ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. XXXVIII, 4

SECTIO B

1983

Wydział Inżynierii Budowlanej i Sanitarnej Politechniki Lubelskiej

Wacław Marian KOWALSKI

Charakterystyka aleurytów (aleurytowych iłowców) środkowego odcinka profilu warstw lubelskich w Lubelskim Zagłębiu Węglowym

Характеристика алевритов (алевритовых уплотненных илов) среднего отрезка люблинских слоев в Люблинском угольном бассейне

> Characteristics of Aleurites (Mudstones) of Middle Lublin Beds in the Lublin Coal Basin

WSTEP

Autor charakteryzuje skały aleurytowe odcinka warstw lubelskich (westfal) pomiędzy pokładami węgla kamiennego 391 i 397. Przy opracowaniu wykorzystano 10 próbek z otworu wiertniczego Lublin 126, jedną próbkę z otworu Lublin 104 i 9 próbek z otworu Chełm 8 (ryc. 1, 2).

Badania autora dotyczyły skał nazywanych potocznie "mułowcami". Przy opracowywaniu wyników analizy planimetrycznej okazało się, że tylko jedna z dwudziestu próbek (pr. 4) odpowiada definicji mułowca podanej przez Rykę i Maliszewską (1982), z definicji tej wynika, że głównym składnikiem mułowca jest aleurytowy kwarc. Tymczasem głównym składnikiem mineralnym badanych skał jest aleurytowy minerał ilasty, któremu towarzyszą aleurytowe i psamitowe ziarna kwarcu. Autor już w 1981 roku (Kowalski 1983a) wprowadził pojęcie aleurytowego iłowca, który w zmodyfikowanym przez autora (ryc. 3) trójkącie systematycznym Pettijohna i innych (1972) zajmuje pole iłowców, zawarte pomiędzy polem mułowców (aleurytów ziarnistych) i piaskowców. Autor stwierdził, że aleurytowe iłowce różnia sie od pelitowych iłowców nie tylko strukturą, lecz też wyraźnie wyższym udzialem aleurytowych i psamitowych ziarn kwarcu. Spencer (1963) kwestionuje możliwość istnienia mułowców w utworach rzecznych, gdyż w skałach tych nie występują w większych ilościach ziarna mniejsze od 0.03 mm.

Udział aleurytowych iłowców w profilu warstw lubelskich jest zmienny. W kopalni pilotująco-wydobywczej "Bogdanka" wynosi 10%, w otworze Lublin 126 około 36%, w otworze Lublin 104 około 19%, a w otworze Chełm 8 około 39% (dane dla środkowego odcinka profilu warstw lubelskich).

Ryc. 1. Szkic sytuacyjny z zaznaczeniem otworów wiertniczych, w których opróbowano aleuryty środkowego odcinka warstw lubelskich

Location sketch with boreholes in which samples of aleurites of Middle Lublin Beds were collected

ANALIZA PETROGRAFICZNA ALEURYTOWYCH IŁOWCÓW

Jak wynika z trójkąta klasyfikacyjnego (ryc. 3) tylko 10% badanych próbek mieści się w polu typowych iłowców aleurytowych. Pozostałe próbki rozmieściły się stosunkowo równomiernie w polach aleurytowych iłowców piaszczystych, mułkowo-piaszczystych i mułkowych. Jedna próbka ma cechy pośrednie między piaskowcem a mułowcem.

W trójkącie klasyfikacyjnym kwarc — skaleń — mika (ryc. 3b) tylko w trzech przypadkach udział kwarcu spada poniżej 70%, w tym w jednym przypadku poniżej 40% sumy wymienionych składników, natomiast udział skaleni tylko w trzech przypadkach (pr. 10, 13, 14) jest wyższy

Ryc. 2. Profile geologiczne badanych otworów wiertniczych z zaznaczeniem miejsc pobrania próbek aleurytów z środkowego odcinka warstw lubelskich: 1 — węgiel,
2 — piaskowiec, 3 — aleuryt, 4 — iłowiec pelitowy, 5 — gleba stigmariowa, 6 — syderyt, 7 — numer pokładu, 8 — linie korelacyjne

