ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXXIII, NO. 1, 2019

SECTIO A

27 - 31

SZYMON IGNACIUK and MACIEJ PAROL

Criteria of univalence for a certain integral operator

ABSTRACT. In this article we consider the problem of univalence of a function introduced by Breaz and Ularu, improve some of their results and receive not only univalence conditions but also close-to-convex conditions for this function. To this aim, we used our method based on Kaplan classes.

1. Introduction. We consider the following subclasses of the class of all analytic functions in the unit disk $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$:

- \mathcal{A} as the class of all functions f normalized by f(0) = f'(0) 1 = 0,
- \mathcal{H} as the subclass of \mathcal{A} of all functions f that are locally univalent, i.e., $f' \neq 0$ in \mathbb{D} ,
- S as the class of all univalent functions belonging to A,
- \mathcal{K} as the class of functions in \mathcal{S} that map \mathbb{D} onto a convex set,
- \mathcal{C} as the class of functions in \mathcal{S} that are close-to-convex,
- \mathcal{H}_d as the class of all analytic functions f normalized by f(0) = 1and such that $f \neq 0$ in \mathbb{D} .

Univalence of integral operators for the functions from known classes \mathcal{K} , \mathcal{C} and \mathcal{S} was studied by many authors (see [1,3,4,6–8]). In this article we consider univalence of slightly modified integral operator introduced in [2].

²⁰¹⁰ Mathematics Subject Classification. 30C45, 30C55, 44A05.

Key words and phrases. Univalence, integral operators, Kaplan classes.

For $\alpha, \beta \geq 0$, the Kaplan class $K(\alpha, \beta)$ is a set of all functions $f \in \mathcal{H}_d$ satisfying the condition

(1.1)
$$-\alpha \pi - \frac{1}{2}(\alpha - \beta)(\theta_1 - \theta_2) \le \arg f(r \mathrm{e}^{\mathrm{i}\theta_2}) - \arg f(r \mathrm{e}^{\mathrm{i}\theta_1})$$

for 0 < r < 1 and $\theta_1 < \theta_2 < \theta_1 + 2\pi$ (see [9, pp. 32–33]).

Let us recall [9, p. 46] that:

- $f \in \mathcal{K}$ if and only if $f' \in K(0,2)$,
- $f \in \mathcal{C}$ if and only if $f' \in K(1,3)$.

First we will call the following lemmas from [5].

Lemma A. For all $\alpha_1, \alpha_2, \beta_1, \beta_2 \ge 0$ and $t \in \mathbb{R} \setminus \{0\}$ the following conditions hold:

$$\begin{split} &f \in K(\alpha_1, \beta_1) \ \text{and} \ g \in K(\alpha_2, \beta_2) \Rightarrow fg \in K(\alpha_1 + \alpha_2, \beta_1 + \beta_2) \,, \\ &f \in K(\alpha_1, \beta_1) \iff f^t \in K\left(\frac{|t| + t}{2}\alpha_1 + \frac{|t| - t}{2}\beta_1, \frac{|t| + t}{2}\beta_1 + \frac{|t| - t}{2}\alpha_1\right), \\ &f \in K(\alpha_1, \beta_1) \Rightarrow f^0 \in K(0, 0) \,. \end{split}$$

Lemma B. For all $\alpha_1, \alpha_2, \beta_1, \beta_2 \ge 0$ the following equivalences hold:

$$\alpha_1 \le \alpha_2 \iff K(\alpha_1, \beta_1) \subset K(\alpha_2, \beta_1), \beta_1 \le \beta_2 \iff K(\alpha_1, \beta_1) \subset K(\alpha_1, \beta_2).$$

Now we will define an integral operator which is the subject of our research.

Definition 1.1. Let $\nu \in \mathbb{C}$. For all functions $f, g \in \mathcal{H}$ we define the function

(1.2)
$$\mathbb{D} \ni z \mapsto F(z; f, g; \nu) := \int_{0}^{z} (f'(u))^{|\nu|} \mathrm{e}^{\nu g(u)} \mathrm{d}u$$

2. Main results. In this section we will show our criteria of univalence of the integral operator given by (1.2) and we compare them with results from [2].

Theorem 2.1. Let $f \in \mathcal{K}$, $g \in \mathcal{H}$ and $|g(z)| \leq M$ for all $z \in \mathbb{D}$ and a certain $M \geq 0$. If

(2.1)
$$|\nu| \leq \begin{cases} \frac{3\pi}{2(M+\pi)}, & \text{for } M < \frac{\pi}{2}, \\ \frac{\pi}{2M}, & \text{for } M \ge \frac{\pi}{2}, \end{cases}$$

then $F(\cdot; f, g; \nu) \in \mathcal{C}$.

