{\circ}$ C/min; czułości: TG — 500 mg, DTG=1:5 DTA=1:20

hydrat, który z kolei traci pozostałą drobinę wody z równoczesnym częściowym rozkładem w temp. 200°C. Dalsze ogrzewanie octanu cerawego prowadzi do jego rozkładu wraz ze zmianą stopnia utlenienia do Ce⁺⁴. W temp. ok. 250°C zachodzi reakcja silnie egzotermiczna, wywołana katalitycznym spaleniem organicznych produktów rozpadu, z całkowitym przekształceniem się soli ceru w trwały tlenek cerowy, nie ulegający żadnym zmianom od 360°C.

Zakres temp.	Masa próbki		Skład substancji	Teoret.
Sector (and	mg	0°8.%	bkokeih 3"C"na miniute (tax	%
20—60	300 124,23 Ce(CH ₃ COO) ₃ · 1,5H ₂ O · · CH ₃ COOH		Ce(CH ₃ COO) ₃ · 1,5H ₂ O · · CH ₃ COOH	127,45
60—115	279	115,54	Latenterion rento	100,000
115—120	277	114,71	Ce(CH ₃ COO) ₃ · 1,5H ₂ O stab.	108,52
120—172	256	106,0	Ce(CH ₃ COO) ₃ · 1H ₂ O	105,68
172—177	255	105,6	Ce(CH ₃ COO) ₃ · 1H ₂ O	105,68
177-200	240	99,4	Ce(CH ₃ COO) ₃	100,00
200-204	239	98,97	Ce(CH ₃ COO) ₃ cz. rozł.	100,00
204-240	229	94,84	LACE FOOD, ex TURA	
2 40—252	225	93,17		
* 252—290	144	59,63	$Ce_2O_4 \cdot CO_2$ (?)	61,19
* 290—360	132	54,66	CeO ₂	54,25
360-640	131	54,25	CeO ₂ stabilny	54,25

Tab. 3. Termiczna dysocjacja octanu cerawego

Tab. 4. Termiczna dysocjacja octanu cerawego (w tyglu złożonym z 5 płaskich talerzyków platynowych)

Zakres temp.	Masa próbki		Skład substancji	Teoret.	
°C	mg	%	Createn comperatur:	%.	
20—70	500	127,34	$\begin{array}{c} Ce(CH_3COO)_3 \cdot 1,5H_2O \cdot \\ \cdot CH_3COOH \end{array}$	127,45	
70—90	461	117,41	w stosunkowy bardan tr	wely dwulle	
90—100	436	111,04	Ce(CH ₃ COO) ₈ · 1,5H ₂ O	108,52	
100—155	392	99,84	Ce(CH ₃ COO) ₃	100,00	
155-185	390	99,33	Ce(CH ₃ COO) ₃ stabilny	100,00	
185-210	387	98,57	the in theme 2802C in the	and Latrians	
210-252	368	93,72	a solekiteen sozostala s	hydrift, , kt fy	
* 252—260	238	63,16	Ce ₂ O ₄ · 1CO ₂	61,19	
* 260—290	213	54,25	CeO ₂	54,25	
290—600	213	54,25	CeO ₂ stabilny	54,25	

Przeprowadzone przez nas pomiary termicznej dysocjacji octanu cerawego w tyglu złożonym z pięciu płaskich talerzyków platynowych (w celu łatwiejszego usuwania produktów lotnych), doprowadziły do wyników analogicznych co do składu uzyskiwanych substancji pośrednich, jedynie zakresy temperatur ich istnienia miały nieco niższe wartości (tab. 4). Końcowy produkt dysocjacji termicznej — CeO₂ uzyskano już w temp. 290°C. W przypadku badań termicznej dysocjacji octanu cerawego wyniki nasze są zgodne z wynikami Ambrożego i Lucznikowej [1] oraz Maksimowa i Semenko [7].

