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On the convergence of certain integrals

Abstract. Let M(r) := max|z|=r |f(z)|, where f(z) is an entire function.
Also let α > 0 and β > 1. We discuss the behavior of the integrand
M(r)e−α(log r)

β

as r → ∞ if
∫∞
1
M(r)e−α(log r)

β

dr is convergent.

1. Convergence of integrals vis-à-vis convergence of series. There is
one fundamental property of a convergent infinite series in regard to which
the analogy between infinite series and infinite integrals breaks down. If∑∞

n=1 θ(n) is convergent, then θ(n)→ 0 as n→∞; but it is not always true,
even when θ(r) is always positive, that if

∫∞
a θ(r) dr, a > 0, is convergent,

then θ(r)→ 0 as r →∞. As a counterexample, we can consider the function
given by

θp(r) :=
∞∑
n=0

{fn(r, p) + gn(r, p)} (p > 1),

where the functions fn(r, p) and gn(r, p) of the real variable r are defined by

fn(r, p) := {(n+ 1)pr + 1− n(n+ 1)p}1[
n− 1

(n+1)p
;n
[(r)

and

gn(r, p) := {−(n+ 1)pr + 1 + n(n+ 1)p}1[
n;n+ 1

(n+1)p

](r).
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Then, for every positive x,∫ x

0
θp(r)dr ≤

∞∑
n=0

1

(n+ 1)p
<∞,

while θp(r) does not tend to 0 as r →∞.
It is however true that if

∫∞
a θ(r) dr converges and θ(r) is non-negative,

then

lim inf
r→∞

r (log r)(log log r) · · · (`kr) θ(r) = 0 ,

where `kr is the k-th iterate of log r. If this was not true, then there would
exist positive numbers c and R0 such that for all R > R0, we would have∫ eR

R
θ(r) dr >

∫ eR

R

c

r (log r)(log log r) · · · (`kr)
dr = c (`kR− `k+1R)

and then
∫ eR

R θ(r) dr could not be made arbitrarily small by taking R suf-
ficiently large ([2, p. 376]), contradicting the convergence of the integral∫∞
a θ(r) dr. On the other hand, it is well known that if θ(r) is positive and

non-increasing, then
∫∞
a θ(r) dr can converge only if r θ(r) → 0 as r → ∞.

The same conclusion can be drawn if θ(r) is the product of a monotonic
function ϕ(r) and a non-negative function L(r) which is continuous and
L(cr) ∼ L(r) as r →∞ (i.e. limr→+∞

L(cr)
L(r) = 1). This can be explained as

follows. Let ε be any given positive number. Then for all sufficiently large
values of u, we have

ε >

∣∣∣∣∫ 2u

u
ϕ(r)L(r) dr

∣∣∣∣ ≥ min {|ϕ(u)| , |ϕ(2u)|}
∫ 2u

u
L(r) dr

= |ϕ(2u)|
∫ 2u

u
L(r) dr,

say. That uθ(u)→ 0 as u→∞, now follows from the fact (see Lemma 1.1
below) that ∫ u

a
L(r) dr ∼ uL(u) .

Lemma 1.1 (see [4, Lemma 4]). The condition

ϕ1(t) =

∫ t

1
ϕ(u)du ∼ tϕ(t)

is equivalent to

ϕ(kt) ∼
t→∞

ϕ(t)

for every fixed positive k.
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2. A special kind of integrands. Let M(r) := max|z|=r |f(z)|, where
f(z) is an entire function. In his work on Carlson’s theorem ([1, Chapter
9]) for entire functions of exponential type, Rahman ([7, Theorem 7]) had
a situation where the integral

∫∞
1 r2QM(r) e−πr dr was convergent and he

wanted to know the behavior of M(r) for large values of r. He noted ([7,
Lemma 6]) that r2QM(r) e−πr → 0 as r →∞. In order to prove it he does
not require anything more than the fact that M(r) is a non-decreasing func-
tion of r. However, M(r) is not just a non-decreasing function of r but also
logM(r) is a downward convex function of log r. Thus r2QM(r) = o (eπr)
was not expected to be all that the convergence of

∫∞
1 r2QM(r) e−πr dr

would imply. Recently, Qazi [5] has proved the following stronger result,
which is “essentially” best possible.

Theorem 2.1. Let M(r) := max|z|=r |f(z)|, where f is an entire function
and suppose that

∫∞
0 rαM(r) e−βr dr <∞ for some α > 0 and some β > 0.

