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This paper is devoted to some paradoxes occurring in measurements on 
metallic surfaces. They mainly concern the great discrepancies of meas
ured values of the electron work function onto monocrystalline surfaces, 
the dependence of this work function on Miller’s indices of walls of crys
tal, some misleadings in classic definition of the contact potential and the 
nature of specific adsorption forces which seemingly negate the electro
static laws.
In the paper the calculated values of the work function of noble metal sin
gle crystals are presented and discussed with respect to experimental dis
crepancies. It is also shown that corrections introduced to work function 
definition by means of Green Function Method (GFM) and Extended Co
herent Potential Approximation (ECPA) remove the paradoxes mentioned 
above. The separation of the electrode charge between a bulk and surface 
of the electrode by means of GFM, fully explain the nature of the specific 
adsorption forces.

1. INTRODUCTION

Experimental investigations on metallic surfaces have turned out to be sur
prising in some cases and they sometimes present big discrepancies in the 
measured values.

Particularly controversial problem constitutes the significant deviations of 
the measured values of the electron work function of the noble metal (Cu, Ag, 
Au) monocrystallic faces (100), (110) and (111) [1, 2]. Later on these meas
urements will be analysed.

The idea of “an agreement of the calculated values with experiment” com
monly used as a test of the relevance of any theoretical model loses in many 
cases its physical meaning due to the lack of an appropriate experimental data 
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in comparison with the numerical calculations. Therefore, any theory which is 
able to produce the numerical results with the highest accuracy constitutes the 
only reasonable source of information of the values interested in.

In this paper some numerical results of the Green Functions Method (GFM) 
and Extended Coherent Potential Approximation (ECPA) are presented which 
are able to replace the uncertainty of experimental data and, moreover, to ex
plain some experimental facts being seemingly in contradiction with the well 
established and recognized laws of physics or chemistry.

2. PARADOXES IN SOME EXPERIMENTS ON METALLIC SURFACES

The most controversial experimental results on metallic surfaces concern the 
electron work function and contact potential as well as the so-called the specific 
adsorption of ions on metallic surfaces.

They can be summarized in the following points:
1. The great deviations of measured values of the electron work function from 

metal into vacuum {denoted as фМе) are observed for Cu, Ag and Au (100), 
(110) and (111) monocrystals as well as for polycrystalline Си, presented in 
Table 1 [3-22].
Such great discrepancies of the results for the monocrystalline surfaces of 
Cu, Au and Ag seem to be particularly surprising due to the modem tech
nology of preparation and cleaning of the samples.

2. Strong dependence of the measured work function of the single crystal sam
ple with different crystallographic faces on Miller’s indices of the faces 
takes place [1, 23]. However, it remains in contradiction with the fact that 
the Fermi level (denoted as Ef) of the measured sample is only one. Tradi
tionally, the electron work function is defined as фМг = -EP'.

3. The paradox occurs in classical definition of the contact potential applied to 
electrochemical problems.
The contact potential A0 between two samples of different metals (known 
also in electrochemistry as Volta potential) is defined as the respective dif
ference of the work functions of these metals [24, 25] in the form

, .Met-Mett j,Mel iMtll _ (rnMel ,nMett\_ (-Met „Mell\ re)
Аф =ф -ф = ~\fPpzc ~(ppzc )-\Eq -£o ) t2-1!

where e"' stands for the so-called potential of zero charge (pzc) of metal 
Me, i.e. the potential generating the surface charge of metal Qs = 0 ; p"' 
denotes the outer potential of the metallic phase a in pzc point satisfying 
one of the most fundamental relations of electrochemistry
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Table 1. Comparison of the work function experimental data for Cu, Ag and Au (100), 
(110), (111) single crystals as well for polycrystalline Си. фот stands for an average 
value of the data in appropriate column

Фси [eV]
(100) (HO) (HD

4.59a,b фт =4.79 4.48b,c,d фт =4.46 4.90a 0“v=4.94
4.65е 4.45е 4.94b,c
4.77f 4.98е
4.83е
5.108