Termiczna dysocjacja octanu prazeodymu

Pomiary termicznej dysocjacji $Pr(CH_3COO)_3 \cdot 1,5 H_2O$ przeprowadzono w tyglu platynowym (ryc. 4) oraz w naczyniu złożonym z pięciu płaskich talerzyków platynowych (ryc. 5). Uzyskane wyniki w dużej mierze po-

Ryc. 4. Derywatogram octanu prazeodymu (w tyglu platynowym) m=300 mg, T=900°C, v=4,5°C/min; czułości: TG — 200 mg, DTG=1:10, DTA=1:20

Ryc. 5. Derywatogram octanu prazeodymu (w płaskich talerzykach platynowych) m=000 mg, T=600°C, v=1,5°C/min; ezułości: TG — 500 mg, DTG=1:5, DTA=1:20

Zakres temp. °C	Masa próbki		lu złożonym z pięciu plasky u usuwania zproduktów lob	Teoret.
	mg	%	- Skład substancji	%
20—80	300	106,37	Pr(CH ₃ COO) ₃ · 1,5H ₂ O	108,50
80—190	281	99,63	Pr(CH ₃ COO) ₃	100,00
190—240	279	98,92	Pr(CH ₃ COO) ₃ stabilny	100,00
240-340	195	69,51	PrOCH ₃ COO	67,90
* 340—388	167	59,21	Pr ₂ O ₂ CO ₃ stabilny	58,77
388-410	161	57,08	termiened dysectech Pri	Pannar
410-560	152	53,89	Pr ₆ O ₁₁	53,54
560-900	151	53,54	Pr ₆ O ₁₁ stabilny	53,54

Tab. 5. Termiczna dysocjacja octanu prazeodymu

Tab. 6. Termiczna dysocjacja octanu prazeodymu (w tyglu złożonym z 5 płaskich talerzyków platynowych)

Zakres temp.	Masa próbki		Cecol .	Teoret,
Do	mg	%	- Skład substancji	%
20—90	900	104,75	Pr(CH ₃ COO) ₃ · 1H ₂ O	105,66
90—160	838	97,54	Pr(CH ₃ COO) ₃	100,00
160-230	836	97,30	Pr(CH ₃ COO) ₃ stabilny	100,00
230-280	748	87,06	1	A
* 280—300	590	68,67	ProCH ₃ COO (?)	67,90
* 300—340	505	58,77	Pr ₂ O ₂ CO ₃	58,77
340-450	495	57,61	Pr ₂ O ₂ CO ₃ stabilny	58,77
450-540	463	53,88	Pr ₆ O ₁₁	53,54
540-600	460	53,54	Pr ₆ O ₁₁ stabilny	53,54

krywają się ze sobą. Półtorawodny octan prazeodymu, poniżej 100° C, ogrzewany z szybkością $4,5^{\circ}$ C na minutę (także i wolniej — z szybkością $1,5^{\circ}$ na minutę) traci wodę krystaliczną, uzyskując stan stabilny w zakresie pięćdziesięciu stopni ok. temp. 200° C (tab. 5 i 6). Następnie w reakcji silnie egzotermicznej octan prazeodymu przekształca się w temp. ok. 300° C w dość trwały dwutlenowęglan prazeodymu w zakresie temp. $340-430^{\circ}$ C.

Michalina Dąbkowska, Maria Kalbowiak

Całkowite przekształcenie w Pr_6O_{11} następuje w badanych warunkach w temp. ok. 550°C, powyżej której ogrzewany tlenek prazeodymu nie zmienia swojej masy do temp. 900°C. Wymieniona przez A m b r o ż e g o i L u c z n i k o w ą [1] temperatura całkowitego przekształcenia się octanu prazeodymu w tlenek Pr_6O_{11} pokrywa się z naszymi danymi, zwłaszcza w takich przypadkach, gdy do pomiarów pobierano bardzo małe próbki, poniżej 100 mg, lub stosowano bardzo małe szybkości ogrzewania próbek.

