

UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE Wydział Biologii i Biotechnologii

Mgr Magdalena Wójcik

Taksonomia i filogeneza molekularna mikrosymbiontów *Lembotropis nigricans* (L.) Griseb. (szczodrzyk czerniejący)

(Taxonomy and molecular phylogeny of *Lembotropis nigricans* (black broom) microsymbionts)

Rozprawa doktorska

wykonana w Zakładzie Genetyki i Mikrobiologii

pod kierunkiem

promotora: prof. dr hab. Wandy Małek promotora pomocniczego: dra Michała Kality

LUBLIN 2019

Składam serdeczne podziękowania **Pani Profesor dr hab. Wandzie Małek** za opiekę promotorską oraz przekazaną wiedzę i doświadczenie.

Szczególne podziękowania kieruję w stronę **Pana dra Michała Kality** za okazaną pomoc, poświęcony czas oraz cenne wskązówki podczas wykonywania badań.

> Wyrazy wdzięczności kieruję również do: Pana dra hab. Andrzeja Mazura, Pani dr hab. Sylwii Wdowiak – Wróbel, Pani dr Małgorzaty Marczak, Pani dr Monikį Marek – Kozaczuk, Pana dra Kamila Żebrackiego za wsparcie i serdeczność podczas przygotowywania pracy doktorskiej.

Podziękowania składam również wszystkim Pracownikom **Zakładu Genetyki i Mikrobiologii** za okazaną mi pomoc oraz miłą atmosferę w pracy, a także Pracownikom **Zakładu Biochemii**, w szczególność **Pani dr Annie Pawlik** za wsparcie i motywację na każdym etapie powstawania niniejszej pracy.

Spis treści

1.	Wykaz skrótów
2.	Wstęp
2.	1. Wprowadzenie
2.	2. Identyfikacja, klasyfikacja i nomenklatura – fundamenty taksonomi
	mikroorganizmów11
2.	3. Koncepcja gatunku bakteryjnego – czy istnieje uniwersalne podejście
	do klasyfikacji tych organizmów?15
2.	4. Metody taksonomii wielokierunkowej 19
	2.4.1. Metody fenotypowe
	2.4.2. Metody genomowe
	2.4.2.1. Określanie zawartości G+C w genomowym DNA 24
	2.4.2.2. Oznaczanie stopnia podobieństwa DNA-DNA metodą hybrydyzacji 25
	2.4.2.3. Metody molekularne wykorzystywane w analizie polimorfizmu
	genomowego DNA
	2.4.2.4. Analiza sekwencji kwasów nukleinowych
	2.4.2.5. Analiza wyników przy określaniu stopnia pokrewieństwa bakterii 32
	2.4.2.6. Drzewo filogenetyczne
2.	5. Charakterystyka roślin bobowatych
	2.5.1. Rośliny plemienia Genisteae
2.	6. Charakterystyka mikrosymbiontów roślin bobowatych i ich taksonomii 41
	2.6.1. Charakterystyka bakterii rodzaju Bradyrhizobium, jako dominującej grupy
	mikroorganizmów zakażających rośliny plemienia Genisteae 44
2.	7. Symbioza ryzobiów z roślinami bobowatymi 49
	2.7.1. Wiązanie azotu przez ryzobia w mutualistycznej interakcji z roślinnym
	gospodarzem
3.	Cel badań
4.	Materiały i metody57
4.	1. Materiały
	4.1.1. Szczepy bakteryjne użyte w badaniach
	4.1.2. Spis stosowanych odczynników chemicznych
	4.1.3. Podłoża hodowlane