Geologic sections of investigated boreholes with sampling sites of aleurites from Middle Lublin Beds: 1 — hard coal, 2 — sandstone, 3 — aleurite, 4 — pelitic claystone, 5 — stigmariae soil, 6 — siderite, 7 — seam number, 8 — correlation lines NW

Ryc. 3. Trójkąt klasyfikacyjny: aleurytowe minerały ilaste: piasek: ziarna aleurytowe z zaznaczeniem położenia badanych próbek. I — aleurytowy iłowiec, II aleurytowy iłowiec piaszczysty, III — aleurytowy iłowiec mułkowo-piaszczysty i piaszczysto-mułkowy, IV — aleurytowy iłowiec mułkowy, V — waka, VI — waka mułkowa, VII — piaskowiec mułkowy, VIII — piaskowiec, IX — mułowiec ilasty, X — mułowiec ilasto-piaszczysty, XI — mułowiec piaszczysty, XII — mułowiec Classification triangle: aleuritic clay minerals: sand: aleuritic grains with marked positions of analyzed samples. I — aleuritic claystone (mudstone), II — aleuritic sandy claystone (sandy mudstone), III — aleuritic silty-sandy and sandy-silty claystone (silty-sandy and sandy-silty mudstone), IV — aleuritic silty claystone (silty mudstone), V — wacke, VI — silty wacke, VII — silty sandstone, VIII — sandstone, IX — clayey siltstone, X — clayey-sandy siltstone, XI — sandy siltstone, XII — siltstone od 10%. Wskazuje to głównie na kwarcowy skład mineralny ziarn psamitowych i aleurytowych oraz na udział psamitowych blaszek miki, chlorytu i illitu. Ponad połowa próbek cechuje się warstwowaniem równoległym lub teksturą prawie kierunkową, słabo podkreśloną. Warstwowanie słabo przekątne i soczewkowe wykazują próbki nr 1 i 13, warstwowanie faliste pr. 4, 18 i 19, zaś warstwowanie zaburzone próbki nr 2 i 15.

Dosyć częste są nieregularne przerosty materiału piaszczystego o różnej grubości (przeciętnie rzędu 1 mm). Obserwuje się skupienia i konkrecje syderytu, fragmenty roślin karbońskich, apendyksy, rzadziej toczeńcze piaskowca (pr. 10). Powierzchnie graniczne z piaskowcem są ostre i nierówne, zróżnicowanie granulometryczne w obrębie iłowca niewielkie.

Minerały ilaste tworzą aleurytowe tło skały. Można często zidentyfikować blaszki illitu z rozproszonym detrytusem węglowym. Sporadyczne skupienia zielonego chlorytu. Analiza rentgenograficzna (tab. 2, 3) wykazała we wszystkich próbkach współwystępowanie illitu i kaolinitu, przy czym porównanie intensywności linii 9,9 A illitu z intensywnością linii 7,1 A kaolinitu wskazuje na stosunek ilościowy illitu do kaolinitu zmienny w granicach 1:1-2:1. Analiza rentgenograficzna w prawie wszystkich próbkach potwierdziła obecność chlorytu, brak go jedynie w próbkach 12 i 18. Udział minerałów ilastych w skale stwierdzony przy pomocy metod optycznych jest zmienny w granicach 32-85%, jedynie w próbce mułowca (pr. 4) spada do 18%. Być może mułowiec ten powstał w wyniku procesów epigenetycznych, gdyż w jego obrębie minerały ilaste są wypierane przez wtórny, epigenetyczny kwarc (tab. 1). Udział łyszczyków (tab. 1) jest zmienny w granicach od 1 do 13%. Blaszki miki są na ogół bezbarwne, obserwuje się też blaszki w różnym stopniu odbarwionego i schlorytyzowanego biotytu. Sporadyczne są blaszki trawiastozielonego chlorytu. Zarówno mika, jak też zawarty w skale illit sa pochodzenia detrytycznego, o czym świadczy obecność refleksu 3.7 A odmiany politypowej 2 M₁.

Udział kwarcu (tab. 1) jest zmienny od 5 do 51%. Jest to kwarc allo- i autigeniczny, w różnym stopniu obtoczony. W wielu próbkach obok autigenicznego kwarcu spotyka się chalcedon. Autigeniczny kwarc tworzy zwykle agregat mozaikowo poprzerastanych ziarn, zawiera wrostki węgla i iłu. W próbkach 13 i 14 spotyka się drzazgowe i trójkątne formy kwarcu tufogenicznego.

