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The statistical description of heterogeneous solid surfaces is reviewed in 
terms of the Generalized Gaussian Model. Two versions of the model, the 
continuous and lattice-gas versions, are analyzed. The effects of the ad­
sorptive energy topography on surface processes like adsorption and sur­
face diffusion, as predicted by the model, are throughly discussed.

1. INTRODUCTION

The role of the adsorptive surface characteristics in many processes of prac­
tical importance is a topic of increasing interest in surface science. Adsorption, 
surface diffusion and reactions on catalysts are some of the phenomena which 
are strongly dependent upon surface structure. Most materials have heterogene­
ous surfaces which, when interacting with gas molecules, present a complex 
spatial dependence of the adsorptive energy. It is of substantial interest to at­
tempt a complete characterization of such heterogeneity. Through the last 40 
years physical adsorption has been used for determining energetic properties of 
heterogeneous substrates, but this still remains an open problem in many as­
pects [1-4].

For a very long time in the history of the studies of heterogeneous adsorb­
ents, the adsorptive energy distribution (AED) was considered as the only im­
portant characteristic to be known in order to describe the behavior of adsorbed 
particles, and much effort was dedicated to its determination by inverting the 
integral equation [5]:

0(Г,д) = |0(Т,д,£)/(£)^£ (1) 
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where в is the mean total coverage at temperature T and chemical potential p., 
9 is the local coverage (usually called the local isotherm) corresponding to an 
adsorptive energy e and /(e) is the AED.

It should be noticed that eq. 1 is strictly and generally valid only for non­
interacting particles, which is a quite unrealistic case. If adsorbed particles in­
teract with each other, then the local coverage at a point with a given adsorptive 
energy depends on the local coverage on neighbor points with different adsorp­
tive energies and, in general, eq. 1 should be replaced by a much more complex 
one, like [6]:

ё(Т,Д) = j...p(T,M,)/M(E„...,EM) dEx...dEM (2)

where now 0 not only depends on the adsorptive energy at a single point on the 
surface but also on the adsorptive energy at (in general) M neighbor points, and 
/M(E1,...,EM)is a multivariate probability distribution which specifies how ad­
sorptive energies are spatially distributed, or in other words, the energetic to­
pography of the surface.

We remark that, even for interacting particles, eq. 2 reduces to eq. 1 for two 
extreme topographies: a) random sites topography (RST), where adsorptive 
energies are distributed totally at random among adsorbing sites, and b) large 
patches topography (LPT), where the surface is assumed to be a collection of 
homogeneous patches large enough to neglect border effects between neighbor 
patches with different adsorption energies. Of course, the local adsorption iso­
therm will be different for these two extreme topographies.

It is by now clear that RST and LPT are particular limiting cases (occurring 
only rarely in real systems) of heterogeneous surfaces with more general topog­
raphies, and that the topography affects strongly many molecular processes 
occurring on such surfaces, like adsorption, surface diffusion and reactions [6- 
10], thus making the simple determination of the AED not enough to character­
ize the heterogeneity. It is then necessary to obtain the multivariate probability 
distribution, or at least the AED plus the spatial correlation function.

At this point we can precisely see the difficulties involved in the characteri­
zation of a general heterogeneous surface. As it is well known, eq. 1 for the 
simple cases of the two extreme topographies, is an ill-posed problem for the 
determination of the AED /(e) due to the form of the kernel of the integral 
equation determined by the local isotherm. The determination of the AED from 
experimental adsorption isotherms requires elaborated computational methods, 
which have been developed with much effort in many years [5]. When treating 
with more general topographies, eq. 2 must be used, where the local isotherm is 
a much more complex equation (if available at all) and we must deal with a 
multiple integral on the energy and the unknown quantity to be calculated is the 
multivariate adsorptive energy distribution. Even in the simplest case in which 
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the topography could be described by a two-point correlation function, the 
problem cannot be solved by inverting the multidimensional integral equation.

It is then of great importance to develop simple models capable of describing 
the energetic topography on the basis of a few parameters and to study the ef­
fects of these parameters on several surface processes, with the hope that, in 
such a process, methods to obtain the relevant parameters from experimental 
data will be envisaged. The present work is devoted to review the efforts done 
in this direction, following the ideas behind the development of the Generalized 
Gaussian Model, and to point out some new possible routes to follow. In Sec­
tion 2 the basic concept of the Adsorptive Energy Surface is introduced on the 
basis of a simple example and the characteristics determining the topography 
are discussed. In Section 3 the Generalized Gaussian Model is reviewed and its 
predictions for the equation of state of the adsorbate are analyzed. A lattice-gas 
approximation to this model to obtain mean-field isotherm equations is given in 
Section 4, along with the calculation of topography effects on an important sur­
face process: surface diffusion. Finally, in Section 5 we give our conclusions 
and an outlook of possible future developments.