Proof. Fix $f \in \mathcal{K}$, $g \in \mathcal{H}$ and $|g(z)| \leq M$ for all $z \in \mathbb{D}$ and a certain $M \geq 0$. We know that $f' \in K(0,2)$ and by Lemma A we obtain $(f')^{|\nu|} \in K(0,2|\nu|)$. On the other hand, we get

(2.2)
$$\left| \arg\left(e^{\nu g(z)} \right) \right| = \left| \operatorname{Im}(\nu g(z)) \right| \le \left| \nu g(z) \right| \le \left| \nu \right| M$$

for $z \in \mathbb{D}$. Consider (1.1) with $f := e^{\nu g}$. Then for $\mathbb{D} \ni z := r e^{i\theta}$ and $0 \leq \alpha \leq \beta$ we get

$$\arg\left(\mathrm{e}^{\nu g(r\mathrm{e}^{\mathrm{i}\theta_2})}\right) - \arg\left(\mathrm{e}^{\nu g(r\mathrm{e}^{\mathrm{i}\theta_1})}\right) \ge -2|\nu|M \ge -\alpha\pi - \frac{1}{2}(\alpha - \beta) \cdot 0 = -\alpha\pi$$

and for $0 \leq \beta < \alpha$ we get

$$\arg\left(\mathrm{e}^{\nu g(r\mathrm{e}^{\mathrm{i}\theta_2})}\right) - \arg\left(\mathrm{e}^{\nu g(r\mathrm{e}^{\mathrm{i}\theta_1})}\right) \ge -2|\nu|M \ge -\alpha\pi - \frac{1}{2}(\alpha - \beta) \cdot (-2\pi) = -\beta\pi.$$

As a consequence $e^{\nu g} \in K(\alpha,\beta)$ for $\alpha,\beta \geq 2|\nu|M/\pi$. This and Lemma A show that

$$F'(\cdot; f, g; \nu) \in K\left(\frac{2|\nu|M}{\pi}, \frac{2|\nu|(M+\pi)}{\pi}\right).$$

From Lemma B we know that $F'(\cdot; f, g; \nu) \in \mathcal{C}$ if

$$\frac{2|\nu|M}{\pi} \le 1$$

and

$$\frac{2|\nu|(M+\pi)}{\pi} \le 3$$

Therefore, $F'(\cdot; f, g; \nu) \in \mathcal{C}$ if

$$|\nu| \le \begin{cases} \frac{3\pi}{2(M+\pi)} \,, & \text{for} \quad M < \frac{\pi}{2} \,, \\ \frac{\pi}{2M} \,, & \text{for} \quad M \ge \frac{\pi}{2} \,. \end{cases}$$

Remark 2.2. Let us notice that the assumptions for functions f and g in Theorem 2.1 are much weaker than assumptions in [2, Theorem 2.1]. Since for any $z \in \mathbb{D}$ we have

$$\left|\frac{f''(z)}{f'(z)}\right| \le 1 \Longrightarrow \left|\frac{zf''(z)}{f'(z)}\right| \le |z| < 1 \Longrightarrow \operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > 0 \Longrightarrow f \in \mathcal{K},$$

 \mathbf{S}

$$\left\{ f \in \mathcal{H} : \left| \frac{f''(z)}{f'(z)} \right| \le 1 \text{ for every } z \in \mathbb{D} \right\} \subset \mathcal{K}.$$

The inclusion can not be replaced by an equality. For example, the function $\mathbb{D} \ni z \mapsto f(z) := z/(1-z)$ satisfies the condition

$$f \in \mathcal{K} \setminus \left\{ f \in \mathcal{H} : \left| \frac{f''(z)}{f'(z)} \right| \le 1 \text{ for every } z \in \mathbb{D} \right\}.$$

Moreover, we assume that q is only bounded while in [2] there is an additional condition for g. For $\nu \in \mathbb{C} \setminus \mathbb{R}$ results are incomparable, since we use $|\nu|$ in the definition of $F(\cdot; f, g; \nu)$. However, in this article there is no additional restriction that $\operatorname{Re}(\nu) \geq 0$. For $\nu > 0$ results from Theorem 2.1 can be directly compared with [2, Theorem 2.1]. For

$$M > \frac{\sqrt{3} + \sqrt{3 + 8\pi^2(\sqrt{3} - 1)}}{4\pi} \approx 0.758$$

results obtained in Theorem 2.1 are better with much weaker assumptions. Moreover, let us point out that in this article we prove that $F(\cdot; f, g; \nu) \in C$ and not only that $F(\cdot; f, g; \nu) \in S$.