W przeciwieństwie do piaskowców środkowego odcinka profilu warstw lubelskich aleurytowe iłowce nie wykazują dużego udziału skaleni. Występują one w sześciu próbkach (tab. 1), a zawartość ich wzrasta

powyżej 1% tylko w trzech próbkach (1, 13 i 14). Obserwuje się tam żerdki sanidynu i osobniki zbliźniaczonego oligoklazu. W próbce 13 zwracają uwagę częściowo idiomorficznie wykształcone osobniki oligoklazu ze śladami korozji magmowej, ostrokrawędziste fragmenty nie-

Tab.	1.	Sklad	mineralny	aleurytów	środkowego	odcinka	warstw	lubelskich
			Mineral	composition	of Middle I	Lublin Be	ds	

Nr próbki	Kwarc	Mika chloryt	Skaleń wysoko- temperaturowy	Albit nísko- temperaturowy	Oligoklaz	Ortoklaz	Chalcedon	Mineraly ilaste	Syderyt	Inne węglany	Węgiel	Inne
1	33	2	2		3		2	44	11	2	1	
2	26	1					1. 18.1	36	35		2	
3	16	4						72	3		5	
4	51	2					1	18	25		3	
5	39	5	1				3	32		12	8	
6	37	3					2	49	7		2	
7	5							85			10	
. 8	33	3					2. 30	62	1		1	
9	17	2						70	8		3	
10	21	2						69	4		4	
11	32	2					17	34	10	2	3	
12	8	13						75			4	
13	25	8	4	5	3	1	36	12			5	1
14	13	2	2				bollo ga	81			2	
15	21	3	1					59		1	15	
16	10	6						54	21		9	
17	15	4						57	20		4	
18	28	2		1				57	. 8		4	
19	23	7						62		2	6	
20	18	6	ansa	in yie	B. 50	1200		58	9		9	

Ryc. 4. Krzywa TAR próbki 14 (środkowy odcinek warstw lubelskich) DTA curve of the sample no. 14 (Middie Lublin Beds)

Tab. 2.	W	yniki t	oadan rei	ntgenog	raficzny	ch próbek	Howcow	aleury	lowych	(pr.	12,
14, 1	5 i	16) śro	odkowego	odcink	a warst	w lubelskie	ch z otwor	u Cheł	m 8 (C	CuKa)	
Results	of	х-гау	analyses	of sam	mples of	mundstor	nes (sampl	les 12,	14, 15	and	16)
			from Mid	dle Lul	olin Bed	of the bo	rehole Che	łm 8			

	12		14		15	nati -	16		- In the second
	do A	I	do A	I	do A	I	do A	Ĭ	Faza
Ĩ	1.10					1.1	10,6	11	illit
	9,95	4	10,0	7	9,95	13			illit
	7,138	10	7,133	19	7,080	20	7,09	16	kaolinit, chloryt
	4,955	4	5,000	5	4,971	6	4,974	3	illit
			4,697	3	4,710	7	4,707	5	chloryt
	4,479	6	4,464	7	4,475	7	4,443	7	illit, kaolinit
	4,246	16	4,252	29	4,239	17	4,240	21	kwarc
			4,133	4					illit
			32.72		3,880	3	3,850	5	illit, kaolinit
	3,697	15	3,698	21	3,709	10	3,693	13	illit
	3,564	15	3,577	17	3,540	13	3,572	16	kaolinit
			3,519	5					chloryt
Ì	3,340	100	3,340	100	3,340	100	3,340	100	kwarc
			3,227	9					sanidyn wysokotemp.
			3,200	5	3,195	3	3,184	11	illit
					2,986	3	2,985	- 5	illit
					2,854	4			chloryt
							2,803	11	syderyt, illit
	2,558	8	2,559	7	2,563	10	2,556	3	illit, kaolinit
			2,528	2					chloryt
	2,457	4	2.457	12	2,456	8	2,456	6	kwarc
	1. 1. 1		2,377	2	2,377	4	2,379	5	illit
	2,339	4	2,345	3	2,338	3	2,351	5	kaolinit
	2,277	8	2,273	9	2,276	7	2,280	10	kwarc, kaolinit
	2,232	- 4	2.237	6	2,231	3	can a		kwarc
	2,127	6	2,128	9	2,123	8	2,126	11	kwarc, iilit
	,		2,012	3	2,009	3			chloryt
ĺ	1.980	4	1.981	7	1,990	7	1,989	6	illit, kaolinit
	.,	9. B			1.0		1,973	6	kaolinit, kwarc
	1.816	12	1.816	19	1,815	13	1,816	16	kwarc
	.,		1.705	3	- Pring				illit
	1.670	5	1.673	7	1,667	3	1,667	6	kaolinit, illit
			- ,						,