2. THE ADSORPTIVE ENERGY SURFACE (AES)

In order to base our analysis on a well defined simple system, let us consider 
an heterogeneous solid consisting of a regular crystal of atoms A (for example 
an hep crystal) where a small fraction is substituted by impurity atoms B. We 
move a probe atom P on the (X,Y) surface of the crystal; the probe interacts with 
atoms A and В with a Lennard-Jones potential:

(3)

where S stands for the substrate atom, A or B, and e and cr are the usual energy 
depth and particle-diameter parameters, respectively. At each point i-(X,Y) the 
total interaction energy of the probe atom is calculated as a function of Z by 
summing up all pairwise interactions with the substrate’s atoms within a cutoff 
distance rc = 4aps :

£(X,r,Z) = £t/„(re) W

Then, by finding the minimum in the coordinate Z, we obtain the equilibrium 
height Zo and the adsorptive energy at position (X,Y) on the surface. What we 
get in this way is the adsorptive energy surface (AES) seen by the probe atom, 
defined as E(X,Y,Z0) = minz{E(X,Y,Z)}.
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Figure 1 shows this energy surface for a crystal with 20% of impurity atoms 
with epa Iкй = 160 K, EPB lkg = 480 К and aPS = 0.35 nm; darker regions rep­
resent stronger adsorptive energy, while brighter ones correspond to weaker 
adsorptive energy. In part (a) we see a general view where significant correla­
tion is seen to be present, in the sense that strong adsorptive regions appear to 
be quite larger than one lattice size in spite of the low density of impurity at­
oms, reflecting the fact that the probe atom interacts with many atoms of the 
substrate at once. As a first rough approximation the energy surface could be 
considered as a collection of irregular patches of different strengths. However 
the energetic topography shows a quite greater complexity and such a picture 
could lead to an oversimplified model not reflecting important behaviors in 
molecular processes occurring on the surface. The cuts on the borders of the 
sample give the adsorptive energy profiles along X and Y directions, reinforcing 
the idea of a high complexity. The problem is: how to model in a simple, and 
still realistic way, such a complex behavior? In other words, which are the char­
acteristic (and relevant) quantities necessary to construct simple models capable 
of reproducing in a statistical sense the main topographic features?

In a very general way, we can say that the AES is mathematically described 
by a stochastic process [11,12], i.e. a random function depending on some pa­
rameter. In our case, the adsorptive energy is a random function of the position 
on the surface, E(R), where the symbol (л) indicates a random quantity and R 
is the position vector on the surface whose components are (X,Y). A particular 
realization of the stochastic process E(R) is the function E(X,Y) represented in 
Figure 1 (we can drop the dependence with Zo). The statistical description of 
such a stochastic process could be very complex. However, some simplifying 
assumptions, based on physical grounds, may reduce greatly this complexity. In 
fact, it is reasonable to assume that the surface is statistically homogeneous, i.e. 
any macroscopic portion of the surface has all the meaningful information, and 
that the adsorptive energy distribution can be approximately described by a 
multivariate gaussian distribution depending on the distance between pairs of 
points on the surface. This approach leads to the Generalized Gaussian Model 
(GGM) [13,14], which is capable of describing the energetic topography on the 
basis of the mean and the dispersion of the adsorptive energy, and a correlation 
function depending on the distance on the surface.
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Figure 1. Adsorption Energy Surface (AES) for a crystal of atoms A with 20% impurity 
of atoms B. (a) general view, (b) enlargement of a small area
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In part (b) of Figure 1 we can see an enlarged picture of a small region of the 
adsorptive energy surface. There we can distinguish two fundamental elements: 
sites, or energy wells where an adsorbed molecule will spend a much greater 
time, and bonds, or energy saddle points through which a molecule will most 
probably jump to migrate from one site to another. A site may be connected to 
several bonds, and in general we may have a variable connectivity on the sur­
face, while a bond is always connected to two sites. A quite realistic assumption 
is that we do not lose relevant information by disregarding the behavior of the 
energy at all other (X, У) positions. In fact, sites are the places where adsorbed 
particles will spend most of the time and their energy play a fundamental role in 
the adsorption-desorption equilibrium, while bonds (this widely accepted termi­
nology comes from percolation theory) act as connecting channels between sites 
and their energy, together with those of sites, determine the jumping probability 
for particle diffusion assumed as an activated process. Along this line of rea­
soning, a minimum realistic statistical description of the topography will require 
three functions: the site and bond energy distributions and the spatial correlation 
function for these elements. Different forms of the site and bond distributions 
and different correlation’s functions are able to generate a variety of topogra­
phies. This approach leads to the Dual Site-Bond Model (DSBM) [15,16].