4.1.4. Odd	zynniki i bufory	64			
4.1.4.1.	Odczynniki stosowane do testów fenotypowych 64				
4.1.4.2.	Odczynniki do izolacji i elektroforetycznego rozdziału DNA 65				
4.1.4.3.	Roztwory do oznaczania zawartości G+C w DNA 67				
4.1.4.4.	Pozostałe roztwory				
4.1.4.5.	Startery do reakcji PCR71				
4.1.4.6.	Enzymy i wzorce mas molekularnych7				
4.1.4.7.	Komercyjne zestawy do izolacji, amplifikacji i oczyszczania kwasów				
	nukleinowych	72			
4.1.4.8.	Numery dostępu sekwencji DNA szczepów referencyjnych użyty	'ch			
	w badaniach	73			
4.2. Metod	ly	77			
4.2.1. Izol	acja szczepów ryzobiowych z brodawek korzeniowych	77			
4.2.2. Hod	łowla szczepów bakteryjnych	78			
4.2.3. Test	ty fenotypowe	78			
4.2.3.1.	Oznaczanie czasu generacji	78			
4.2.3.2.	Wykorzystywanie związków chemicznych, jako jedyne źród	1ło			
	węgla	79			
4.2.3.3.	Wykorzystywanie związków chemicznych, jako jedyne źród	1ło			
	azotu	79			
4.2.3.4.	Określenie tolerancji względem różnych wartości pH podłoża	79			
4.2.3.5.	Określenie temperaturowego zakresu wzrostu	80			
4.2.3.6.	Określenie oporności na antybiotyki	80			
4.2.3.7.	Określenie tolerancji względem barwników	80			
4.2.3.8.	Określenie tolerancji względem różnych stężeń NaCl	81			
4.2.3.9.	Test na aktywność ureazy	81			
4.2.3.10	• Test na aktywność katalazy	81			
4.2.3.11	• Test na aktywność reduktazy azotanowej	81			
4.2.3.12	• Test na aktywność fosfatazy	82			
4.2.3.13	• Test z mlekiem lakmusowym	82			
4.2.3.14	Określanie zdolności do wytwarzania indolu	82			
4.2.3.15	. Test na rozkład trifosforanów (TCP)	83			
4.2.3.16	•Określenie zdolności syntezy melanin	83			

4.2.3.17. Określenie zdolności do aktywnego ruchu					
4.2.3.18. Analiza numeryczna wyników testów fenotypowych					
4.2.4. Analizy genomowe					
4.2.4.1.	1. Izolacja genomowego DNA				
4.2.4.2.	Oznaczanie stężenia i czystości DNA metodą				
	spektrofotometryczną				
4.2.4.3.	Łańcuchowa reakcja polimerazy w metodzie BOX-PCR,				
	ERIC-PCR				
4.2.4.4.	AFLP – analiza polimorfizmu długości zamplifikowanych				
	fragmentów DNA				
4.2.4	4.1. Trawienie genomowego DNA				
4.2.4	4.2. Przygotowanie adaptorów				
4.2.4	.4.3. Ligacja trawionego DNA i adaptorów				
4.2.4	4.4. PCR selektywny				
4.2.4.5.	Rozdział produktów amplifikacji				
4.2.4.6.	Komputerowa analiza wyników 88				
4.2.4.7.	Analiza polimorfizmu długości fragmentów restrykcyjnych genu				
	16S rRNA (RFLP-Restriction Fragment Length Polymorphism) 89				
4.2.4	7.1. Amplifikacja genu kodującego 16S rRNA				
4.2.4	7.2. Trawienie 16S rDNA enzymami restrykcyjnymi				
4.2.4	7.3. Komputerowa analiza wyników RFLP – 16S rDNA				
4.2.4.8. Określanie zawartości zasad G+C w DNA genomowym					
4.2.4.9.	Analiza filogenetyczna genu 16S rRNA 91				
4.2.4.9.1. Oczyszczanie amplikonów DNA uzyskanych w reakcji PCR 91					
4.2.4.9.2. Sekwencyjna reakcja PCR91					
4.2.4.9.3. Oczyszczanie produktu reakcji po sekwencyjnej reakcji PCR 92					
4.2.4.9.4. Odczyt sekwencji genu kodującego 16S rRNA 92					
4.2.4.9.5. Analiza filogenetyczna genu 16S rRNA					
4.2.4.10. Wielolokusowa analiza sekwencji genów (MLSA) – atpD, dnaK,					
<i>gyrB</i> , <i>recA</i>					
4.2.4.11. Hybrydyzacja DNA–DNA					
4.2.4.11.1. Wiązanie DNA do powierzchni płytki CovaLink					
4.2.4.11.2. Znakowanie DNA fotobiotyną					