Then
√
r · rαM(r) e−βr = O(1) as r →∞.

3. The main result. An entire function f is a polynomial if and only if
there exists a positive number k such that M(r) := max|z|=r |f(z)| = O(rk)
as r →∞. The degree n of f is the infimum of all such numbers k. In this
case, we have

lim
r→∞

logM(r)

log r
= n.

If f is a transcendental entire function, then (see a remark following Theo-
rem 3.1)

logM(r)

log r
−→∞ as r →∞ ;

however, M(r) e−α(log r)
β

may tend to zero as r → ∞ for some α > 0 and
some β > 1. This can happen if f is an entire function of order 0, that is, if

lim sup
r→∞

log logM(r)

log r
= 0 .

In connection with Theorem 2.1, one may then ask the following question:
What can we say about the behavior of M(r) as r → ∞ if f is an entire
function such that

∫∞
1 M(r) e−α(log r)

β
dr converges for some α > 0 and

some β > 1?
We give an answer to this question. The proof of Theorem 2.1 as given by

Qazi [5] is based on the use of the well-known Stirling’s formula for Euler’s
Gamma function. This was somehow natural because of the integrand in∫∞
0 rαM(r) e−βr dr having e−βr as a factor. Since the integrand does not

anymore have such a factor, the use of Stirling’s formula is more or less
out of the question. So, we have to use some other ideas. In addition
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to Stirling’s formula, Qazi’s proof of Theorem 2.1 uses Hadamard’s three-
circles theorem. That remains available to us and we have tried to use it as
efficiently as we could.

Hadamard’s three-circles theorem [8, p. 172] can be stated as follows:

Theorem 3.1. Let f(z) be an analytic function, regular for r1 ≤ |z| ≤ r3.
Furthermore, let r1 < r2 < r3, and let M1,M2,M3 be the maxima of |f(z)|
on the three circles |z| = r1, r2, r3, respectively. Then

(3.1) M
log(r3/r1)
2 ≤M log(r3/r2)

1 M
log(r2/r1)
3 .

Since we may write (3.1) in the form

(3.2) logM(r2) ≤
log r3 − log r2
log r3 − log r1

logM(r1) +
log r2 − log r1
log r3 − log r1

logM(r3),

Hadamard’s three-circles theorem may be interpreted by saying that
logM(r) is a convex function of log r. If f is a transcendental entire func-
tion, then inequality (3.2) leads to the existence of a positive number r0
such that r 7→ logM(r)

log r is a strictly increasing and unbounded function of r,
for r ≥ r0.

Now we can state our theorem:

Theorem 3.2. Let M(r) := max|z|=r |f(z)|, where f is an entire function

and suppose that
∫∞
1 M(r) e−α (log r)β dr < ∞ for some α > 0 and some

β > 1. Then, for any ε > 0,

lim
r→∞

r (log r)−γ−ε ·M(r) e−α (log r)β = 0 ,

where γ := max {0 , (β − 2)/2} .

4. Proof of Theorem 3.2. We present the proof in several steps.
Step I. First we prove that

(4.1)
R

(logR)β−1
M(R) e−α(logR)β → 0 as R→∞ .

Take any ε > 0 and note that

M(r)

(log r)β−1(1/r)

is an increasing function of r for all large r. Hence, if R is large enough,
then

RM(R)

αβ(logR)β−1

∫ R2

R
αβ (log r)β−1

(
1

r

)
e−α (log r)β dr

≤
∫ R2

R
M(r) e−α (log r)β dr < ε ,
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that is,
R

(logR)β−1
M(R)

(
e−α (logR)β − e−α (2 logR)β

)
< αβε ,

which implies (4.1).
Step II. Next, we prove that for all large r,

(4.2) M(S) e−α (logS)β<
(logS)γ

S
for some S = S(r)∈

(
r , r+

r

(log r)γ

)
.

If this was not true, then for all t ∈ (r , r + r/(log r)γ), which in the case
where 1 < β ≤ 2 means “for all t ∈ (r , 2r)”, we would have

M(t) e−α (log t)β ≥ (log t)γ

t
.

This would imply that∫ r+r/(log r)γ

r
M(t) e−α (log t)β dt ≥

∫ r+r/(log r)γ

r

(log t)γ

t
dt

=
1

γ + 1

{(
log

(
r +

r

(log r)γ

))γ+1

− (log r)γ+1

}
.