Polycr. Cu: 4.352h; 4.447h; 4.448h; 4.542h; 4.65 lh фт =4.488
фА* [eV]

4.22±0.04i,k'1 0av = 4.63 4,14±0.04j'k,l’m фт =4.33 4.46±0.04j kl фт = 4.65
4.62“ 4.52°'p 4.66v
4.64°’p 4.74°’p’m

4.72v 4.75v
4.76s
4.8Г

фАи [eV]
5.00' фт = 5.23 4.8' 0“V=5.1O 5.13” 0“v=5.21
5.47p 5.12±0.07u 5.20'

5.37p 5.30+0.05“

a. Ref. [3] h. Ref. [10] o. Ref. [14]
b. Ref. [4] i. Ref. [11] p. Ref. [15]
c. Ref. [5] j. Ref. [17] r. Ref. [12]
d. Ref. [9] k. Ref. [18] s. Ref. [13]
e. Ref. [7] 1. Ref. [19] t. Ref. [21]
f. Ref. [6] m. Ref. [20] u. Ref. [22]
g. Ref. [8] n. Ref. [16]
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/“=ф“+Г (2.2)

In eq. (2.2) y“ is recognized as an inner potential of the metallic phase a 
(Galvani potential) and stands for a surface potential.
Formula (2.1) leads really to an apparent paradox. According to the defini
tion of classical electrochemistry in pzc point the outer potential of the me
tallic phase is equal to zero, i.e. =0 [24]. So for two different metals 
Me I and Me II from one side we have e"'' -Eq'" = фМе1 -фМе" ^0 (be
cause of the different work functions of different metals). On the other hand 

bo
it is worth to note once more that this paradox is caused by means of the as
sumption that in pzc the metallic phase lost its electric charge and then 
C=°-

4. The mechanism of the so-called specific adsorption of ions on metallic 
electrodes.
This phenomenon was experimentally performed already at the beginning of 
the twenties [26, 27] and from that time it is well known that some anions 
(for instance halides such as СГ, Br~, Г) adsorb themselves on negative 
charged surfaces of the electrodes and some cations (such as Cs+) on posi
tively charged ones seemingly against the electrostatic laws. An explanation 
of this unusual phenomena was impossible for many years till the moment 
when the Green Functions technique was applied.

3. A BRIEF OUTLINE OF THE GREEN FUNCTIONS METHOD AND THE 
EXTENDED COHERENT POTENTIAL APPROXIMATION

The GFM used in the ECPA leads to numerical calculations of the most im
portant quantities of the metallic surfaces such as: occupation numbers of an 
electron, work function into vacuum, surface charge of an electrode, its polari
zation by an external voltage and boundary conditions treated as the surface 
potential barrier. Such calculations for noble metals have been carried out in 
earlier papers [1,2, 28, 29]. For the sake of a better understanding of this paper 
a brief outline of the GFM and ECPA is presented here.

The Green Functions used in this paper are called the Energetic Green 
Functions (EGF) being the Fourier transformâtes of the time-dependent re
tarded and advanced Green Functions (GF) exhaustively applied in sixties as 
the propagators of the Quantum Field Theory [30-33].

Let us now to define the local density of electronic states as the second or
der EGF of an electron by means of the formula [28] :
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GJ£)=(W'W< (3.1)

where À. denotes the quantum state of the electron strictly defined later on and A, 
В are, in general, certain time-dependent operators sometimes used also for t = 0 
as a special case. The operators in eq. (3.1) can be replaced by the chain of the 
appropriate operators giving the higher order GF’s. A concrete form of the GF 
always depends on the Hamiltonian of the problem.

The Local Density of Electronic States (LDOS) can be expressed as the 
imaginary part of the GF [28]

p(E,A)=-llmG^(E) (3.2)

So the important achievement of the GFM is that it provides an analytical 
expression for DOS if Im G is assumed to be previously known. The Green 
Function satisfies the equation of motion which in the most general form can be 
written as [30]

EG^ (E) = ^-([Aa (0), B, (0® + (([Aa (r ), H11BA- (0)))£ (3.3)

where the symbols [A, B] and [Л, //]_ stand for the anticomutator and the co
mutator, respectively, and H denotes the Hamiltonian of the considered system.