The following theorem has weaker assumptions about a function f than Theorem 2.1 but still improves results from [2] in some cases.

Theorem 2.3. Let $f \in C$, $g \in H$ and $|g(z)| \leq M$ for all $z \in \mathbb{D}$ and a certain $M \geq 0$. If

$$(2.3) \qquad \qquad |\nu| \le \frac{\pi}{2M + \pi}\,,$$

then $F(\cdot; f, g; \nu) \in \mathcal{C}$.

Proof. Fix $f \in C$, $g \in \mathcal{H}$ and $|g(z)| \leq M$ for all $z \in \mathbb{D}$ and a certain $M \geq 0$. We know that $f' \in K(1,3)$ and by Lemma A we obtain $(f')^{|\nu|} \in K(|\nu|, 3|\nu|)$. Analogously to the proof of Theorem 2.1 we get

$$F'(\cdot; f, g; \nu) \in K\left(\frac{|\nu|(2M+\pi)}{\pi}, \frac{|\nu|(2M+3\pi)}{\pi}\right).$$

From Lemma B we know that $F'(\cdot; f, g; \nu) \in \mathcal{C}$ if

$$\frac{|\nu|(2M+\pi)}{\pi} \le 1$$

and

$$\frac{|\nu|(2M+3\pi)}{\pi} \le 3$$

Therefore, $F'(\cdot; f, g; \nu) \in \mathcal{C}$ if

$$|\nu| \le \frac{\pi}{2M + \pi} \,.$$

Remark 2.4. Let us notice that in Theorem 2.3 we weaken the assumptions for f with respect to Theorem 2.1. Analogously as in Remark 2.2 for $\nu > 0$ results from Theorem 2.3 can be directly compared with [2, Theorem 2.1]. For

$$M > \frac{6\sqrt{3} + \sqrt{108 + 16\pi^2(3\sqrt{3} - 2)}}{8\pi} \approx 1.398$$

the results obtained in Theorem 2.3 are better with much weaker assumptions for f, g and ν . Moreover, let us point out that in this article we prove that $F(\cdot; f, g; \nu) \in \mathcal{C}$ and not only that $F(\cdot; f, g; \nu) \in \mathcal{S}$.

References

- Biernacki, M., Sur l'integrale des fonctions univalentes, Bull. Pol. Acad. Sci. 8 (1960), 29–34.
- Breaz, D., Ularu, N., Univalence criterion and convexity for an integral operator, Appl. Math. Letters 25 (3) (2012), 658–661.
- [3] Causey, W. M., The univalence of an integral, Proc. Amer. Math. Soc. 3 (1971), 500– 502.
- [4] Godula, J., On univalence of a certain integral, Ann. Univ. Mariae Curie-Skłodowska Sect. A 33 (1979), 69–76.
- [5] Ignaciuk, S., Parol, M., Kaplan classes and their applications in determining univalence of certain integral operators, 2018 (to appear).
- [6] Krzyż, J., Lewandowski, Z., On the integral of univalent functions, Bull. Pol. Acad. Sci. 7 (1963), 447–448.
- [7] Merkes, E. P., Wright, D. J., On the univalence of a certain integral, Proc. Amer. Math. Soc. 27 (1971), 97–100.
- [8] Pfaltzgraf, J. A., Univalence of an integral, Proc. Amer. Math. Soc. 3 (1971), 500–502.
- [9] Ruscheweyh, S., Convolutions in Geometric Function Theory, Seminaire de Math. Sup. 83, Presses de l'Université de Montréal, 1982.

Szymon Ignaciuk	Maciej Parol
Department of Applied Mathematics	Institute of Mathematics
and Computer Sciences	and Computer Science
University of Life Sciences	The John Paul II Catholic University of Lublin
ul. Akademicka 13	ul. Konstantynów 1H
20-950 Lublin	20-708 Lublin
Poland	Poland
e-mail: szymon.ignaciuk@gmail.com	
	Institute of Mathematics
	Maria Curie-Skłodowska University
	pl. Marii Curie-Skłodowskiej 1
	20-031 Lublin
	Poland
	$e ext{-mail:Maciej.Parol@Live.umcs.edu.pl}$

Received September 3, 2018