The two above mentioned models, GGM and DSBM, are the most complete 
theories for the statistical description of the energetic topography of heteroge­
neous surfaces available at the moment, and still they are simple enough to al­
low the theoretical prediction of molecular processes on these surfaces, like for 
example adsorption, surface diffusion and others. The two models are in some 
sense complementary to each other: the GGM is in its most general form a con­
tinuous model, while the DSBM is a lattice model. In the present review we 
focus our attention on the first of these models, in particular the formulation and 
predictions of the GGM model, and discuss new possible developments.

3. GENERALIZED GAUSSIAN MODEL (GGM)

We start by assuming the validity of the statistical homogeneity hypothesis: 

(Ê(Rt + 5,...,Rn +5)} = (£(/?,,...,/?„)} (5)

where /..A denotes average over an ensemble of many realizations of the sur­
face. The most general statistical information for a continuous stochastic proc­
ess is given by its generating functional. If we assume that the AES is a gaus- 
sian stochastic process, then its generating functional is given by [12,13]:
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F(a) = ^exp{ J d2 Ea(Ë)[Ê(E) - E exp |jp2ÆJ2Æ'a(Æ)H(Æ,Æ,)a(F')

(6) 
where H(R,R') = ^È(R)-E}\È{R'}-E^ is the covariance function and 

E = (È(R)j. From the generating functional, the multivariate probability den­

sity distribution for the adsorptive energies at n points on the surface is obtained 
as:

Фл(Е„...,£л)в [[0ВД)-£,]

= [(2л:)" det//Г exp -1J(E. -£)(//-'),.;(E; -E)
2 ». »si

where, by virtue of the condition (5), the covariance matrix

H,. = ((E,. - Ё)(Е. - Ё)) = ст2С(Я - /?,)

(7)

(8)

is a function of the relative position vector between two points. Here <7 is the 
adsorptive energy dispersion and C the correlation function. If furthermore the 
surface is statistically isotropic, C is only a function of the distance r between 
two points.

In this model the mean value of any macroscopic quantity of interest de­
pending on the AES could then be evaluated by knowing E, <7 and C(r). The 
correlation function C(r) carries all the useful information about the energetic 
topography and should, in principle, be determined from the geometric and 
chemical structure of the adsorbent (even though the methodology to achieve 
this has not been developed so far). However, we could simplify the model even 
more by proposing for C(r) a simple gaussian decay like:

C(r) = exp (9)

where r0 is a correlation length. This expression, which we do not intend to 
take as a realistic correlation function valid for any surface, simply tells us that 
the spatial correlation between adsorptive energies at points separated by a dis­
tance r < r0 is very high (close to 1) while for r > r0 is very low (close to 0). 
Thus the present model becomes very attractive in the sense that the energetic 
topography is characterized by a single parameter, the correlation length, and 
this opens the possibility for the determination of the three simple parameters of 
the model (E, a and r0) by, for example, fitting experimental adsorption iso­
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therms. It is worth to remark that the present model is a continuous one and not 
a lattice model of adsorption sites. This is an appealing feature, since, as we can 
see from Figure 1, adsorption sites hardly form a regular lattice and furthermore 
many of them are so shallow that an adsorbed particle will most probably be 
quite mobile on appreciably large regions.

To obtain an evaluable equation for the adsorption isotherm in this model, 
without loosing the generality of a continuous model (in the next Section we 
develop a lattice formulation of the GGM), we make use of a virial expansion 
for the two-dimensional spreading pressure ф of the adsorbed phase [17]:

ф = квТр \ + ^Bn(T}p (10)

where p is the adsorbate surface density and Bn(T) is the nth two-dimensional 
virial coefficient. If the adsorbed phase is in equilibrium with an ideal gas phase 
whose density is p() and whose pressure is p, then making use of Gibbs equa­
tion p0 dp = p dp , the adsorption isotherm equation is given by:

p = ÄT(7’)pexp
L" n-i

ВП(Г)РП-' (11)

where K(T) is an integration constant. By assuming that the potential energy of 
the system of adsorbed particles is the sum of the interparticle potential 
Ugg[ I/? -R J ), and the gas-solid potential [18]

[/SÎ(Æ,Z) = |^(Z-ZO)2+Ê(Æ), (12)

and that the stochastic process E(R) has the distribution given by eq. (7), then 
the coefficients in eq. (11) are obtained as [13]:

K(T) = (kBTkz /2л:)1/2 exp

B(T) =-------------
" n(n-2)!