It is easily checked that the last expression is equal to log 2 if γ is zero and
is 1 + o (1) if γ is positive. Thus the integral

∫∞
1 M(t) e−α (log t)β dt would

not be convergent, contradicting our hypothesis. Hence (4.2) holds. This
means that for all large r,

(4.3) M(λr) <
(log λr)γ

λr
eα (log λr)β for some λ ∈

(
1 , 1 +

1

(log r)γ

)
.

Step III. Since logM(r) is a convex function of log r, we have

(4.4) (M(r))2 ≤M
( r
λ

)
M(λr) (λ > 0) .

This is our main tool. We use (4.1) and (4.3) in (4.4) to conclude that

(4.5) lim
r→∞

r (log r)−(γ+β−1)/2M(r) e−α (log r)β = 0 .

If r is sufficiently large and

(4.6) λ ∈
(
1 , 1 +

1

(log r)γ

)
is chosen such that (possible by (4.3))

M(λr) <
(log λr)γ

λr
eα (log λr)β ,

then using this and (4.1) in (4.4), we obtain

(M(r))2 ≤ c1(r)
(log(r/λ))β−1

r/λ
eα (log(r/λ))β · (log(λr))

γ

λr
eα (log(λr))β ,
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where c1(r) = o(1) as r →∞.
Now, note that

(log(r/λ))β−1 (log(λr))γ

= (log r)γ+β−1
{(

1− log λ

log r

)β−1(
1 +

log λ

log r

)γ}

≤ (log r)γ+β−1
{(

1− log λ

log r

)β−1(
1 +

log λ

log r

)β−1}
< (log r)γ+β−1

because γ < β − 1. Hence

(M(r))2

≤ c1(r)
(log r)γ+β−1

r2
exp

{
α (log r)β

((
1− log λ

log r

)β
+

(
1 +

log λ

log r

)β)}

= c1(r)
(log r)γ+β−1

r2
exp

{
α (log r)β

(
2 + (β (β − 1) + c2(r))

(
log λ

log r

)2
)}

= c1(r)
(log r)γ+β−1

r2
exp

{
α (log r)β

(
2 + (β (β − 1) + c2(r)) (log r)

−2γ−2)},
where c2(r) = o(1) as r →∞, and where we have used (4.6) in the last line.
Note that β − 2γ − 2 is negative if 1 < β < 2 and zero if β ≥ 2. Hence
(log r)β−2γ−2 = O(1) as r →∞. This allows us to conclude that

M(r) ≤ c3(r)
(log r)(γ+β−1)/2

r
eα (log r)β = c3(r)

(log r)γ+(β−1−γ)/2

r
eα (log r)β ,

where c3(r) = o(1) as r →∞, which is equivalent to (4.5).
Inequality (4.5) is considerably stronger than (4.1) and provides a better

estimate for M(r/λ) in (4.4). Using (4.5) and (4.3) in (4.4) the way (4.1)
and (4.3) were used above in (4.4), we obtain

(4.7) lim
r→∞

r (log r)−γ−(β−1−γ)/2
2
M(r) e−α (log r)β = 0 ,

which may in turn be used to conclude that

(4.8) lim
r→∞

r (log r)−γ−(β−1−γ)/2
3
M(r) e−α (log r)β = 0 .

Clearly, (4.8) is stronger than (4.7). Since this process can go on indefinitely,
we see that for any positive integer k, we have

lim
r→∞

r (log r)−γ−(β−1−γ)/2
k
M(r) e−α (log r)β = 0 ,

from which the desired result follows. 2
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Remark. The property of the function M(r) by which logM(r) is a con-
vex function of log r is shared by some other functions associated with an
entire function f, which makes the proof of Theorem 3.2 applicable to these
associated functions. In fact, let f(z) :=

∑∞
ν=0 aνz

ν be an entire function;
for any r > 0, we define the function Mp(r) =Mp(f ; r) by

Mp(f ; r) :=

(
1

2π

∫ 2π

0

∣∣∣f(r eiθ)∣∣∣p dθ

)1/p

, p > 0,

and the maximum term of f, denoted by µ(r), is given by the maximum of
|aν |rν for ν ∈ {0, 1, 2, . . .}. Then, logµ(r) and logMp(r) (for any p > 0)
are two convex functions of log r. The proof of this statement was given
by G. Valiron ([9, pp. 30–31]) for the function logµ(r) and by G. H. Hardy
[3] for logMp(r). The reader might find [6] to be of some interest in this
connection.
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