Termiczna dysocjacja octanu neodymu

Jak wynika z uzyskanych przez nas krzywych derywatograficznych termicznej dysocjacji Nd(CH₃COO)₃ · 1,5 H₂O (ryc. 6 oraz tab. 7) jedno-

Ryc. 6. Derywatogram octanu neodymu m=1000 mg, $T=1200^{\circ}$ C, $v=6^{\circ}$ C/min; czułości: TG — 500 mg, DTG=1:5, DTA=1:20

wodny octan neodymu utrzymuje się bez zmian do temp. 100°C, następnie traci wodę krystalizacyjną ok. 200°C; utrzymuje się w stanie bezwodnym w zakresie zaledwie kilku stopni, ogrzewany dalej ulega rozkładowi

351

Michalina Dąbkowska, Maria Kalbowiak

Zakres temp.	Masa próbki		burc, powyzej morej (Teoret.
°C	mg	%	- Skład substancji	%
20—100	1000	103,66	Nd(CH ₃ COO ₃ · 1H ₂ O	105,41
100—193	967	100,2	Nd(CH ₃ COO ₃	100,00
193-200	965	100,03	Nd(CH ₈ COO ₃	100,00
200-260	941	97,35	rmiczneyb anyolmy	or
260-320	788	81,69	and the superior descendances of	Anter and
320-400	660	68,42	NdOCH ₃ COO	68,23
400-404	655	67,90	NdOCH ₃ COO	68,23
404-478	585	60,64	Nd ₂ O ₂ CO ₃	59,20
478-530	565	58,57	Nd ₂ O ₂ CO ₃ stabilny	59,20
530-564	562	58,26	Nd ₂ O ₂ CO ₃ (c. d.)	59,20
564-640	558	57,84	monoly where we wanted	n a 5 ptan
640—760	507	52,50	Nd ₂ O ₈	52,35
760-950	505	52,35	Nd ₂ O ₃ stabilny	52,35

Tab. 7.	Termiczna	dysocjacja	octanu	neodymu
---------	-----------	------------	--------	---------

w następnej reakcji endotermicznej z wydzieleniem drobiny bezwodnika kwasu octowego, tworząc krótkotrwały metaoctan neodymu w temp. ok. 400°C, który dalej przekształca się w reakcji egzotermicznej w dwutlenowęglan neodymu, wykazujący trwałość termiczną w zakresie temp. ok. 480—530°C.

Dwutlenowęglan z kolei traci stopniowo CO_2 , przekształca się w tlenek neodymu, który już nie zmienia swojej masy ogrzewany w zakresie temp. 760—950°C.

Wyniki nasze na temat istnienia jednowodnika w temp. ok. 100° C zgadzają się z wynikami cytowanymi przez Maksimowa i Semenko [8]; dalsze jednak porównywanie wyników nie wykazuje zgodności. Metaoctan neodymu w warunkach przez nas badanych pojawia się w temp. ok. 300° C (zgodnie z wynikami Maksimowa i współprac.), ale całkowite jego przekształcenie następuje w temperaturze wyższej i nie od razu w tlenek neodymu, ale w stosunkowo trwały termicznie dwutlenowęglan neodymu, o czym już wyżej wspomniano. Temperatury całkowitego rozkładu octanu neodymu do jego tlenku, wymienione przez Maksimowa i Semenko (330° C), a także i przez Ambrożego i Lucznikową (500° C), wydają nam się zbyt niskie do całkowitego przekształcenia soli neodymu w Nd₂O₃.

Termiczna dysocjacja octanu samaru

Z przeprowadzonych przez nas badań termicznej dysocjacji $Sm(CH_3COO)_3 \cdot 1 H_2O$, którego próbki były umieszczone w tyglach ceramicznych i platynowych oraz ogrzewane z różnymi szybkościami (tab.

Zakres temp.	Masa próbki		Skład substancji	Teoret.
°C	mg	%	Skiad Substancji	%
20—60	950	103,64	Sm(CH ₃ COO ₃) · 1H ₂ O	105,50
60—140	932	101,68	a france teo	in the
140-150	930	101,46	Sm(CH ₃ COO ₃) bezwodny	100,00
150-220	913	99,61	10 61,06 06a	
220-270	911	99,39	Sm(CH ₃ COO ₃) stabilny	100,00
270-400	615	67,10	SmOCH _s COO (?)	68,83
400-420	561	61,20	Sm ₂ O ₂ CO ₃ I	59,96
420-500	552	60,22	Sm ₂ O ₂ CO ₃ II	59,96
500-600	546	59,57	Sm ₂ O ₂ CO ₃ stabilny	59,96
600—720	488	53,24	Sm ₂ O ₃	53,24
720—1000	488	53,24	Sm ₂ O ₃ stabilny	53,24

Tab. 8. Termiczna dysocjacja octanu samaru (w tyglu ceramicznym)