" 17 a
\...\dRr..dRn 8(Rl+... + R„)S\^ ПехР TV

(13)

(14)
a

C(R,-Rj)

where
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S’1>2 = /b2 =expl-C/M(|^-Æy|)/Æe7']-1

5 1.2,3 — Л.2/1,3/2.З

$ 1.2,3л /1,2/1,3/1,4/2.3/2.4/зл ■^^/1,2/1.3/1,4/2,3/зл + ^/1,2/2,з/зл/1,4

and so on. Eq. 14 can be diagramatically represented as in Figure 2.

B4 »

Figure 2. Schematic representation of virial coefficients B„, eq. 14. A solid line represents a factor 
Д7 exp[Hÿ /(k„T)2] and a wiggly line a factor ехр[Я,у /(kBT)2]

In order to study how the virial coefficients depend on the energetic topog­
raphy, they were calculated for an interparticle interaction given by a square­
well potential:

U (r) = l-kBT
gg ' ' B ss

0

for r <a 
for a< r -<b 
for r>b

(15)

In this case, and with the change of notation E = -kBTa, cr = kBTs and 
B'n = Bn 1(яаг /2)", the first few coefficients can be evaluated in terms of the 
relevant parameters [13], and the results are shown in Figure 3.

A deeper discussion of the behavior of B*  is given in ref. [13], here we only 
want to remark that they, and therefore the adsorption isotherm, are appreciably 
affected by the adsorptive energy topography, described here by the correlation 
length r0, and this effect seems to be stronger when the adsorptive energy dis­
persion is comparable or grater than the interparticle interaction strength (Ts > 
TgS ). We also want to stress that here the energetic topography is simply repre­
sented by the correlation length r0> and that the classical RST and LPT models 
are now the extreme particular cases corresponding to r0 —» 0 and r() —> , 
respectively.
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Figure 3. Normalized virial coefficients for a square-well potential, as a function of the 
reduced temperature T/Tgg, for different values of the correlation length r0 and standard 
deviation of the adsorptive potential kBTs
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Applications of the GGM to the analysis of adsorption isotherms of several 
gases on carbon blacks graphitized at different temperatures (producing differ­
ent heterogeneity degrees) were performed in Ref. [14]. The model gave good 
fits of the adsorption isotherms with values of the energetic topography pa­
rameters in reasonable agreement with the physical process: Ts decreased and r0 
increased with increasing graphitization temperature (meaning a more extended 
graphite structure).

Further extensions of the model have included the calculation of the adsorp­
tion isotherm for mixtures of gases [18].

In spite of this success, the use of the GGM was quite limited due to the dif­
ficulties in the calculation of virial coefficients for more realistic interparticle 
interactions. This difficulty can be overcome by introducing a lattice-gas ap­
proximation to this model, with the additional advantage that its predictions can 
be easily compared to Monte Carlo simulations, which is the subject of the next 
section.

4. LATTICE-GAS GENERALIZED GAUSSIAN MODEL (LGGM)

To obtain the lattice-gas version of the GGM [6,19], we drop the AES pic­
ture as a whole, and consider that only adsorption sites are important and that 
these sites form a regular lattice. Of course, the adsorptive energy at these sites 
will be statistically described by the multivariate distribution, eq. 7, thus keep­
ing the essential feature of spatial energy correlations.

We assume that the surface, which is represented by a lattice of M (M—>°°) 
sites with adsorptive energies , i=l,...,M, is exposed to an ideal gas phase and 
the system reaches equilibrium at chemical potential ц and temperature T. We 
further assume that single occupancy of adsorption sites can occur. The hamil­
tonian of the adsorbed phase can then be written as:

M M

h = XeA + YUuninj = e- + YUi.inJ 

/=1 i# j 1=1 L j**

(16)

where n, is the occupation number of site i and Uy is the interaction energy be­
tween molecules adsorbed at sites i and j. The expression in brackets is the en­
ergy field “seen” by a particle located at site i, and we approximate it by the 
mean field energy:

(17)
where 0; mean occupation number (or local coverage) at site/

Then, with the mean field hamiltonian
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м 
h'=^^yv. 

1=1

the grand partition function for the system is given by:
0- '^e-^'-NpVk,T _ '^e-[n,(W,-p-)+n2{W1-n)+...\lk,T 

states n, ,n,....

(18)

(19)

This, as well known, leads to the Fermi-Dirac statistics for the mean occupation 
number of a single particle state i:

в = ехрН^.-д)/^] . . = 1 м
' l + exp[-(W;.-/z)/ÄeT]

(20)

We recall that, as W, is a function of all в. (for j*  /), eq. 20 actually represents a 
system of M coupled transcendental equations.