4.2.4.11.3. Kolorymetryczne oznaczanie ilości zhybrydyzowanego					
DNA97					
4.2.4.12. Analiza filogenetyczna genów symbiotycznych: <i>nodC</i> i <i>nodZ</i> 97					
4.2.5. Testy roślinne					
4.2.5.1. Jałowienie nasion					
4.2.5.2. Kiełkowanie nasion i hodowla roślin					
4.2.5.3. Oznaczanie aktywności nitrogenazy za pomocą test					
acetylenowego					
4.2.5.4. Oznaczanie suchej masy nadziemnej części roślin 100					
5. Wyniki					
5.1. Analiza cech fenotypowych mikrosymbiontów Lembotropis nigricans 101					
5.2. Numeryczna analiza wyników testów fenotypowych mikrosymbiontów					
Lembotropis nigricans oraz szczepów referencyjnych 106					
5.3. Charakterystyka stopnia zróżnicowania genomowego mikrosymbiontów					
Lembotropis nigricans metodami: ERIC-PCR, BOX-PCR, AFLP 108					
5.3.1. Analiza polimorfizmu genomowego mikrosymbiontów Lembotropis					
nigricans metodą ERIC–PCR108					
5.3.2. Analiza żróżnicowania genomowego mikrosymbiontów Lembotropis					
nigricans metodą BOX–PCR 110					
5.3.3. Analiza stopnia genomowego zróżnicowania mikrosymbiontów					
Lembotropis nigricans metodą AFLP 112					
5.4. Analiza polimorfizmu długości fragmentów restrykcyjnych (RFLP)					
16S rDNA mikrosymbiontów Lembotropis nigricans 118					
5.5. Określenie zawartości zasad G+C w genomowym DNA symbiontów					
Lembotropis nigricans126					
5.6. Analiza filogenetyczna genu kodującego 16S rRNA mikrosymbiontów					
Lembotropis nigricans127					
5.7. Analiza filogenetyczna genów metabolizmu podstawowego atpD, dnaK,					
gyrB, recA mikrosymbiontów Lembotropis nigricans					
5.7.1. Wielolokusowa analiza sekwencji genów: atpD-dnaK-gyrB-rpoB					
mikrosymbiontów Lembotropis nigricans (MLSA) 146					
5.8. Oznaczenie stopnia podobieństwa genomowego DNA mikrosymbiontów					
Lembotropis nigricans metodą hybrydyzacji 149					

5.9.	Określanie	roślinnego	zakresu	gospoda	arza mikrosymł	oiontów
	Lembotropis n	nigricans				151
5.10.	Oznaczenie	efektywności	wiązania	azotu	atmosferycznego	przez
	mikrosymbion	nty <i>Lembotropis</i>	nigricans			152
5.11.	Analiza filoge	netyczna genów	symbiotycz	mych <i>noc</i>	lC i nodZ	154
6. Dy	skusja		•••••	•••••		159
7. Wnioski						
8. Streszczenie						
9. Abstract						
10. B	ibliografia			• • • • • • • • • • • • •		179
11. Sj	pis rysunkóv	w i tabel		••••••		202

1. Wykaz skrótów

AFLP – Amplified Fragment Length Polymorphism (polimorfizm długości powielonych fragmentów DNA)

ALBN – Approved List of Bacteria Names (Lista Obowiązujących Nazw Bakterii)

ANI – Average Nucleotide Identity (Średnia Tożsamość Nukleotydowa)

APG IV – Angiosperm Phylogeny Group (Międzynarodowa Grupa Systematyków Roślin)

ARDRA – Amplified Ribosomal DNA Restriction Analysis (Analiza Restrykcyjna Amplifikowanego rDNA)

ERIC – *Enterobacterial Repetitive Intragenic Consensus* (między genowe konsensusowe sekwencje powtórzone enterobakterii)