In the case of a thin metallic film, consisting of n monoatomic layers, which 
is a quite realistic model for a monocrystalline electrode, the electronic Hamil
tonian in the second quantification representation can be used [28]

H =У t,Ta]aT+— У I ^.T,Ta\ataT.a^ (3.4)e АЛ Л Д q AAAA A A A A 4
AA Z AA'A'A

where A. = {y,jv,m,a) is the quantum state of an electron in configuration 
(Wannier’s) representation; v = labels the consecutive number of a layer 
in a film; jv is the position vector of an electron in layer v; m denotes the 
electronic band and cr =T (JJ is the spin orientation; and a, are the crea
tion and annihilation operators of an electron, respectively; and finally and 
7мТа stands for hopping and Coulomb or exchange integrals.

If we apply now the equation of motion (3.3) to the Hamiltonian (3.4), 
making the following identification of operators as Aa (o) = a[, Bk (O) = ax, and 
after decoupling of the fourth order GF appearing in such an equation by means 
of the second order GF [28] one can obtain
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£G“(£)=is“+? KA (£) (3-5)

where the matrix elements are taken in the Hartree-Fock approximation 

~ 4a + (ЛаЛТ “ (3-6)
A'A'

satisfying the set of secular equations

LCX=£X с3-7)

where energy eigenvalues E" and eigenfunctions represent the quantum 
state of the electron in momentum (Bloch’s) space recognized by means of an 
index p.

In order to simplify the calculation of the GF from eq. (3.5) the ECPA was 
applied [1,2]. This method consists in the replacement of any real inhomoge
neous medium (alloy, melting salt, metallic crystal with spins up and down, 
etc.) by means of an effective homogeneous system, described by an effective 
Hamiltonian, with the so-called coherent potential Qp.

There is a simple relation between the Green Function and coherent
potential 0;| which allows us to substitute ImGu(£) by Im0p [28]. Then the 
final formula of the LDOS can be expressed as

(3.8)

with the value of a broadening of spectral lines of electrons in the form

В2 = У а)
Л

(3.9)

where symbol -a denotes a reverse orientation of a spin with respect to о and 
is the occupation number of an electron in a quantum state X.
The occupation numbers are defined now as

with

ил = Jp(£,A)/(£F,£)J£

f — p 
f(EF,E)= exp

(3.10)

(3.11)
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being the Fermi Distribution Function (FDF) where EF stands for the Fermi 
level of a crystal; kB is the Boltzmann’s constant and T represents the tem
perature in K.

To find the Fermi energy EF a mean density of states is subsequently de
fined

(312)

with N denoting the number of points of the planar Brillouin zone; у standing 
for the number of electronic bands used in the calculations and also the mean 
number of electrons per atom is given by

<313>InNy i

Now the Fermi level can be calculated as the upper limit of integration in the 
equation

n, = jp(E)JE for T->0 (3.14)

In practice lower and upper limits of integration in (3.10) and (3.14) are both 
finite, chosen in such a way that, outside of this energetic limits, р(Е,Л) = 0 
everywhere.

The set of occupation numbers ил can be calculated now by means of a self- 
consistent procedure using eqs. (3.6) and (3.10) - (3.14) until the moment when 
a full convergence with assumed accuracy will be achieved in two consecutive 
iterations.

The quantities and EF are fundamental ones for the definition and fur
ther calculations of the values reading to the solution of the paradoxes listed 
above.

4. AN EXPLANATION OF PARADOXES ONTO METALLIC SURFACES

In order to explain the problems listed in Section 2 it seems to be useful to 
consider still a role of boundary conditions and external polarizations in ECPA.