Now, if our heterogeneous surface is characterized by the multivariate distri­
bution, Фм(е},...,ем), which describes the statistical ensemble of surfaces, 
then for a given member of such an ensemble, i.e. for a given realization of 
£, ,...,EM , we can define a local coverage

i M 
0 = — У0, 

M ±i*
(21)

and consequently obtain the mean surface coverage в as the mean over the 
total ensemble:

0 (T, Д) = J.. .|фм (£, м )в(Т,Ц,Е} ,...,EM ) J£1.. .dEM (22)

Equations 20 to 22 constitute the formal mean field solution of the LGGM. 
In this way the adsorption isotherm could in principle be numerically calculated. 
However this is not practical, since M is a much too big number. However, we 
can take further advantage of the fact that usually intermolecular interactions 
are short ranged, and that the energetic topography is characterized by 
a correlation length r0 (measured in units of the lattice spacing a), in such a way 
that we could expect that within a distance r0 the adsorptive energy has a small 
probability of changing appreciably. With this in mind, we consider three re­
gions around a given site i, as illustrated in Figure 4: a nearest-neighbor region 
An (containing N sites) where detailed interactions will be considered, the re­
gion of sites j not belonging to AN but included in the circle of radius r0 and the 
region outside this circle. The effective mean field seen by a molecule adsorbed 
on site i can therefore be written as

^=£,.+ ^(/,70.+Яо0 + Л0 (23)
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where

1 N°=-7Xe ; A- X u, ; л= Xü.

•'*  i=l jtA^r,^

This means that the interaction between a molecule adsorbed at site i and the 
remaining adsorbate has been split in three terms: a detailed interaction with N- 
1 closest sites belonging to AN, a mean field interaction Â()0 within the region 
represented by the shadowed area in Figure 4 and another mean field interaction 
Л0 with the rest outside r0. Note that the mean coverage on the shadowed area 
cannot considerably differ from that on AN (due to strong correlation within r0), 
while outside r0 sites can have, in average, all possible energies so that the cov­
erage there is represented by the mean coverage on the whole surface.

Figure 4. A square lattice of adsorption sites showing zones of different mean field approxima­
tions

The isotherm equation is now determined by the more manageable set of 
equations:

0 (T, д) = J.. J Ф N (£, N ) 0(T, д,£, ) det.. àen (24)

1 N
0=-Y0, (25)
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exp - £,. + +Â()0 + Â0-д /квТ
g _ Ll J J

1 + exp - £, + +Ло0 + Л0 -/л !kBT
(26)

Several approximation degrees can be now investigated, by giving N differ­
ent values:
a) First order approximation (TV = 1), where no detailed interactions are in­
volved, leads to two well-known local adsorption isotherms depending on the 
limiting value of r0 considered: Hill isotherm [20], for r0 = 0,

e(£ 0) = ехр[-(£ + Л0 - Д)/£ВТ] 
’ 1 + ехр[-(£ + Л0 -fi)/kBT]

and Fowler-Guggenheim isotherm [17], for r0 -+°°,

e(£0)= ехр[-(£ + Яо0~Д)/^Г]
’ 1 + ехр[-(£ + Ло0-/г)//:в7’]

These two limiting case equations have been widely used as local isotherms to 
determine /(£) by inverting the integral equation, eq. 1, [5,21-25].
b) Second order approximation (N = 2), which is the lowest approximation ca­
pable of determining finite correlation length effects. In this case we have for 
the local isotherm:

0 = exp[-(£, +1/,202 + A,,0 + Л0 - д) / £BT]
1 + exp[—(£, + U,202 + Л()0 + Л0 — /t) / kBT]

0 = exp[-(£2 + t7,20, + Л.п0 + М-ц)/квТ]
2 1 + exp[-(£2 +t/,20, + Ло0 + Л0 - д) / kBT]

0(Т,д,£,,£2) = (0,+02)/2 (31)

Adsorption isotherms for the second order approximation LGGM were cal­
culated by replacing eqs. 30 and 31 in eq. 24 with N = 2 [6]. Results, given in 
Figure 5, show the effects of the correlation length on adsorption for different 
values of interparticle interactions and adsorptive energy dispersion. In general 
we see that for a surface with a higher correlation length, adsorption is stronger 
at low coverage and weaker at high coverage. This topography effect is highly 
coupled to interparticle interactions; in fact it is null for non-interacting adsor­
bates (not shown), very weak for Tg/T = 0.5 (Figure 5a) and much stronger for
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' (Figure 5b), while the other parameters are the same. On the other 
hand, a higher adsorptive energy dispersion (higher heterogeneity) smoothes out 
the correlation length effect, as it can be seen by comparing Figure 5c, for a 
small dispersion T/Г = 0.7, to Figure 5d, for T/T =1.5, with the same values 
for the remaining parameters.