zwietrzałego sanidynu, często o przekrojach rombowych, blaszki pleochroicznego biotytu i chlorytu, a także fragmenty felzytowych, alkalicznych skał wylewnych. W pr. 14 zidentyfikowano mikropertyt sanidynowy. Obecność wysokotemperaturowego sanidynu w pr. 14 potwierdziła analiza rentgenograficzna (tab. 2).

Syderyt stwierdzono w czternastu próbkach, w trzech występują inne minerały węglanowe, a w trzech brak tych minerałów. W strefach Tab. 3. Wyniki badań rentgenograficznych próbek iłowców aleurytowych środkowego odcinka warstw lubelskich z otworu Chełm 8 (CuKa)

Results of x-ray analyses of samples of mudstones from Middle Lublin Beds of the borehole Chełm 8

17	14.0	18		19		20		
do A	I	do A	I	do A	I	do A	I	Faza
9.84	4	9,83	5	9,90	3	9,95	4	illit
7.110	10	7,138	9	7,100	7	7,110	10	kaolinit
5.002	3	4,900	2	4,997	2	4,457	3	illit
4.720	4			4,676	3	4,720	4	chloryt
4.466	8	4,461	4	4,447	4	4,463	5	illit, kaolinit
4.240	18	4,244	18	4,244	18	4,250	16	kwarc
4.031	3					4,091	2	illit
3,685	16	3,688	14	3,680	13	3,697	13	illit
3,568	10	3,560	10	3,553	8	3,565	13	kaolinit
3,343	100	3,343	100	3,343	100	3,343	100	kwarc
3,183	7	3,198	10	3,173	5			illit
.,				2,984	2			illit
2,850	3			2,846	2			chloryt
2,798	4	2,797	5	2,787	2	2,792	9	syderyt, illit
2,560	8	2,563	7			2,560	8	illit, kaolinit
2,453	10	2,455	7	2,450	5	2,452	8	kwarc
2,347	3	2,347	3			2,342	3	kaolinit
2,278	7	2,281	8	2,287	3	2,287	5	kwarc, kaolinit
2,235	4	2,235	4			2,235	4	illit, kwarc
2,127	8	2,130	7	2,127	6	2,127	6	kwarc
				2,006	3	2,005	4	chloryt
1,981	4	1,979	4	1,988	3	1,988	6	kaolinit, illit, kwarc
1,975	4			1,975	3			kaolinit, kwarc
1,817	15	1,814	14	1,813	17	1,816	12	kwarc
1,705	3							- illit
1,670	6	1,672	3	1,667	4	1,669	6	illit, kaolinit, kware
						1,659	6	kwarc
1,542	10	1,541	10	1,535	9	1,542	10	kwarc
1,520	3					1,524	2	illit

konkrecji mikrytowego syderytu obserwuje się blaszki miki o zachowanej kierunkowości ułożenia, co świadczy o tym, że syderytyzacja osadu zachodziła bez zaburzenia tekstury. Sporadycznie obok syderytu spotyka się skupienia ziarn sparytowych minerałów węglanowych. W pr. 3 obserwuje się rozetowe skupienia krystalicznych minerałów węglanowych. Syderyt tworzy owalne, wydłużone lub nieregularne skupienia w skale, bywa też rozproszony w spoiwie ilastym. Często skupienia syderytu podkreślają kierunki teksturalne. Mikrytowym i sparytowym skupieniom

Ryc. 5. Zależność między standardowym odchyleniem (GSO) a średnią średnicą ziarn dla piasku plażowego i rzecznego według R. J. Moioli, D. Weisera (1968) w przypadku aleurytów środkowego odcinka warstw lubelskich

Dependency of standard deviation (GSO) and mean grain diameter of beach and fluvial sands after R. J. Moiola, D. Weiser (1968) for alcurites of Middle Lublin Beds

syderytu towarzyszy często detrytus węglowy, którego udział w badanych próbkach waha się od 1 do 15%.

