ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN-POLONIA

VOL.XLII/XLIII,5

SECTIO AA

1987/1988

Zakład Chemii Analitycznej i Analizy Instrumentalnej Wydział Chemii UMCS

jest współczynnikiem dyfuzji, w z lepkęścia kinematyczną rostworu a P(a) jest

Joanna BASAK, Jarosław PENAR, Kazimierz SYKUT

Symulacja cyfrowa do wyznaczania stałych szybkości reakcji w warunkach miareczkowania w warstwie dyfuzyjnej na wirującej elektrodzie dysk-pierścień. Część II. Reakcje drugiego rzędu

Digital Simulation for Determining Rate Constants in Diffusion Layer Titration on the Rotating Ring-disc Electrode. Part II. Second Order Reactions

sinalars verg (horival) =) an wWSTEP

W poprzedniej pracy [1] przedstawiono metodę symulacji cyfrowej do badania procesu EC I (reakcja chemiczna pierwszego rzędu poprzedzona procesem elektrodowym) na wirującej elektrodzie dysk-pierścień oraz omówiono zasadnicze części napisanego w Fortranie programu do symulacji tego procesu. Obecnie zajmiemy się rozszerzeniem powyższego programu tak, aby był on przydatny do badania kinetyki reakcji homogenicznej drugiego rzędu w warunkach miareczkowania w warstwie dyfuzyjnej (proces EC II).

Od strony analitycznej problem opisu procesu EC II został w sposób przybliżony roswiązany przez Albery'ego i in. [2, 3, 4]. W pracy [4] podano sposób wyznaczania stałej szybkości k_2 reakcji drugiego rzędu z krzywych zależności i_R od i_D dla różnych szybkości wirowania elektrody oraz dla różnych stężeń substancji C reagującej z substancją B generowaną na dysku. W skrócie metoda polega na wyznaczeniu tzw. kinetycznego prądu dysku $i_{D,k}$, tj. wartości prądu dysku w momencie gdy powierschnia reakcji substancji B i C znajduje się na wewnętrznej krawędzi pierścienia [3,4] (powierzchnią reakcji określa się obszar, gdzie [B] = [C]). Przy takim prądzie dysku przy stałej prędkości wirowania elektrody ω (dla danego stężenia substancji C) prąd pierścienia i_R jest uzależniony od ilości substancji B przenikającej w obszar dominacji substancji C, a więc w tych warunkach i_R sależy od szybkości reakcji pomiędzy B i C. Mając wyznaczone wartości $i_{D,k}$ dla różnych ω i dla różnych stężeń substancji C, określa się wartości kinetycznego prądu pierścienia $i_{R,k}$ z krzywych i_D vs. i_R . Mając te wartości można określić zależność N_k od ω/C_C^0 , gdzie $N_k = |i_{R,k}/i_{D,k}|$ a C_C^0 jest stężeniem substancji C. Zgodnie z teorią Albery'ego i in. [4] N_k wyraża się wzorem:

$$N_k = .339r_2^2 r_1^{-2} D^{1/3} \nu^{-1/6} [1 - F(\alpha)] \omega k_2 C_C^0 \tag{1}$$

gdzie r_1 i r_2 oznaczają promień dysku i promień dysku z przerwą izolacyjną, Djest współczynnikiem dyfuzji, ν – lepkością kinematyczną rostworu a $F(\alpha)$ jest funkcją wymiarów elektrody [5]. Widać, że wykres zależności N_k od ω/C_C^0 powinien być linią prostą przechodzącą przez początek układu. Jest to prawdą jedynie dla bardzo małych wartości ω/C_C^0 . Dla większych wartości ω/C wartość N_k nie rośnie nieograniczenie (jak to wynika ze wzoru) lecz asymptotycznie dąży do wartości N_0 [4,5] (efektywności zbierania elektrody). Wyznaczenie k_2 z zależności N_k vs. ω/C_C^0 polega na określeniu nachylenia prostoliniowego odcinka tej zależności, które jest proporcjonalne do $1/k_2$.