Tab. 9. Termiczna dysocjacja octanu samaru (w tyglu platynowym)

Zakres temp.	Masa próbki		Skład substancji	Teoret.)
°C	mg	%		%
20—60	400	103,68	Sm(CH ₃ COO) ₃ · 1H ₂ O	105,50
60—140	392	101,3	appealed - 45980 inning	in polastich in a
140—170	391	101,05	6. Crussiens weißennus einen	b Twopingistory
170-230	384	99,24	Sm(CH ₃ COO) ₃ bezwodny	100,00
230-280	383	99,00	Sm(CH ₃ COO) ₃ stabilny	100,00
* 280 <u>44</u> 0	234	60,47	Sm ₂ O ₂ CO ₃ I	59,96
440-480	233	60,21	Sm ₂ O ₂ CO ₃ II	59,96
480—600	230	59,44	Sm ₂ O ₂ CO ₃ II stabilny	59,96
600—710	206	53,24	Sm ₂ O ₃	53,24
710—900	206	53,24	Sm ₂ O ₃ stabilny	53,24

Zakres temp. °C	Masa próbki		I Ha O htorage proble	Teoret.
	mg	%	Skład substancji %	%
20—80	400	103,88	Sm(CH ₃ COO) ₃ · 1H ₂ O	105,50
80—150	392	101,81	Participation of the second	neo erolas
150—162	391	101,54	1 1 10	00
162-202	384	99,73	Sm(CH ₃ COO) ₃ bezwodny	100,00
202-260	383	99,47	Sm(CH ₃ COO) ₃ stabilny	100,00
260-390	234	60,77	Sm ₂ O ₂ CO ₃	59,96
390—554	230	59,73	Sm ₂ O ₂ CO ₃ stabilny	59,96
554-670	206	53,50	Sm ₂ O ₃	53,24
670-860	205	53,24	Sm ₂ O ₃	53,24

Tab. 10. Termiczna dysocjacja octanu samaru (w tyglu platynowym — wolniejsze ogrzewanie)

8—10), wynika, że rodzaj tygla oraz różnice w szybkościach ogrzewania próbek nie wpływają na zasadnicze zmiany przebiegu dysocjacji termicznej octanu lantanowca, bowiem pośrednie produkty rozpadu są analogiczne, a zaznaczają się tylko pewne różnice w zakresach temperatur istnienia tych produktów.

Ogólnie więc można stwierdzić w oparciu o uzyskane krzywe derywatograficzne TG, DTG i DTA (ryc. 7 i 8), że hydrat octanu samaru ogrzewany z szybkością 6° lub 4,5° C na minutę zaczyna tracić wodę krystalizacyjną poniżej 100°C. W temp. ok. 150°C zawiera jeszcze ślady wody krystalizacyjnej.

Octan samaru w stanie bezwodnym wykazuje trwałość termiczną w zakresie temp. 200-250 °C i następnie w reakcji egzotermicznej ulega rozkładowi do dwutlenowęglanu samaru Sm₂O₂CO₃. Z krzywych derywatograficznych DTA wynika, że dwutlenowęglan samaru ulega przemianie polimorficznej, która bardziej się uwydatnia przy ogrzewaniu próbek z większą szybkością.

Uzyskany zasadowy węglan samaru charakteryzuje się trwałością termiczną w stosunkowo szerokim zakresie temperatur, ok. 400—550°C, ogrzewany dalej ulega powolnemu rozkładowi do $\rm Sm_2O_3$. Całkowite przekształcenie soli samaru w tlenek następuje ok. temp. 700°C przy szybszym ogrzewaniu próbek, ok. 600°C — przy wolniejszym ogrzewaniu próbek.

Podana przez Ambrożego i Lucznikową [1] temp. 438°, jako końcowa temperatura rozkładu bezwodnego octanu samaru z całko-

Ryc. 7. Derywatogram octanu samaru m=400 mg, $T=1200^{\circ}$ C, $v=6^{\circ}$ C/min; czułości: TG — 200 mg, DTG=1:5, DTA=1:10

Ryc. 8. Derywatogram octanu samaru m=400 mg, $T=900^{\circ}$ C, $v=4,5^{\circ}$ C/min; czułości: TG — 200 mg, DTG=1:5, DTA=1:20

witym przekształceniem soli w tlenek samaru, wydaje się w świetle naszych wyników zbyt niska; w temperaturze tej w badanych przez nas warunkach utrzymywał się jeszcze dwutlenowęglan samaru.