Krzywa TAR w pr. 16 (ryc. 4) wykazała efekt egzotermiczny w zakresie temperatur 200—600°C z dwoma maksymami związany z utlenianiem detrytusu węglowego i przechodzeniem Fe²⁺ syderytu w Fe³⁺. Efektowi temu towarzyszy słaby efekt endotermiczny z maksimum w temperaturze 650°C związany z dehydroksylacją minerałów ilastych i dysocjacją syderytu. Efekt ten jest osłabiony nakładaniem się omówionego wyżej efektu egzotermicznego. Zaznacza się też słaby efekt egzotermiczny rozpadu struktury minerałów ilastych z maksimum w temperaturze 980°C.

ANALIZA SEDYMENTOLOGICZNA ALEURYTOWYCH IŁOWCÓW

Analiza składu ziarnowego wykonana wyłącznie dla frakcji ziarnistej badanych próbek wykazała zmienny udział frakcji psamitowej i aleurytowej. Na podstawie wyników analizy granulometrycznej wykonano krzywe kumulacyjne składu ziarnowego. Z krzywych tych wyznaczono wartość percentyli, które posłużyły do obliczenia parametrów rozkładu wielkości ziarna metodą graficzną (tab. 4). Następnie metodą Moioli

1.1						*		
Nazwa skały	itowiec aleurytowy mułkowo-piaszczysty	jak wyżej	iłowiec aleurytowy piaszczysty	mutowiec ilasto- -piaszczysty	ilowiec aleurytowy piaszczysto-mulkowy	ilowiec aleurytowy mułkowo-piaszczysty	ilowiec aleurytowy	llowiec aleurytowy mulkowy
Srodowisko akumulacji	terasy zalew., prądy trakc.	terasy zale- wowe	jak wyżej	jak wyżej	jak wyżej	rzeka, prądy zawiesinowe	terasy zale- wowe	erasy zale- wowe
Ska	0,019	0,021	0,013	0.016	0,014	-0.012	T	0,007
C.W.	225	200	185	188	200	118	60	125
N ×	0,039	0,039	0,035	0,044	0,042	0,033	i.	0,025
GSK Ф	-0,153	-0,239	0,030	0,007	-0,450	0,578		-0,011
GSS \	4,15	3,90	3,93	4,03	4,21	3,71	1	4,35
eso GSO	0,86	0,73	0,59	0,87	0,68	06'0	1	0,68
Mediana mm ψ	0,052 4,30	0,06 4,07	0,062 4,02	0,06 4,07	0,054 4,46	0,09 3,46	0,03 5,06	0,049 4.38
vîsraîy •\• sîzstî	52	57	19	25	41	55	76	65
-imesa psami- towe %	23	21	00	37	30	21	69	25
Ziarna aleury-	25	22	13	38	29	24	1	10
Numer probki	1	61	m	4	50	10	2	60

88

Wacław Marian Kowalski

		Ň					10. 102 •	Cir I	n star	A	\$
jak wyżej	jak wyżej	owiec aleurytowy 1ułkowo-piaszczyst	owiec aleurytowy iaszczysty	jak wyżej	owiec aleurytowy	owiec aleurytowy iaszczysty	owiec aleurytowy iaszczysty	owiec aleurytowy jułkowy	jak wyżej	owiec aleurytowy iaszczysto-mułkow	owiec aleurytowy utkowo-plaszczyst
-		i ii	j ił p	and a	ił	ţi Di	r., il	j il		j ił p	j n
wyże	wyże	wyże	wyże		zale-		zalew zawie	wyże	wyże	wyże	wyże
jak	jak	jak	jak	rzeka	terasy wowe	rzeka	terasy prądy	jak	jak	jak	jak
-0,002	0,007	600'0	0,009	0,011	0,007	-0,002	0,007	0,006	0,000	0,005	0,005
180	160	188	200	270	195	250	100	100	120	100	180
0,023	0,031	0,039	0,032	0,049	0,035	0,037	0,014	0,016	0,025	0,020	0,027
0,175	0,062	0,119	-0,080	0,047	0,047	0,176	0,043	0,128	0,178	-0,006	0,139
4,20	4,35	4,06	4,09	3,69	3,69	3,91	4,93	4,68	4,31	4,38	4,48
0,65	0,85	0,86	0,76	0,81	0,69	0,87	0,79	0,71	0,68	0,57	0,87
0,059 4,10	0,052 4,30	0,062 4,02	0,059 4,10	0,08 3,65	0,078 3,68	0,075 3,72	0,031 5,02	0,038 4,71	0,055 4,21	0,050 4,35	0,048 4,40
61	75	49	79	43	82	71	77	20	75	65	67
14	13	20	e	15	2	9	13	15	17 ,	20	17
٢	12	31	19	42	13	23	10	80	15	16	15
8	10	11	12	13	14	15	16	17	18	19	20

