ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN-POLONIA

VOL. L/LI,9

SECTIO AA

1995/1996

School of Medicine, Lublin

BOŻENA MODZELEWSKA*, EDMUND PYRA**

Synthesis of N³-substituted amidrazones

Synteza N³-podstawionych amidrazonów

Amidrazones are hypothetical hydrazites of imide acids used to obtain the heterocyclic systems. They are also applied in industry and medicine (pesticides, bacterio- and virusostatic) [1–4]. They react with the reagents of various composition. The nitrogen atoms of the amidrazone group are the potential places of the electrophilic reagent attack. The most tractable is the first free nitrogen.

Amidrazones are used as substrates to form the five-membered systems (1,2,4-triazoles; 1,3,4-thiadiazoles; 1,3,4-oxadiazoles; tetrazoles, pyrazoles, imidazoles) [5–7], the six-membered systems (1,2,4-triazines) [3,8,9], the seven-membered systems (1,2,4-triazepines) [10] and the bisheterocyclic systems [11,12].

The significant limitation of the amidrazone application in the syntheses is their not always easy availability, among others their low yield, instability, cyclization to the derivatives of 1,2,4,5-tetrazine systems and possible decomposition [12,13,17,18].

^{*}Chair and Department of Organic Chemistry, Pharmaceutical Faculty, Akademia Medyczna, 20-081 Lublin, ul. Staszica 6.

^{**} Chair and Department of General Chemistry, Medical Faculty, Akademia Medyczna, Lublin.

The subject of our interest were amidrazones (I–X), which were used in reactions of addition (first step) and cyclization (second step) with e.g. isothiocyanates or DMAD (dimethyl acethylenedicarboxylate) leading to formation of 5- or 6- membered heterocyclic systems [7,11,12].

N³-substituted amidrazones are the compounds of the generalized formula:

$$R \stackrel{N-NH_2}{\longrightarrow} NHR^2$$
 $N \stackrel{N-NH_2}{\longrightarrow} NH \stackrel{N-NH_2}{\longrightarrow} NH$
 $N \stackrel{N-NH_2}{\longrightarrow} NH$
 $N \stackrel{N-NH_2}{\longrightarrow} NH$
 $N \stackrel{N-NH_2}{\longrightarrow} NH$

No	R	R ²	
I	C ₆ H ₅	C ₆ H ₅	
II	C_6H_5	p-CH ₃ -C ₆ H ₄	
III	C_6H_5	p-NO ₂ -C ₆ H ₄	
IV	2-C ₅ H ₄ N	C ₆ H ₅	
V	2-C ₅ H ₄ N	p-CH ₃ -C ₆ H ₄	
VI	2-C ₅ H ₄ N	p-NO ₂ -C ₆ H ₄	
VII	2-C ₅ H ₄ N	2-C ₅ H ₄ N	
VIII	4-C ₅ H ₄ N	C_6H_5	
IX	$4-C_5H_4N$	p-CH ₃ -C ₆ H ₄	

The preparation method of N³-substituted amidrazones is based on the condensation of N-arylsubstituted acid thioamides with hydrazine hydrate.

Amidrazones (I–IV,X) were prepared according to the literature [4,19–21].

Preparation of N^3 -p-tolyl-2-picolinamidrazone (V) and N^3 -p-tolyl-4-picolinamidrazone (IX)

The general method: 1.0g of N-p-tolyl-thioamide of 2 or 4-picolinic acid [22] was suspended in 5cm³ of ethanol. 3cm³ of 80% hydrazine hydrate was added and slightly heated (till dissolved). After 24h 10cm³ of water was added and the precipitate filtered and purified by dissolving in methanol in room temperature. The contaminations were filtered, water added up to turbidity and left for 24h. Then the product was filtered.

Preparation of N^3 -p-nitrophenyl-2-picolinamidrazone (VI)

1.0g of N³-p-nitrophenyl-thioamide of 2-picolic acid [22] was suspended in 5cm³ of ethanol and then 3cm³ of 100 hydrazine hydrate was added. The content was kept boiling in a flask under the reflux condenser for 3min. and left for 12h. The dark-yellow, brilliant precipitate was purified by crystallization from ethanol.

Preparation of N^3 -2-pyridil-2-picolinamidrazone (VII)

1.0g of N-2-pyridil-thioamide -2-picolinic acid [21] was suspended in 6cm³ of ethanol; 1cm³ of 100% hydrazine was added and heated in a flask under the reflux condenser in water bath till dissolved. The flask content was left for 12h. Then some water was added. The creamy, brilliant precipitate formed was filtered and purified by crystallization from water.

Preparation of N³-phenyl-4-picolinamidrazone (VIII)

Mixture of 2.0g N-phenyl-thioamide-4-picolinic acid [22] and 6cm³ - of 100% hydrazine hydrate was left for 24 h at room temperature. Then 10cm³ of water was added, the fluffy, slightly creamy precipitate formed was purified by crystallization from water-methanol solution (1:1).

The data relating to IR and ¹H NMR spectra are listed in Table 1. N-aryl-substituted acid thioamides for amidrazones (I–IV, X) were prepared according to literature [22-25].