In the most cases the metallic sample is “embedded” into an external me
dium (vacuum, gas, another metal, electrolyte solution, electric or magnetic 
field, etc.) which acts with electrode surface in self-consistent way. It can be 
generally treated as the boundary condition of the problem.
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This condition alters the surfacial matrix elements in secular equation 
for =(l,m,a)=l ; As=(n,m,a)=n by means of adding new element of 
interaction [2, 28]

+ = Klt + Ж, = Knn + W„ (4.1)

Further in the paper the symmetrical boundary conditions will be used every
where, i.e., W, = Wn - Ж .

The second factor influencing significantly on the LDOS is the polarization 
parameter of a metal caused by and external voltage (denoted as npl). Polari
zation may be defined as the change of a mean value of occupation number ne 
in electroneutral metal caused by adding to or removing from an atom the elec
trons by means of external voltage. It leads, in consequence, to the shift of the 
Fermi level of the crystal. For one-band approximation (only valence-bands 4s, 
5s and 6s for Cu, Ag and Au, respectively) used in this paper, the state ne - 0.5 
stands for an electroneutrality condition (two possible places of electron with 
spins up and down in ns' state), whereas 0<np/ <0.5 and 0.5<np/ <1 denote 
positive and negative charge of the metal, respectively.

Now we can define in the ECPA terminology two quantities being fundamental 
for the solution of the above mentioned paradoxes of metallic surfaces. These are 
the surface charge of the metal Qs (mentioned earlier in comment to formula (2.1)) 
and corrected work function фДг [34].

The surface charge is defined as [1, 2, 29, 34] 

Qs=-^Si Xni.> (4.2)

where e stands for the electron charge (without sign); S, represent the number 
of atoms per square centimeter of a surface of the crystallographic face denoted 
as i. Of course, for only valence-band approximation у = 1 in eq. (4.2).

The corrected work function has been derived [1, 34] by means of the ex
pansion of the occupation number nA into Taylor’s series. Taking also the 
boundary conditions into account, the final formula for the work function is the 
following:

Фео, = ~(ef + AEf+E* f)= -Ef -AEf-Ik(nr -nJ (4.3)

where the second term of the right-hand side of eq. (4.3) is connected with the 
boundary condition and is always equal to zero for vacuum. The third term in 
(4.3), i.e., E'p = describes the surface potential barrier and is di
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rectly related to the so-called local work function which can be directly meas
ured by means of PAX method [9].

Let us now to come back to the list of problems reported in Section 2.
All the paradoxes can be solved in the framework of GFM and ECPA in the 

following way:
Ad 1.

In Table 2 the calculated values of the work function ф* ог have been shown 
for Cu, Ag and Au single crystals and compared with the same faces measured 
in experiment, i.e. for (100), (110) and (111) Miller’s faces. The calculations 
for Cu have been also compared with other theoretical methods [11, 33]. It fol
lows from a comparison between calculations and averaged values of the meas
ured work function from Table 1 that the use of the ECPA gives better agree
ment with experiment than EHT (Extended Hückel Theory) [33] applied by 
Dempsey and Kleinman [35] and much better than Lang and Kohn’s (LK) 
method [11]. The agreement is the best if an average experimental value of the 
work function was obtained from reasonable numbers of different measure
ments (five and six cases for Cu(100) and Ag(100) in Table 1, respectively). In 
other cases, particularly when only two different experimental results are avail
able such a comparison with experiment is rather poor.

So generally one can state that GFM and ECPA reproduce quite reasonable 
the corrected work function ф* ог for noble metal monocrystals and one can pre
sumably expect that these calculated values are very close to the average ex
perimental data for other metals provided that a large enough number of meas
urements was carried out.

Table 2. Corrected work function <tfor calculated for Cu, Ag and Au single crystals of 
(100), (110), (111) faces. In the case of Cu a comparison with other calculations is also 
shown

[eV]
(100) (1 0) (1 1)

4.753a ECPA 4.508a ECPA 4.876a ECPA
4.406b EHT 4.410b EHT 4.379b EHT
3.794' LK 3.549' LK 3.903j LK

[eV]
4.645a ECPA 4.483a ECPA 4.76Г ECPA

[eV]
5.53Г ECPA 5.423a ECPA 5.674a ECPA

a. Ref. [l],b. Ref. [33], i. Ref. [11]
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Moreover, in all the calculations analysed above, the work function changes 
in the direction ф^ >ф^ >Фм'е°^ (with Me = Cu, Ag, Au) what remains in 
quite good correlation with the most dense surface of (111) face when the high
est surface potential barrier occurs in eq. (4.3) and the most open in the case of 
(110) (the smallest barrier). The same tendency appears in Lang-Kohn’s results 
[11] in Table 2 although they remain very far from experimental data.