WNIOSKI

1. Wyniki badań termicznej dysocjacji octanów lekkich przy pomocy derywatografu OD 102, typu F. Paulik-J. Paulik-L. Erdey w wielu przypadkach są zbieżne z wynikami innych autorów, mimo odmiennych metod i warunków badań.

2. Podczas termicznej dysocjacji hydratów octanów lantanowców lekkich w badanych przez nas warunkach zaobserwowano występowanie następujących produktów pośrednich: monohydraty octanów lantanowców, bezwodne octany lantanowców, metaoctany, dwutlenooctany i tlenki poszczególnych lantanowców. 356

3. Monohydraty octanów lantanowców nie są termicznie trwałe; pojawiają się w temp. ok 100° C lub w niższej i utrzymują swoją masę bez zmian w zakresie co najwyżej kilku stopni Celsjusza.

4. Bezwodne octany lantanu, prazeodymu i samaru, uzyskane z ich hydratów podczas termicznej dysocjacji, utrzymują swoją masę bez zmian w przybliżeniu w jednakowym zakresie temperatur, ok. 200—260°C. Bezwodny octan neodymu w badanych przez nas warunkach okazał się bardzo krótkotrwały — w zakresie tylko kilku stopni. W przypadku monohydratu octanu cerawego zaobserwowano częściowy jego rozkład równocześnie z utratą drobiny wody.

5. Metaoctany $LnOCH_3COO$, sygnalizowane wcześniej przez innych autorów, w naszych warunkach badania są bardzo nietrwałe; pojawiają się ok. temp. 300°C, w przypadku SmOCH₃OO — ok. 400°C. Podczas termicznej dysocjacji octanu ceru nie powstaje metaoctan jako produkt pośredni.

6. Z pośrednich produktów termicznego rozpadu octanów lantanowców lekkich stosunkowo termicznie najtrwalsze okazały się dwutlenowęglany, z których LaO₂CO₃, NdO₂CO₃ oraz SmO₂CO₃ utrzymują w badanych warunkach pomiaru stałą masę w przybliżeniu w jednakowym zakresie temperatur, ok. 400—550°C; natomiast PrO_2CO_3 pojawiał się w temperaturze nieco niższej i także wcześniej ulegał dalszej dysocjacji, ok. 350— 420°C. Octan cerawy nie tworzy trwałych produktów pośrednich.

7. Porównanie zakresu temperatur stabilności dwutlenowęglanów lantanowców lekkich, uzyskanych w stadiach pośrednich podczas termicznej dysocjacji octanów oraz węglanów pierwiastków ziem rzadkich, badanych także na drodze derywatograficznej [4], prowadzi do wniosku, że octany pierwiastków ziem rzadkich przekształcają się w dwutlenowęglany w temperaturach niższych niż temperatury uzyskiwania odpowiednich dwutlenowęglanów podczas termicznej dysocjacji węglanów.

8. Tlenki poszczególnych lantanowców — jako końcowe produkty termicznej dysocjacji octanów pierwiastków ziem rzadkich — pojawiają się w następującej kolejności: CeO₂ w temp. ok. 300°C, Pr_6O_{11} — ok. 550°C, Sm_2O_3 — ok. 670°C, Nd_2O_3 — ok. 760°C i La₂O₃ w temp. ok. 790°C.

9. Podczas dysocjacji termicznej octanów lantanowców występują efekty reakcji egzotermicznej spowodowane katalitycznym spalaniem się organicznych produktów rozpadu, zwłaszcza katalitycznym zapłonem wydzielającego się acetonu.

PIŚMIENNICTWO

- 1. Амброжий М. Н., Лучникова Е. Ф.: [w:] Химия редкоземельных элементов, Ленинград 1964, стр. 75—180 [суt.:] Р.Ж. Химия, 1965, 1 В 455.
- 2. Cleve P. T.: Bull. Soc. Chim. 21, 199 (1874).
- 3. Czudnowicz N.: Journ. prakt. Chem. 80, 31 (1860).