Table 1. Analytical data

Compound	Formula	M.p.,	Yield,	A	Analysis %	Hal II		IR (cm ⁻¹)	April	¹ H-NMR (ppm)
aT ni b	Molecular Weight	[,c]	[%]	Element Calcu-	Calcu- lated	Found		KBr		DMSO
Mei	per fr	inci less hins	en co cos	C	60.45	60.14	3307	HN		2.1(s,3H,CH ₃)
[]	C13H14N4S	95	35	H	5.42	4.92	3030	arom.		6.3-8.1(m,8H arom. +
1.5	258.06		ion ill in	Z	21.70	22.00	2990	alif.		+ 2H 2NH ₂ + 1H NH)
HX!	non High	in i	and and	ice		der Tec	1516	C=N		identification of the color
180	in i	ild-	db fr ind ind	C	56.03	56.20	3300	HN	S.A.	this can be can
8/	C12H11N5O2	127	40	Н	4.28	4.30	3052	CH	arom.	6.7-8.1(m,8H arom. + 2H NH ₂ +
VIR	257.12		海市 加田	Z	27.23	27.00	1520	C=N		+ 1H NH)
M	in a	Tiel Tiel Trus	W SSS STO STO	n-l		97. V 0	1320	NO2	,b	other and and and ited
H	ol dis		b i d b i d c c	C	61.97	61.55	3340	HN	V S	7.0-8.3(m,8H arom. + 2H NH ₂ +
Би	C11H11N5	1112	35	Н	4.75	4.52	3070	CH	arom.	
LIS	213.11	A Car	di di di	Z	32.86	32.50	1517	C=N	N. S.	ing section of the se
RI.	y W		84 84 ebl	C	76.79	67.72	3280	HN	NOI W	6.4-8.3(m,8H arom. + 2H NH ₂ +
OI	C ₁₂ H ₁₂ N ₄	124	38	Н	5.66	5.25	3030	CH	Arom	Arom + 1H NH)
9/	212.12	in'i	William No.	N	26.41	26.30	1520	C=N	de	an a
ins	iny in di		to the v to d b	C	60.45	00.09	3130	NH	d: ba	2.1(s,3H,2CH ₃)
le de la	$C_{13}H_{14}S$	120	38	H	5.42	4.90		CH	arom.	arom. 6.6-8.5(m,8H arom. + 2H NH ₂ +
96	258,06		os w ing	Z	21.70	22.03	2290	CH	alif.	+ 1H NH)
ь	dr	e i	ile on on	0		bd V-	1540	C=N		of a spirit

For N-p-tolyl-thioamide of 2-picolinic acid, N-p-tolyl-thioamide of 4-picolinic acid and 4-p-nitrophenyl-thioamide of 2-picolinic acid we take a try to modify their synthesis by changing reaction conditions. Physicochemical properties of obtained in modified conditions compounds were similar to previously obtained but reaction time was much shorter.

The general method:

50g of 2- or 4-picoline

30g of *p*-toluidine or *p*-nitroaniline

50g of sulfur

The mixture was heated in a flask under the reflux condenser for 24h till boiling. After cooling, 50cm³ of 15% hydrochloric acid was added and 2h later the precipitate was filtered off and placed in ammonia. To be purified, it was extracted with hot methanol. The solution was condensed and filtered.

REFERENCES

- Neilson D. G., Roger R., Heatle J. W. M., Newlands L. R., Chem Rev., 70, 151 (1970).
- [2] Pinner A., Ann., 297, 221 (1987).
- [3] Zelenin K. N., Solod O. W., Khrustaler W. A., Khim. Geterotsikl Soedin, 867 (1989).
- [4] Spassow A., Golowiński E., Żoch., 32, 3394 (1962).
- [5] Bany T., Rocz. Chem., 42, 247 (1968).
- [6] Bany T., Dobosz M., Ann. UMCS, Sec. AA, 26–27, 23 (1971/72).
- [7] Modzelewska B., Acta Pol. Pharm. Drug Research, 52, 297 (1995).
- [8] Dawid J., Le Count D., Greer A., J. Chem. Soc., 279 (1974).
- [9] Le Count D., Greer A., Tetrahedron Letters, 31, 2905 (1973).
- [10] Takahaski M., Sugawara N., Yoshimuro K., Bull. Chem. Soc. Jpn., 50, 957 (1997).
- [11] Modzelewska B., Ann. UMCS, Sec. AA, XLVI/XLVII, 62 (1991/1992).
- [12] Modzelewska B., Ann. UMCS, Sec. AA, XLVIII/XLIX, 164 (1993/1994).
- [13] Pinner A., Ber., 26, 3276 (1894).
- [14] Pinner A., Ber., 27, 997 (1894).
- [15] Pinner A., Ber., 27, 2127 (1894).
- [16] Atkinson M. R., Polya J. B., J. Chem. Soc., 3319 (1954).
- [17] Oberhummer W., 63, 287 (1937).
- [18] Modzelewska B., Ann. UMCS, Sec. AA, XLVIII/XLIX, 172 (1993/1994).
- [19] Spawsow A., Demirow G., Golowiński E., Ber., 98, 932 (1965).
- [20] Spawsow A., Golowiński E., Ber., 99, 3735 (1966).

- [21] Emmert B., Ber., 91, 1388 (1958).
- [22] Emmert B., Holez A., Ber., 87, 676 (1954).
- [23] Emmert B., Groll M., Ber., 86, 205 (1953).
- [24] Wallach O., A., 259, 301 (1890).
- [25] Rimman E., Ber., 30, 1194 (1897).

STRESZCZENIE

Zbadano N³-podstawione amidrazony, które wykorzystano do syntezy układów heterocyklicznych 5- i 6-członowych.

Amidrazony (I-IV, X) zostały opisane w piśmiennictwie, pozostałe (V-IX) otrzymano przy wykorzystaniu wskazówek literaturowych.