In fact, this tendency is only confirmed experimentally for Cu single crys
tals. Unfortunately, for Ag and, more particularly, for Au there are big discrep
ancies in the experimental data which do not allow us to analyse it.

Therefore we have shown that the problem of large deviations in the ex
perimental data of the work function can be at least partially avoided by the use 
of GFM calculations. But, of course, this conclusion still demands an experi
mental confirmation for other metals.

Ad 2.
The paradox disappears immediately if we take the corrected work function 

eq. (4.3) instead of the classical one into account. We must put AEf = 0 in 
(4.3) because there are no boundary conditions influencing a crystal in a vac
uum. Then it is evident that the surface barrier of the potential, i.e. 
AE*  - ZA(n, -nA) for a fixed state of a bulk charge (n. =0.5 assuming that the 
measurements are carried out for electroneutrality conditions) depends only on 

distribution in the crystal. The value of the Coulomb integral ZA is as
sumed to be constant for the nearest neighbours interactions in ECPA [1, 2]. 
For instance, Zf“ = Iе“ = 0.4 Ry [1, 28].

In paper [28] there was calculated a distribution of an occupation number 
along a sample thickness. For Cu(100) and Cu(l 10) the shape of ^distribution 
is completely different. It means that strong anisotropy of the nA distribution 
takes place also in one sample of a single crystal with different faces. So the 
barrier AE*  must be different depending on crystallographic axis of the mono
crystals although the Fermi level is only one.
Ad 3.

In the light of eq. (4.3) this paradox consists in misunderstanding about an 
assumption (p^ = 0.

In classical electrochemistry the pzc is understood as a state of compensa
tion of a surface charge of an electrode to the zero’s value Qs =0 (cf. comment 
follows eq. (2.1)). However, it does not mean that a metallic phase lost its elec
tric charge in this case.
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The state with Qs = 0 must be treated only as a disappearance of the surface 
potential barrier, so then nt = = n, in eq. (4.3). But such a compensation of
surface barrier can be only possible by means of an external polarization.

In the electroneutral state of a metal the surface barrier is equal to 
An = /(0.5-n,) and then the polarization npl = —An is needed to compensate 

such a barrier. However, it leads to the bulk charge different from electroneu
trality, so the metallic phase has to be charged and, in consequence, # 0 .

Therefore, eq. (2.1) is correct and the paradox connected with a contact po
tential also disappears.

Ad 4.
There are only few attempts in electrochemical literature of the last twenty 

years to explain the unusual phenomenon of the ionic specific adsorption. The 
most important theoretical papers [35-39] try to explain this process as a kind 
of chemisorption with covalent bonds between metal and adsorbed ions. These 
bonds seem to be created by means of a charge transfer from a valence band of 
the metal to the partially empty d-bands of halides СГ, Br’, Г. Needless to say 
that such an explanation takes only a final step of the process into account 
when desolvated ions are already chemisorbed on the metal surface.

None of the theories gives an answer for the fundamental question of what is 
the reason that two species (electrode surface and ions) with the same positive 
or negative charges attract themselves seemingly against the laws of electro
statics.

An explanation of this question has been provided by means of surface 
charge calculations (eq. (4.2)) as a function of boundary condition W and exter
nal polarization npl.

Table 3, taken from [2], reports the function Qs = f\}V,npl) for Cu, Ag and 
Au single crystals of the face (100). For other cystallographic faces the function 
has similar character [2].