Prater i Bard przedstawili metodę wyznaczania stałej szybkości k_2 opartą na symulacji cyfrowej [6]. Metoda polega na symulacyjnym wyznaczeniu krzywych roboczych N_k od $\chi^2 m$ (gdzie $\chi^2 = k_2 C_A^0 \omega^{-1} \nu^{1/3} D^{-1/3} (0.51)^{-2/3}, m = C_C^0/C_A^0,$ C_A^0 oznacza początkowe stężenie substancji elektroaktywnej) przy skoku potencjału na dysku do wartości prądu granicznego. Otrzymuje się w ten sposób (dla danej elektrody) rodzinę krzywych – dla każdej wartości parametru m jedna krzywa. Ustalając w eksperymencie wartość i_D na wartość graniczną $i_{D,l}$ (graniczny prąd dyfuzyjno-konwekcyjny) należy rejestrować zmiany N_k (= $|i_{R,l}/i_{D,l}|$) przy zmianie ω i C_C^0 . Wartość k_2 można otrzymać przez wyznaczenie z krzywych roboczych wartości $\chi^2 m$ dla każdego N_k i wykreśleniu zależności $\chi^2 m$ od ω/C_C^0 . Nachylenie prostej jest wprost proporcjonalne do $1/k_2$.

Naszym celem jest zaprezentowanie innego sposobu wykorzystania symulacji cyfrowej do wyznaczania k_2 . W symulacji przez nas proponowanej na dysk nakłada się prąd o wartości takiej, aby powierzchnia reakcji znajdowała się na wewnętrznej krawędzi pierścienia. Dla otrzymanych z analizy doświadczalnych krzywych i_R vs. i_D wartości N_k [4] znajdujemy odpowiadające im wartości $\chi^2 m$ na roboczej krzywej symulacyjnej N_k od $\chi^2 m$. Następnie wykreślamy zależność $\chi^2 m$ od C_C/ω (zależność prostoliniowa). Nachylenie prostej jest wprost proporcjonalne do $1/k_2$.

Metoda ta ma kilka salet w stosunku do metody Albery'ego i in. Międsy innymi charakterysuje się większą dokładnością i jest użyteczna bez nakładania ograniczeń na wartości ω/C_C^0 . Zaletą jej jest także to, że dla danej elektrody mamy jedną krzywą roboczą N_k vs. $\chi^2 m$ bez wsględu na wartość parametru m. U Pratera i Barda dla każdego parametru m należy wykonać osobne obliczenia. Prócz tego, jak wskazuje Albery i in. [4] dla wyznaczania k_2 najkorzystniej jest "ustalić" pozycję powierzchni reakcji na wewnętrznej krawędzi pierścienia, gdyż wtedy pierścień "zbiera" jedynie tę część substancji B, która nie zdążyła przereagować z substancją C w rejonie jej dominacji. Tak więc opisywana metoda łaczy ze sobą saletę metody Albery'ego i in. (praca w sakresie prądów kinetycsnych) oras saletę metod symulacyjnych (brak ograniczeń sakresu stosowalności).

SYMULACJA CYFROWA PROCESU EC II ZE SKOKIEM PRĄDU NA DYSKU

Symulowany proces można opisać równaniami:

$$A \pm ne \rightarrow B$$
 dysk (2)

$$B + C \rightarrow D + E$$
 warstwa dyfusyjna (3)

$$B \pm ne \rightarrow A$$
 pierścień (4)

gdzie zakłada się, że substancje B, C i D są elektronieaktywne. W stosunku do procesu EC I powyższy proces różni się jedynie reakcją (3). Do symulacji opisanej poprzednio należy kilka zmian związanych z II-rzędowością reakcji w warstwie dyfuzyjnej, skokiem prądu na dysku oraz dyfuzją i konwekcją substancji C. Wprowadzamy parametr m, określony zależnością [6]:

$$m = C_C^0 / C_A^0$$

gdžie C_C^0 i C_A^0 oznaczają początkowe stężenia substancji C i A (stężenia substancji A i C w głębi roztworu). Początkowe stężenie substancji C w każdej komórce siatki przestrzennej będzie równe [1]:

FC1(J,K) = m

Dyfuzję i konwekcję substancji C uwzględniamy analogicznie jak dyfuzję i konwekcję substancji A i B [1, 6]. Zmianie musi ulec parametr związany z szybkością reakcji homogenicznej. Dla reakcji II rzędu mamy:

$$-dC_C/dt = -dC_B/dt = k_2 C_B C_C$$

Wyrażając to przy pomocy parametrów symulacyjnych (tzn. $C_C/C_A^0 = FC$, $C_B/C_A^0 = FB$) otrzymamy [1, 6]:

$$-\Delta FC = -\Delta FB = k_2 FB C_C \Delta t$$

Poniewas [1, 7] $\Delta t = t_k/L = \nu^{1/3} D^{-1/3} \omega^{-1} L^{-1} (0.51)^{-2/3}$ a $C_C = FC C_A^0$, to $-\Delta FC = -\Delta FB = k_2 t_k C_A^0 FB FC/L$. Beswymiarowy parametr $k_2 t_k C_A^0$ osnacsmy XKTC [6]. Mamy:

$$XKTC = k_2 t_k C_A^0 = k_2 C_A^0 \omega^{-1} \nu^{1/3} D_A^{-1/3} (0.51)^{-2/3}$$

A więc ostatecznie

$$FB1(J,K) = FB1(J,K)(1 - XKTC FC1(J,K)/L)$$

$$FC1(J, K) = FC1(J, K)(1 - XKTC FB1(J, K)/L)$$

Ostatnia smiana dotycsy warunków brsegowych prsy skoku prądu na dysku. Na dysku mamy:

$$FA1(1,1) = FA1(1,1) - FLUX - DMA(FA1(1,1) - FA1(2,1))$$

$$FB1(1,1) = FB1(1,1) + FLUX - DMB(FB1(1,1) - FB1(2,1))$$

$$FC1(1,1) = FC1(1,1) - DMC(FC1(1,1) - FC1(2,1))$$

W przerwie izolacyjnej i na pierścieniu warunki brzegowe są takie jak poprzednio [1] (oczywiście należy uwzględnić dyfuzję substancji C do elektrody).

Parametr FLUX określa ilość substancji A jaka uległa reakcji elektrodowej na dysku w czasie Δt przy założeniu, że na dysk nałożony jest prąd "kinetyczny" Ponieważ ogólnie [7]

$$FLUX = DMA(FA1(2,1) - FA1(1,1)) = ZD(DMA/L)^{1/2}$$

a [1, 7]

$$ZD = i_D / (0.51)^{1/3} n F A C_A^0 D_A^{2/3} \omega^{1/2} \nu^{-1/6}$$

(ZD jest prądem dysku wyrażonym przez wielkości bezwymiarowe) oraz

 $i_{aa} = .62 n F A C_{A}^{0} D^{2/3} \omega^{1/2} \nu^{-1/6}$

(i... jest prądem dysku w stanie stacjonarnym) to możemy napisać

$$i_D/i_{ee} = (0.51)^{1/3}/0.62FLUX(L/DMA)^{1/2}$$

csyli

$$FLUX = (i_D/i_{**})0.62/(0.51)^{1/3}(DMA/L)^{1/2}$$

Poniewaś i musi być równy prądowi "kinetycznemu" dysku, który spełnia zależność [2, 5]:

$$|i_{D,k}| = M/(1 - F(\alpha))$$

gdsie $M = nFAD^{2/3}(0.51)^{1/3}\omega^{1/2}\nu^{-1/6}C_C^0/1.288$ a $F(\alpha)$ jest funkcją sależną od wymiarów elektrody, przy czym $\alpha = (r_2/r_1)^3 - 1$, to ostatecznie możemy zapisać :

 $FLUX = [m/(1 - F(\alpha)]0.776(DMA/L)^{1/2}$

WYNIKI I DYSKUSJA

Dla danej elektrody wartość N_k jest taka sama dla układów s tą samą wartością $\chi^2 m$, przy czym prąd dysku musi być tak dobrany, aby powierschnia reakcji snajdowała się w tej samej pozycji dla każdego s tych układów. Innymi słowy układy s tą samą wartością $\chi^2 m$ i tym samym położeniem powierschni reakcji dają te same wartości N_k . Dzięki temu w symulacji procesu EC II przy skoku prądu na dysku do wartości, przy której powierschnia reakcji osiąga wewnętrzną krawędź pierścienia, otrzymujemy jedną krzywą roboczą zależności N_k od XKTC m, bez względu na wartość m. Krzywą taką przedstawia ryc.1.