Charakterystyka aleurytów (aleurytowych ilowców)...

i Weisera (1968) wykonano wykresy zależności między średnią średnicą (GSS) i standardowym odchyleniem (GSO) (rys. 5), metodą Bullera i McManusa (1972) zależności między medianą średnic Md a współczynnikiem wysortowania S_A (ryc. 6) oraz metodą Passegi (1964) między C i M (ryc. 7).

Na diagramie zależności między GSO i GSS (ryc. 5) wszystkie badane próbki mieszczą się w polu utworów rzecznych. Na diagramie zależności między M_d a S_A (ryc. 6) próbki 6, 11, 13, 14 i 15 leżą w polu utworów rzecznych, pozostałe zajmują pozycję pośrednią między utworami środowisk rzecznych a sedymentami wód spokojnych. Wskazuje to na związek genetyczny badanych osadów ze strefami tarasów zalewo-

Ryc. 6. Zależność między medianą średnic M_d a współczynnikiem wysortowania S_A dla składników ziarnistych aleurytów środkowego odcinka warstw lubelskich według A. T. Bullera, J. McManusa (1972)

Dependency of diameter median M_d and sorting coefficient S_A for grain components of aleurites of Middle Lublin Beds, after A. T. Buller, J. McManus (1972)

wych (kopalne mady). Na diagramie zależności C/M (ryc. 7) próbki 13 i 15 mieszczą się w polu prądów trakcyjnych, próbki 6, 16, 17, 18 i 19 w polu utworów prądów zawiesinowych, pozostałe zajmują położenie pośrednie.

Na podstawie parametru GSO określono, że osiem próbek (pr. 3, 5, 8, 9, 14, 17, 18 i 19) cechuje się umiarkowanie dobrym wysortowaniem, pozostałe mają umiarkowane wysortowanie.

Aleurytowe iłowce środkowego odcinka warstw lubelskich powstawały w strefie tarasów zalewowych dolin rzek meandrujących, w olbrzymiej większości przypadków poża strefą korytową. W próbce 13, pobranej poniżej pokładu węgla kamiennego nr 387, występuje stosunkowo duża koncentracja materiału wulkanogenicznego. Pozostałe próbki za-

Ryc. 7. Zależność wskaźników C/M z zaznaczeniem osadów rzecznych i plażowych dla aleurytów środkowego odcinka warstw lubelskich według R. Passegi (1964): I — rzeka, prądy trakcyjne, II, IIa — prądy zawiesinowe, III — plaża
Dependency of indices C/M with marked fluvial and beach sediments for aleurites of Middle Lublin Beds after R. Passega (1964): I — river, traction currents; II, IIa — suspension currents; III — beach