There are two regions in Table 3, near the pzc line (from the upper left cor
ner to the lower right one), in which the surface and bulk charges of the metal 
reveal the reverse signs. We can see that for n , = 0.3, 0.4 Qs < 0 and for 

npl = 0.6 0.7 Qs > 0.
From the results analysed above one can conclude that a long-range Cou- 

lombic attraction between the positive bulk of the metal and an anion which is 
coming towards the negative crystal surface determines mainly the nature of the 
specific adsorption forces. Charge transfer is the final step of the process. 
Similar mechanism takes place in the case of the cation adsorption on positively 
charged electrode surface.
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Table 3. Surface charge qs [pC/cm2] as a function of ц/ (in Ry) and npl calculated by 
means of ECPA for Ag(100) and Au(100) single crystals. The values of Qs for Cu are 
taken from [ 1 ]

W(JRy) =0.3 iïp,=0.4 np/ =0.5 npl =0.6 «₽/ =0-7
Cu -27.2 -108.5 -172.5 -209.6 -22.90

-0.8 Ag -7.3 -64.6 -107.7 -141.0 -165.4

Au 1.8 -48.3 -88.3 -120.8 -149.9

Cu -1.0 -78.5 -139.4 -183.3 -213.0

-0.6 Ag 11.2 -42.8 -85.5 -121.3 -149.9

Au 20.2 -27.9 -68.6 -103.2 -135.0

Cu 30.8 -41.6 -99.7 -150.2 -191.0

-0.4 Ag 32.8 -18.7 -61.3 -98.9 -130.6

Au 39.5 -6.9 -48.0 -84.1 -119.2

Cu 65.5 1.9 -58.0 -110.2 -153.8

-0.2 Ag 54.3 8.0 -35.4 -73.6 -108.7

Au 59.5 15.0 -25.9 -64.4 -101.8

Cu 101.3 46.6 -8.1 -63.9 -112.1

0.0 Ag 77.1 34.5 -7.7 -46.8 -84.8

Au 80.2 36.7 -4.3 -43.9 -83.9

Cu 135.0 90.4 39.2 -13.6 -68.5

+0.2 Ag 100.0 51.0 20.0 -19.4 -59.7

Au 100.6 58.5 17.9 -23.5 -65.7

Cu 165.5 133.1 88.6 36.6 -22.5

+0.4 Ag 120.2 88.1 48.4 8.1 -34.7

Au 119.6 80.0 39.5 -2.8 -47.3

Cu 190.5 165.4 134.7 84.4 22.5

+0.6 Ag 138.0 111.9 77.3 35.0 -10.6

Au 137.3 103.0 61.5 17.8 -29.6

Cu 207.5 188.5 170.0 129.6 59.2

+0.8 Ag 152.6 132.6 104.0 61.2 12.5

Au 151.8 123.8 84.0 38.2 11.4

So an explanation of this very strange phenomenon turned out to be very 
trivial. The superposition of the opposite charges on the surface and in the bulk 
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of the metal produces an electric field attracting ions towards the electrode. 
There is no contradictions in such a behaviour with respect to the classical laws 
of electrostatics.

In Figure 1, taken from [40], the mechanism of specific adsorption consist
ing of three steps is presented .

Figure 1. The three-steps mechanism of the specific absorption of anions following from 
the ECPA calculations
a. Generation of the reverse signed charges in the bulk of metal and on the surface by 

means of an external polarization
b. Electrostatical attraction of anions by positively charged bulk - adsorption on the 

surface
c. Electron transfer of valence electrons from the electrode to the empty d orbitals of 

adsorbed anions

5. CONCLUSIONS

In this paper the possibilities of the Green Function Method and Extended 
Coherent Potential Approximation of the explanation of some unusual phenom
ena in some experiments on metallic surfaces have been reported.

In practice, this is mainly connected with the work function measurements 
of noble metal single crystals. In this case, when good theoretical results are 
achieved, it is possible to take advantage for reproducing of reasonable tenden
cies in the behaviour of the work function as the “vicarious experiment”.