Figure 5. Adsorption isotherms predicted by the LGGM for three correlation lengths: — r0 = 0; 
- - - r0 = 1 ;.... r0 = 2. (a) T = 400 K, Tgg/T = 0.5, Т,ЛГ=1.5; (b) T = 400 K, Tgg/T = 1, T./T =1.5;
(c) T=500K, Tgg/T= 1, T,/T=0.7; (d) T=500K, Tgg/T= 1, Ts/T=\.5

The coupling between interparticle interactions and the energetic topography 
can be used to explain the main feature of these adsorption isotherms. For a 
correlated surface, r0 > 0, a strong adsorptive site is likely to be surrounded by 
similar sites and this, combined with attractive lateral interactions, enhances 
adsorption at low coverage in comparison to an uncorrelated surface. On the 
contrary, at high coverage only weak adsorptive sites remain uncovered, which 
for a correlated surface are likely to be surrounded by other weak sites, resulting 
in a smaller adsorption than in the case of uncorrelated surfaces.

A much richer picture of the effects of the topography on the adsorbed phase 
can be obtained by performing Monte Carlo simulations on surfaces character­
ized by the LGGM. In order to generate a surface with a given r0 [6], circles of 
radius r0 centered on randomly chosen sites are considered and the energies for 
the sites belonging to each circle were sampled from the conditional probability 
distribution to find a site with energy < £', given a central site with energy £ :
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1 2 3 4. 5 6 7 8 9
.«»[%,]. io’

Figure 6. Comparison between Monte Carlo simulated isotherms (symbols) and LGGM 
predictions with N = 2 (solid lines): • r0 = 0, ■ r0 = 1, ▲ r0 - 2. (a) Tgg/T - 0.5, 
(b) Tgg/T - 1. The broken line represents the homogeneous case with g = -3 Kcal I mol

Values of £ for the central sites are sampled from a gaussian distribution, pro­
vided that the centers of the circles are separated at least a distance 2r0. Any site 
which has already been assigned an energy value is “marked”. When no more 
marked circles of radius r0 can be found (at this point the surface has been cov­
ered up in a coarse-grained sense and only smaller regions or interstitial sites 
between circles are still unmarked) the procedure is started again with a smaller 
radius and this goes on until all sites have been marked. At this stage the gener­
ated lattice shows a correct correlation between the energies of sites belonging 
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to the same circle but the overall correlation function is far from the desired 
theoretical one (eq. 9) due to border effects between circles. A relaxation 
method is then started, where pairs of sites are randomly selected and an energy 
replacement for one of them is attempted by sampling a new value from eq. 32. 
The change is made if it goes in the direction of minimizing the difference be­
tween the actual correlation function and the theoretical one. The procedure is 
terminated when a satisfactory correlation function is obtained. An alternative 
method of generating correlated lattice is given in [26].

Once the lattice is generated according to the LGGM, the adsorption process 
can be simulated by the usual Grand Canonical Ensemble Monte Carlo method 
[27,28]. Comparison between Monte Carlo simulations and second order ap­
proximation predictions of the LGGM are shown in Figure 6, where we see a 
satisfactory agreement, specially for weaker interparticle interactions, as was to 
be expected for a mean field approximation. Monte Carlo snapshots of adsor­
bate clusters, shown in Figs. 7-9, give a clear idea of the effects of the correla­
tion length on the structure of the adsorbate and reinforce the arguments given 
above to explain the behavior of adsorption isotherms. A through study of the 
behavior of adsorbate clusters and their percolation properties is given in [6].

Figure 7. Snapshots of 
non-interacting adsor­
bate at T = 100 К and 
0 = 0.3

Figure 8. Snapshots of 
non-interacting adsor­
bate at T = 100 К and 
0 = 0.56

Figure 9. Snapshots of an 
adsorbate with attractive 
nearest-neighbor interac­
tions of — 0.5 Kcal/mol at
T= 100 К and 0 =0.56
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Another molecular process which is expected to be strongly influenced by 
the energetic topography is surface diffusion. A general account of surface dif­
fusion of adsorbates on heterogeneous surfaces is given in [29]. Here we focus 
on the description of such a process from the point of view of the LGGM. Since 
in this model the statistical information concerns only adsorption sites, to treat 
surface diffusion we need to somehow relate the energy of the barriers con­
necting pairs of sites to the energies of the sites. A reasonable assumption could 
be that the correlation function for site energies should be similar to that for any 
other points of the AES, and in particular for energy barriers between sites. 
With this in mind, it was proposed [30] that the variation in activation energy 
for a jump from a site i to a nearest-neighbor site j, due to heterogeneity, could 
be expressed as a weighted average of the adsorptive energies of those sites (see 
Figure 10), in the form:

AE“,, = (a -1)(£, - £ ) + a(£; - £ ) (33)

where £ is the mean site energy and 0 < a < 1 / 2 is a structure parameter taking 
into account the influence of the destination site on the jump. In terms of the 
saddle point energy (bond energy) between sites i and j, eB, its variation is 
given by:

Afif = (£*  -£(,)= a(£, - £ ) + a(£y - £ ) (34)

where £h is the mean bond energy. The effect of the structure parameter a on 
the adsorptive energy is schematically and qualitatively shown in Figure 11.