wierają niewielkie domieszki tego materiału (ryc. 2, pr. 1, 5, 14, 15) lub nie zawierają go wcale. Wskazuje to, że w porównaniu do piaskowców omawianego odcinka warstw lubelskich scharakteryzowanych wstępnie przez Kowalskiego (1983b, 1983c) aleurytowe iłowce są dużo mniej przydatne do badań nad wertykalnym rozmieszczeniem przejawów wulkanizmu w obrębie tych warstw, gdyż materiał ziarnisty pochodzenia wulkanicznego (wulkanogeniczne skalenie), którego udział jest miarą nasilenia wulkanizmu, koncetruje się raczej w skałach psamitowych, a tylko sporadycznie w skałach aleurytowych, gdzie znalezienie koncentracji wulkanogenicznych skaleni jest w gruncie rzeczy kwestią przypadku. Doprowadzenie materiału wulkanogenicznego do osadów aleurytowych warstw lubelskich miało miejsce drogą powietrzną, co tłumaczy zachowanie części konturu idiomorficznego skaleni i przejawów korozji magmowej. Claude i Bucher (1976) stwierdzają współczesne przenoszenie pyłu z Sahary drogą powietrzną do Francji, zaś Bain i Tait (1977) do Szkocji. Także zdaniem Futterera (1978) aleurytowe niebiogeniczne składniki osadów głębokomorskich Oceanu Atlantyckiego są pochodzenia głównie eolicznego. Niemniej jednak w przypadku środkowego odcinka warstw lubelskich skały aleurytowe powstawały głównie w środowisku tarasów zalewowych rzek.

LITERATURA

- Bain D. C., Tait J. M. 1977, Mineralogy and origin of dust fall on skye. Clay Miner., 12, nr 4, 353-355.
- Buller A. T., McManus J. 1872, Simple metric sedimentary statistics used to recognize different environments. Sedimentology 18, 1-21.
- Claude L., Bucher A. 1976, Sedimentation eolienne actuelle pousieres africaines sur l'Europe. 4-éme Reun. Sci. Terre. Paris.
- Fütterer D. 1978, Late neogene silt at the Sierra Leone Rise (Lag 41 Site 366) terrigeneous et biogenous components. Init. Repts Deep Sea Drill. Proj. V. 41, Washington D. C. 1049-1059.
- Kowalski W. M. 1983a, Zagadnienie klasyfikacji skał aleurytowych na tle "mułowców" (iłowców aleurytowych) z warstw lubelskich Lubelskiego Zagłębia Węglowego. Sprawozd. z Pos. Kom. Oddz. PAN, Kraków, styczeń-czerwiec 1981.
- Kowalski W. M. 1983b, Zmienność składu mineralnego piaskowców warstw lubelskich. VI Symp. Geologia Formacji Węglonośnych, Kraków.
- Kowalski W. M. 1983c, Charakterystyka piaskowców środkowego odcinka profilu warstw lubelskich w Lubelskim Zagłębiu Węglowym. Annales UMCS, B, XXXVIII (1986).
- Moiola P. J., Weiser D. 1968, Textural parameters: an evaluation. J. Sediment. Petrol., 38.

Passega R. 1964, Grain- size representation by CM patterns as a geological tool. J. Sediment. Petrol., 38.

Pettijohn F. J., Potter P. E., Siever R. 1972, Sand and Sandstone, Berlin.

Ryka W., Maliszewska A. 1982, Słownik petrograficzny, Warszawa.

Spencer D. W. 1963, The interpretation of grain distribution on curves of clastic sediments. Journ. Sediment. Petrology, 33.

РЕЗЮМЕ

В работе описаны алевритовые образования отрезка люблинских слоев (вестфаль), залегающего между пластами каменного угля № 375 и 391, продденными буровыми скважинами в районе Люблинского угольного бассейна (рис. 1, 2), которые были названы алевритовыми уплотненными илами из-за их минерального состава и структуры (рис. 3). Представлена короткая минерально-петрографическая характеристика этих горных пород (рис. 3, 4, табл. 1, 2, 3), а также проводились седиментологические исследования (рис. 5, 6, 7, табл. 4). Это отложения пойменных террас меандрующих рек. Участие материала вулканического происхождения в составе отложений невелико несмотря на то, что в песчаниках исследованного отрезка люблинских слоев констатированы отчетливые проявления вулканизма.

SUMMARY

The paper presents alcuritic rocks of the Middle Lublin Beds (Westphalian), enclosed with hard coal beds nos 375 and 391. They are known from boreholes in the Lublin Coal Basin (Figs 1, 2) and named mudstones due to their mineral composition and structure (Fig. 3). A short mineralogic-petrographic description of these rocks is presented here (Figs 3, 4; Tables 1, 2 and 3) and also, sedimentologic investigations have been carried out (Figs 5, 6, 7; Table 4). These deposits formed floodplains of meandering rivers. They contain a small amount of volcanic rocks although the sandstones of the studied section of the Lublin Beds manifest distinct traces of past volcanism.