On the other hand the power of this theoretical method consists in an expla
nation of the effects which presumably could be never fully understood only on 
the basis of the experiment regardless of the technical level of the measure
ments. It mainly concerns the ionic specific adsorption where an experimental 
separation of the electrode charge between bulk and surface charge of metal is 
practically impossible. The only suitable experimental values are the potential 
of an electrode (measured with respect to certain reference electrode) and its 
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surface charge. As it was shown the GFM and ECPA are able to make such a 
separation in quite a natural way.

There are also other kinds of controversial effects which may be qualified, 
in fact, as artificial difficulties. For instance, the dependence of the work func
tion of a single crystal on the Miller’s indices of its face as well as the paradox 
of contact potential properties. In this case only the good theoretical definition 
of the quantities which are measured (work function) is quite enough to arise an 
agreement between theory and experiment.

Finally it is worth to emphasise that the GFM’s possibilities are based on the 
level of precision of the Hamiltonian used in the equation of motion (3.3) as well 
as its associated commutation rules of the operators defined in the appropriate 
Fock space. In the bulk the particles or quasi-particles follow only two kinds of 
statistics (bosons or fermions) while on the surface might exist other possibilities 
such as the quantum dots and quantum Hall effect which can lead to the new su
perconductors and the giant or even colossal magnetoresistance [41].

Very recently, a theoretical paper on the work function calculation by means 
of so-called Brodie’s plasma model has been published [42]. Unfortunately, al
though a good agreement of the theoretical results with experimental data (in 
vacuum) for many polycrystallic metals was achieved in this paper there are no 
boundary conditions taken into account.

Acknowledgement. The author is greatly indebted to Prof. D. Baldomir for 
many valuable comments and to the authorities of the University of Santiago de 
Compostela (Spain) for a partial financial support of the paper.

6. REFERENCES

[1] Romanowski S., Phys. Stat. Sol. (b), 145,467 (1998).
[2] Romanowski S., Polish J. Chem., 67, 729 (1993).
[3] Rowe J.E., Smith N.V., Phys. Rev., BIO, 3207 (1974).
[4] Garland P.O., Berge S., Slagsvold B.J., Phys. Norv., 7, 39 (1973); 

Phys. Rev. Lett., 28, 738 (1972).
[5] Samsonov G.V. (Ed.), Svoista Elementov, Spravochnik, vol. 1, Metal- 

lurgiya, Moskva 1976, p. 314 (in Russian).
[6] Tibbetts G.G., Burkstrand J.M., J. Ch. Tracy, Phys. Rev., B15, 3652 

(1977).
[7] Haas G.A., Thomas R.E., J. Appl. Phys., 48, 48 (1977).
[8] Stranger R.W., Mackie W„ Swanson L.W., Surf. Sei., 34, 225 

(1973).
[9] Wandelt K„ J. Vac. Sei. Technol., A2, 802 (1984).
[10] Trasatti S., J. Electroanal. Chem., 33, 351 (1971).



An application of the Green Functions Method... 247

[11] Lang D.N., Kohn W.,Phys. Rev., B3, 1215(1971).
[12] Farnsworth H.E., Winch R.P., Phys. Rev., 58, 812 (1940).
[13] Clarke N.E., Farnsworth H.E., ibid. 85, 484 (1952).
[14] Dweydari A.W., Mee C.H.B., Phys. Stat. Sol., (a), 17, 247 (1973).
[15] Michaelson H.B., J. Appl. Phys., 48, 4729 (1977).
[16] Anderson P.A., Phys. Rev., 59, 1034 (1941).
[17] Chelwayohan M„ Mee C.H.B., J. Phys., C15, 2305 (1982).
[18] Trasatti S., J. Electroanal. Chem., 172, 27 (1984).
[19] Valette G„ ibid, 230, 189 (1987).
[20] Albano E.V., Daiser S., Miranda R., Wandelt К., Surf. Sei., 114, 

320(1982).
[21] Valette G., J. Electroanal. Chem., 139, 285 (1982).
[22] Lecoeur J., Bellier J.P., Koehler C., Electrochim. Acta, 35, 1383 