ESGB – Extra Slowly Growing Bacteria (Bakterie wolno rosnące)

GTR Model - General Time Reversible (Ogólny odwracalny w czasie model substytucji)

HGT – Horizontal Gene Transfer (Horyzontalny Transfer Genów)

HPLC – *High Performance Liquid Chromatography* (Wysokosprawna Chromatografia Cieczowa)

ICNB – International Code of Nomenclature of Bacteria (Międzynarodowy Kod Nomenklatury Bakterii)

ICSB – The International Committee on Systematic Bacteriology (Międzynarodowy Komitet Systematyki Bakteriologicznej)

ICSP – International Committee on Systematics of Prokaryotes (Międzynarodowy Komitet Systematyki Organizmów Prokariotycznych)

IGS – *Intergenic Spacer Region* (Region Międzygenowy)

IJSEM – International Journal of Systematic and Evolitionary Microbiology

ITS – Internal Transcribal Spacer (Wewnętrzne Sekwencje Transkrybowane)

IUMS – International Union of Microbiological Society (Międzynarodowa Unia Naukowych Towarzystw Mikrobiologicznych)

JCSB – Judicial Commission of the International Committee on Systematic Bacteriology (Komisja Sędziowska Międzynarodowego Komitetu Systematyki Bakterii)

LFRFA – Low Frequency Restriction Fragment Analysis (Analiza Rzadko Występujących Fragmentów Restrykcyjnych)

ML Method – Maximum Likelihood (Metoda Maksymalnego Podobieństwa)

MLSA – Multilocus Sequence Analysis (Wielolokusowa Analiza Sekwencji)

MLST – Multilocus Sequence Typing (Wielolokusowe Typowanie Sekwencji)

NCBI – The National Center for Biotechnology Information (Międzynarodowe Centrum Informacji Bitechnologiczncyh)

NJ Method – Neighbor Joining (Metoda Najbliższego Sąsiada)

NTSys – Numerical Taxonomy System (System Taksonomii Numerycznej)

OTU - Operational Taxonomic Units (Operacyjne Jednostki Taksonomiczne)

PFGE – Pulsed Field Gel Electrophoresis (Elektroforeza w pulsowym polu elektrycznym)

PSC – Phylogenetic Species Conception (Filogenetyczna Koncepcja Gatunku)

RAPD – *Random Amplification of Polymorphic DNA* (Polimorfizm Przypadkowo Zamplifikowanego DNA)

REP – PCR – *Repetitive Extragenic Palindromic* (Pozagenowe powtórzone element palindromowe)

RFLP – Restriction Fragment Length Polymorphism (Analiza Polimorfizmu Fragmentów Restrykcyjncyh)

SM lub S_{SM} – Simple Matching (Prosty Współczynnik Podobieństwa)

 T_m – *Melting Temperature* (temperatura topnienia)

UPGMA – Unweighted Pair Group Method with Arithmetic Mean

2. Wstęp

2.1. Wprowadzenie

Od wieków ludzie starali się odkryć i opisać różnorodność biologiczną na Ziemi. Naukowcy skatalogowali organizmy zasiedlające wszystkie kontynenty i oceany, od głębin skorupy ziemskiej poprzez najwyższe góry aż do najbardziej zaludnionych miast i odległych dżungli. Takie globalne podejście rzuca światło na formy i zachowania powstałe na drodze ewolucji, jak również staje się podstawą do zrozumienia wspólnego pochodzenia życia [Reimer i in., 2019].

Do niedawna mówiono, iż naszą planetę zamieszkuje prawie 10 milionów gatunków organizmów i choć liczba ta wydaje się być niewielka to obejmuje ona jedynie organizmy, które można zaobserwować gołym okiem. Nasuwa się zatem pytanie: Jaki wpływ na globalną różnorodność mają organizmy takie jak archeony, protisty, grzyby oraz bakterie? Otóż, taksony te są najbardziej rozpowszechnionymi i najdłużej rozwijającymi się formami życia. Najnowsze badania sugerują, że liczba mikroorganizmów, zamieszkujących Ziemię może przekraczać nawet bilion (10^{12}) organizmów. Takie zróżnicowanie sugeruje, że dotychczas udało się scharakteryzować jedynie niespełna 0,001% wszystkich mikrobów [Söhngen i in., 2016; Gevers i in., 2005].