The collective, or chemical, diffusion coefficient in the LGGM can be cal­
culated from [29,30]:

О(0) = Уг#а2ехр(д/кв7’)-1-М/г(0) (35)
kBT df)

where veff = vexp(-£fc lkBT), v is the jump attempt frequency and

E(0) =
jjФ 2 (£,, £2 ) exp {-[«(£, - £ ) + a(£2 - £ ) + W * 9 ] I kBT} (1 - 0! )(1 - 02 ) J0, J02
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Figure 10. Adsorptive energy variation along a direction X on the surface showing the 
heterogeneous potential (full line) as a random perturbation of the periodical homoge­
neous potential (broken line)

Figure 11. Adsorptive energy profiles along a direction X on the surface. From top to 
bottom: a = 0, a = 1/4, a = 1/2- Left, ro = O; right, r0= 1
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Figure 12. Surface diffusion coefficient for a non-interacting adsorbate, Tg/T - 0: — 
r0 = 0; — r0= 1 ;.... r0 = 2. (a) a = 0, (b) a = 1/4, (c) a = Vi

Figure 13. Same as Figure 12 for an interacting adsorbate, Тя/Т = 0.5

Here W*  represents a mean field interaction of the activated complex (the mole­
cule on top of the saddle point while jumping from one site to another) with 
adsorbed molecules. Actual calculations were performed for T = 400 K, 
ЁIkBT = -3.7, T/Г = 1 and W*  = 0 (the influence of W*  is merely that of a 
constant multiplying factor on £)), and the diffusion coefficient was normalized 
by £>o(O), the value of D for Q = a = r0 = 0. Results are shown in Figure 12, for 
non-interacting particles, and in Figure 13, for interacting ones.

As a general and relevant result, we find that, unlike the case of adsorption, 
surface diffusion is sensitive to the energetic topography even for non­
interacting particles. This is a very advantageous situation, since in that case 
topography effects can be studied without the interference of competing lateral 
interactions. In Figure 12a (a = 0) we have the case of a trap surface (see also 
Figure 10a), a surface which has received much theoretical attention for random 
topography [31-33]. We see that the diffusion coefficient steadily increases with 
coverage for all values of r0, due to the fact that the activation energy decreases 
as particles are forced to adsorb on less energetic sites (less deep traps) as cov­
erage increases. However, curves for r0 = 1,2 show a much faster increment for 
0 > 0.2 and reach much higher values for 0=1. This behavior can be under­
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stood by looking at the snapshots of adsorbate clusters at relatively high cover­
age, Figure 8. In fact, at high coverage, for r0 = 0, migrating particles move in a 
very intricate region (white areas), while for r0 > 0 white areas form larger 
patches so that the net flux through a given line will be clearly enhanced. As a 
increases, Figs. 12b,c, the barrier to be overcome in a jump depends not only on 
the starting site energy but also on the destination site energy, in such a way that 
barriers are lowered for very energetic starting sites (low coverage) and raised 
for less energetic starting sites (high coverage) leading to an enhanced mobility 
at low coverage and a reduced one at high coverage, in addition to the general 
behavior described for a = 0. The symmetry of the curves for the limiting case 
a = 0.5, showing a maximum at 0 =0.5, is a consequence of the symmetrical 
role played by the initial and final sites of a jump in determining the activation 
energy and the assumed symmetry of the site energy distribution.

Figure 14. Monte Carlo simulations of the vacancy availability factor V as a function of 
mean coverage. •: r0 = 0, Tgg /Т = 0.5; ■: r0 = 0, Tgg /Т = 1; O: r0 = 2, Tgg /Т - 0.5; 
□: r0 = 2, Tgg 7Г - 1. The solid line represents the well-known behavior for non­
interacting particles on a homogeneous surface, V =1-0