Opisaną tutaj metodę użyto do wysnaczenia stałej szybkości reakcji rodanowania floroglucyny. Na ryc.2 przedstawiono zależność XKTC m od C_C^0/ω , przy czym wartości XKTC m odpowiadają doświadczalnie wyznaczonym wartościom N_k .

Rycina 3 przedstawia eksperymentalną krzywą N od ω/C_C° . Zgodnie z zależnością Albery'ego, początkowa prostoliniowa część tej krzywej odpowiada

saleśności (1). W pracy [8] porównano teorię Albery'ego i in. s metodą symulacji cyfrowej, sugerując smianę współcsynnika .339 we wsorse (1) na .424, dsięki csemu wyniki symulacji są bardsiej sgodne s teorią. Analisując ryc. 2 i 3 widać więkssy sakres oras większą precysję metody symulacji cyfrowej.

wardesta X m. proy caym pago oyara mini aya nar oonariiy, aay powiaracania reakcji anajdowala siq w taj annaj powoji dia kaidego a tych whadow. Innymi eloigo układy a tą samą wartości Q wi turo asrogra poloieniem powiarachai reakcji dają to same wartości Na. Dalęki tama w symulacji proresa EO II pray skolra prądu na dysku do martości przy kiómi som brzywą robocag zależnoścja w canątrznią krzwedd piericiania, otrzymujemy jedną krzywą robocag zależności Na od XXTC znakom waględu za wartość m. Krzywa taką przedujawią ryc. 1

Opunių turių metodų uryto od wyrazienia ienių arybaosti reakcji rodenow paiedoropherarys Metrykil prosidenteficinio rakidentie (XMTO fielda OB/M, plrigo crym. yrytokti, XMTC, m. odpowiadajų dokyladcastają wyrazoparas ie artoktione Na.

Ryciaa 3 preddételis/džijičiynikajžiną tžisybon Widd w/03. Zgodnie a salešnością Albery'szo, początkowa prostoliniowa część tej krzywej odpowiada

LITERATURA

- [1] Penar J., Sykut K., Annales Univ. Mariae Curie-Sklodowska, 43, 44, (1988/1989)
- [2] Albery W.J., Bruckenstein S., Johnson D.C.; Trans. Faraday Soc., 62, 1938, (1966).
- [3] Albery W.J., Bruckenstein S.; ibid., 62, 2584, (1966).
- [4] Albery W.J., Hitchman M.L., Ulstrup .; ibid., 65, 1101, (1969).
- [5] Albery W.J., Hitchman M.L.; Ring disc electrodes, Claredon Press, Oxford 1971.
- [6] Prater K.B., Bard A.J.; J. Electrochem. Soc., 117, (3), 335, (1970).
- [7] Prater K.B., Bard A.J.; ibid., 117, (2), 207, (1970).
- [8] Albery W.J., Drury J.S; J. Chem. Soc. Faraday Trans., 68, (3), (1972).

SUMMARY

This work presents a new way of usage the digital simulation for second order kinetics study on rotating ring-disc electrode.

Złożone w Redakcji 23 II 1990

offers and the second in the second for the second se

Ryc. 2 Webree and add W by of 0/05 year dm /mol al.] Co = 1,8 10 mol dm 1.

saleinaici (1). W pracy [8] perógraphy (1) 3 Albery'ago i in a matoda symulanii cyfrowej, angerając zmienę weptimyuniku .358 we wnorse (1) na .434, dzięki czenu wywiewej/anti) <u>in grindenie</u> godinache Manifi simelin ijątotyk. Unies Palija. wielawy (skory szer gijska strantnictward namenika ijątotyk. Unies Palija.

[3] Albery W.J., Bruchmatein S.; Bid. 02, 2584, (1966)

[4] Alberg W.J., Hitchman M.L., Ulstrup ; doi, 55, 1101, (1969).

[5] Albury W.J., Elitchman M.L.; Ring due destrodes, Clairedon Press, Oxford 1971;

[8] Frater K.B., Bard A.J.; J. Electrochem. Son, 117. (3), 335, (1970).

[7] Frater K.B., Bard A.J.; 464, 117. (2), 207, (1970).

[5] Albery W.J., Drury J.S. J.Chem. Sor Functor Trans. 66, (3), (1973).

SUMMARY

This work presents a new way of usage the digital simulation for second order finatics study on rotating ring-disc electrode. Sickons w Redukcji 23 II 1900

1670