- Dąbkowska M., Kalbowiak M.: Ann. Univ. Mariae Curie-Skłodowska, Lublin, sectio AA 26/27, 321-340 (1971/1972).
- 5. Kato T.: J. Chem. Soc. Japan 52, 167-171 (1931); [cyt:] Pascal [11].
- 6. Kotowski A., Lehl H.: Zeit. anorg. Chem. 199, 183-192 (1932).
- 7. Максимов В. Н., Новоселова А. В., Семенко К. Н.: Ж. Н. Х. 1957, т 2, 997—1000.
- 8. Максимов В. Н., Семенко К. Н.: Вестник Московского ун-та, Химия 1963, 13—17 [суt.:] Р.Ж. Химия 1963, 17 В 338.
- Misra S. N., Misra T. N., Mehrotra R. C.: J. Inorg. Nucl. Chem. 25, 201-203 (1963).
- 10. Moeller P., Galasyn V., Xavier J.: J. Inorg. Nucl. Chem. 15, 259 (1960).
- 11. Pascal P.: Nouveau traité de chimie minérale, t. VII, Paris 1959, s. 1000-1001.
- Paul R. C., Bains M. S., Ghotra J. S.: Indian Journ. of Chem. 7, 514-517 (1969).
- 13. Sarkar P. B.: Bull. Soc. Chim. 42, 185 (1927).
- 14. Scheele C.: Zeit. anorg. Chem. 18, 352-364 (1898).
- Seaton J. A., Sherif T. G., Audrieth L. F.: J. Inorg. Nucl. Chem. 9, 222-231 (1959).
- 16. Späth E.: Monatsh. 33, 243 (1912).
- 17. Vesterberg K. A.: Zeit. anorg. Chem. 94, 371-376 (1916).
- 18. Witt J. R., Onstott E. I.: J. Inorg. Nucl. Chem. 24, 637-639 (1962).
- 19. Wolff H.: Zeit. anorg. Chem. 45, 89-115 (1905).

РЕЗЮМЕ

При помощи дериватографа OD 102, система F. Paulik-J. Paulik-L. Erdey, исследовали ход термической диссоциации следующих ацетатов редкоземельных металлов: La(CH₃COO)₃ \cdot 1H₂O, Ce(CH₃COO)₃ \cdot CH₃COOH \cdot 1,5H₂O, Pr(CH₃COO)₃ \cdot 1,5H₂O, Nd(CH₃COO)₃ \cdot 1H₂O, Sm(CH₃COO)₃ \cdot 1H₂O.

Гидраты уксуснокислых солей легких лантанидов во время термической диссоциации переходят в ангидридные ацетаты, метаацетаты, основные карбонаты и на последнем этапе в окиси элементов редкоземельных металлов. Термическая стойкость и границы температур существования (в исследованных условиях) промежуточных продуктов распада ацетатов отдельных легких лантанидов даны в табл. 1—10. Полученные результаты сравнены с результатами исследований других авторов.

SUMMARY

The course of thermal dissociation of the following acetates of the rare earth elements: $La(CH_3COO)_3 \cdot 1 H_2O$, $Ce(CH_3COO)_3 \cdot CH_3COOH \cdot 1.5 H_2O$, $Pr(CH_3COO)_3 \cdot 1.5 H_2O$, Nd $(CH_3COO)_3 \cdot 1 H_2O$ and $Sm(CH_3COO)_3 \cdot 1 H_2O$ was examined, using the derivatograph OD 102, system F. Paulik-J. Paulik-L. Erdey.

During thermal dissociation the hydrates of light lanthanon acetates turned into anhydrous acetates, metaacetates, basic carbonates and, in the end, into oxides of the particular rare earth elements. The thermal stability and ranges of temperatures of existence (under the examined conditions) of intermediate decomposition products of acetates of the particular light lanthanons were presented in Tables 1—10. The results obtained were compared with those of other authors.

Papier druk. sat. III kl. 80 g Annales UMCS Lublin 1972 600+50 egz. B-4 Format 70×100 Lub. Zakł. Graf. Lublin, Unicka 4 Manuskrypt otrzymano 14.I.72 Druku str. 18 Zam. 136. 14.I.72 Data ukończenia 15.I.73