In the case of an interacting adsorbate, Figure 13, a more complex situation 
arises showing that, for a given structure parameter a of activation energy, a 
qualitatively distinct behavior is produced by finite correlation lengths. The 
minimum and maximum displayed in Figs. 13a,b, for r0 = 1, 2, in contrast to the 
case r0 = 0, is a manifestation of the vacancy factor, whose effects become more 
important when lateral interactions are present, as can be seen from Figure 14. 
The competing effects of decreasing activation barriers as в increases and the 
strong decrease in the vacancy factor as r0 increases, yeld the minimum at low 
coverage for a = 0 and r0 = 1,2. The maximum at high coverage can be under­
stood by considering the mobility of vacancies instead of particles. For 
a = 0.5, Figure 13c, the effect of decreasing activation barriers as coverage 
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increases is not sufficiently strong and the minimum and maximum disappear. 
In addition, as compared to the non-interacting case, there is an overall de­
creasing factor due to the effect of attractive lateral interactions.
Monte Carlo simulations on surface diffusion for the LGGM, which have not 
been reported to the date, could be helpful to check and extend the above re­
sults.

5. CONCLUSIONS AND PERSPECTIVES

We have seen that the GGM is a general enough model as to be able to take 
into account the spatial distribution of adsorptive energy, i.e., the energetic to­
pography, of a heterogeneous surface. At the same time, the model is simple 
enough to allow the calculation of adsorption isotherms, on the basis of few 
parameters, indeed just one extra parameter as compared to classical models, 
which were not able to describe a variable topography. This new parameter is 
the correlation length, r0. The effects of topography on other surface processes, 
like surface diffusion, can also be predicted in the framework of the GGM. As a 
main conclusion, we have found that the topography, represented by the pa­
rameter r0, affects strongly the behavior of adsorption and surface diffusion and 
then it should be taken into account in any analysis of molecular processes in­
teracting with heterogeneous solid surfaces.

There are two main work-lines requiring further efforts to answer still open 
problems: i), further developments of the model and ii), the problem of the 
characterization of heterogeneity. We briefly outline them below.

Further Developments of the GGM. The continuous version of the GGM, 
described in Section 3, is a very appealing one to describe the physical adsorp­
tion of gases on heterogeneous surfaces. This is so because, on one hand, the 
whole adsorptive energy surface is taken into account instead of just the ad­
sorptive sites (whose role is under revision at least for physical adsorption [34]), 
providing a more realistic picture when the adsorbate is mobile. On the other 
hand, the continuous version provides a direct derivation of an isotherm equa­
tion, the virial isotherm, which, like the case of real gases in three dimensions, 
should be a very reliable equation of state when the adsorbed phase is not near a 
phase transition. However, due to the greater facility to perform computer 
simulations, the LGGM has received more attention in the past.

It is then worth to develop some improvements to make the GGM more re­
alistic. The computing power available on desktop to many researchers nowa­
days, makes it possible to consider more realistic adsorbate-adsorbate interac­
tion potentials, like the Lennard-Jones potential, instead of the square-well po­
tential used in eq. 15. Good multidimensional integration subroutines can be 
used to calculate now in reasonable computing times up to the third virial coef­
ficient. This greater disposability of computer power makes it also possible to 
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check or improve the assumptions of a multivariate gaussian distribution, eq. 7, 
and the gaussian decay of the correlation function, eq. 9. In fact, model hetero­
geneous surfaces can be generated by computers, like in Section 2, and the 
multivariate energy distribution and the correlation function can be numerically 
measured and compared to those assumed in the GGM. Furthermore, adsorption 
of a gas on such an heterogeneous surface can be simulated by a Grand Canoni­
cal Monte Carlo method in the continuum and the results compared to the pre­
dictions of the GGM in which the actual (numerically measured) correlation 
function is used. This would provide a strong test for the reliability of the GGM 
and the virial adsorption isotherm and new insight for further developments.

The Problem of the Characterization of Heterogeneity. The problem of ob­
taining information on the energetic topography of an heterogeneous surface 
from the measurement of quantities involved in gas-solid processes, the char­
acterization problem, is perhaps the most difficult to solve. Adsorption iso­
therms can be accurately measured for many gas-solid systems and isotherms 
depending on few parameters could be calculated through the GGM and fitted 
to the data. However, the interplay between energetic topography and interparti­
cle interactions, whose effects may compensate each other [8], makes it impos­
sible the characterization based only on adsorption, since the same isotherm 
could be generated with different choices of the parameters. As we have seen in 
Section 4, the situation is quite different for surface diffusion, since D(0 ) is 
strongly affected by the topography even for non-interacting particles. The 
problem here is that reliable measurement of the coverage dependence of the 
chemical diffusion coefficients of adsorbed gases if very difficult and data are 
practically inexistent for many gas-solid systems.

According to our results, the simultaneous analysis of adsorption and surface 
diffusion data obtained for the same gas-solid system could give positive re­
sults, however these data are not available at present and their obtention is 
strongly encouraged. In the mean time some advancement in this field could be 
given by working on computer generated ideal systems.
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