(1990).
[23] Frumkin A.N., Uspekhi Khim Nauk, 24, 933 (1995).
[24] Jakuszewski B., Contemporary problems of theoretical electrochem

istry, PWN, Warsaw, 1970 (in Polish).
[25] Kortüm G., Electrochemistry, PWN, Warsaw 1970 (Polish translation).
[26] Stern O., Z. Elektrochem., 30, 508 (1924).
[27] Frumkin A.N., Z. Phys. Chem., 103, 43 (1923), 55; 109, 34 (1924).
[28] Wojtczak L., Romanowski S., Stasiak W., Mrygofi B., Czech. 

J. Phys.,B3\, 1024(1981).
[29] Romanowski S., Stasiak W., Wojtczak L., Electrochim. Acta, 27, 

511 (1982).
[30] Zubarev D.N., Usp. Fiz. Nauk, 71, 71 (1960); Sov. Phys. - Usp., 3, 320 

(1960).
[31] Tahir-Khelli R.A., ter Haar D., Phys. Rev., 127, 88 (1962), 95; 130, 

108(1963).
[32] Tahir-Khelli R.A., Phys. Rev., 132, 689 (1963).
[33] Mattuck R.D., A Guide to Feynmann Diagrams, Me Graw - Hill, New 

York, 1976.
[34] Romanowski S., Wojtczak L., Green Functions in Electrochemistry, 

Klüver Academic Publishers, Dordrecht, The Netherlands, 1997.
[35] Dempsey D.G., Kleinman L., Phys. Rev., В16, 5356 (1977).
[36] Ying S.C., Smith J.R., Kohn W„ Phys. Rev., Bl 1, 1485 (1975).
[37] Bell B„ Madhukar A., ibid, B14, 4281 (1976).
[38] Lorentz W., Handschuh M., Electrochim. Acta 25, 293 (1980).
[39] Kuznetsov A., Reinhold J., Lorenz W., ibid, 31, 928 (1986).
[40] Romanowski S., Polish J. Chem., 69, 529 (1995).



248 S. Romanowski

[41] Rivas J., Sanchez R.D., Fondado A., Izco C., Garcia-Bastida A.J., 
Garcia-Otero J., Mira J., Baldomir D., Gonzalez A., Lado L, Lo- 
pez-Quintela M.A., Oseroff S.B., J. Appl. Phys., 76, 6564 (1994).

[42] Hałas S., Durakiewicz T., J. Phys.: Condensed Matter, 10, 10815 
(1998).

CURRICULUM VITAE

Prof. Stanisław Romanowski. Bom in Po
land in 1947. Graduated from University of 
Łódź, Łódź, in 1970. Received his 
Ph. D. degree in chemistry also at Łódź Uni
versity, Faculty of Mathematics, Physics and 
Chemistry, in 1975. Dr. Sc. degree (habilita
tion) received from Warsaw University in 
1990. Since 1992 has been appointed on the 
position of Associate Professor and Head of 
Theoretical Chemistry Department. Full 
Professor position received in 1996. His 
main field of interest concerns the theoreti
cal description of the various aspects of in
terfacial and physicochemical properties, 
particularly chemisorption and catalysis, in 
thin metallic films, metallic and molecular 
clusters and biological membranes mainly by 
means of the Green Functions Method and

Extended Coherent Potential Approximation. He published over 100 papers and 
took part in many conferences.

Together with professor L. Wojtczak (Solid State Physics Department, Uni
versity of Łódź) he published the monograph “Green Functions in Electro
chemistry” (Klüver Academic Publishers, 1997). For scientific achievements he 
was awarded two times by Polish Ministry of Education and six times by the 
Rector of Łódź University. He cooperates with many valuable groups in the 
world and makes a lot of short- and long-term visits to Friedrich-Schiller Uni
versity (Jena, Germany), Charles University (Prague, Czech Republic), Univer
sity of Santiago de Compostela (Spain), University of Porto (Porto, Portugal), 
Claude-Bernard University (Lyon, France) and University of Utrecht (The 
Netherlands).