Pierwsze badania nad identyfikacją bakterii opierały się jedynie na charakterystyce cech morfologicznych, fizjologicznych oraz ocenie wzrostu na podłożach bakteriologicznych. Takie podejście dramatycznie ogranicza możliwość poprawnej identyfikacji i diagnostyki mikrobiologicznej począwszy od problemu jaki stanowi hodowalność wielu mikroorganizmów, poprzez niejednokrotnie ich identyczną morfologię i fizjologię mimo, iż mogą należeć do zupełnie odrębnych taksonów [Rashid i in., 2013; Winker, 2009].

W połowie lat 90-tych zaczęto odchodzić od klasycznych metod klasyfikacji, na rzecz metod molekularnych takich jak sekwencjonowanie kwasów nukleinowych. W ciągu ostatnich dekad metody te zostały radykalnie rozwinięte i udoskonalone, a obecnie możliwa jest identyfikacja milionów mikroorganizmów z pojedynczych próbek. Dzięki takiemu wysokoprzepustowemu podejściu dowiedzieliśmy się m.in., że gram gleby może zawierać ponad 10 000 komórek

mikroorganizmów. To sugeruje, że jesteśmy na szczycie góry lodowej pod względem opisywania różnorodności biosfery mikrobiologicznej [Donelli i in., 2013; Vandamme i Peeters, 2014].

Tak niewyobrażalnie ogromna liczba organizmów wymaga hierarchicznego uporządkowania, dlatego też wyodrębniono dziedzinę nauki jaką jest taksonomia. Celem badań taksonomicznych jest uporządkowanie znanych bądź opisywanych organizmów w jednostki, zwane taksonami [Chun i Rainey, 2014; Rainey, 2011]. Ten obszar nauk biologicznych, obejmuje trzy odrębne, ale bardzo powiązane ze sobą dyscypliny, tj.: identyfikację, klasyfikację i nomenklaturę. Spójny i mający zastosowanie do wszystkich żywych organizmów system taksonomii pozwala na poprawną identyfikację każdej badanej formy życia, jak również minimalizuje zamieszanie wokół nazewnictwa [Mousavi i in., 2016; Stottmeier, 2009]. Choć badania w obszarze systematyki mikroorganizmów wydają się być dość proste i klarowne, niektóre jej elementy budzą wciąż wiele kontrowersji. Podłoże sporów dotyczy między innymi koncepcji gatunku bakteryjnego. W przypadku organizmów wielokomórkowych problem ten nie istnie, a gatunek definiowany jest jako grupa organizmów zdolnych do krzyżowania się i wydawania płodnego potomstwa, jednak definicja ta nie odnosi się do organizmów prokariotycznych, ze względu na ich rozmnażanie bezpłciowe, jak również wpływ horyzontalnego transferu genów na zmienność genomu bakteryjnego. Dlatego też współczesna klasyfikacja świata mikroorganizmów bazuje na wielokierunkowej analizie zarówno cech fenotypowych jak również szeroko pojętej analizie genomu [Oren, 2011; Willems, 2006].

Stale obserwowane zainteresowanie oraz wzrost liczby nowo opisywanych gatunków notuje się również wśród bakterii brodawkowych powszechnie zwanych ryzobiami. Występują w przyrodzie w dwóch formach, tj. jako wolno żyjące saprofity bytujące w glebie oraz wiążące azot atmosferyczny endosymbionty roślin bobowatych [Babalola i in., 2017, Clúa i in., 2018]. Rośliny bobowate pełnią ważną rolę w produkcji żywności dla ludzi i paszy dla zwierząt a ich resztki pozbiorowe stanowią ważne źródło azotu dla innych roślin i korzystnie oddziałują na strukturę oraz inne parametry żyzności gleby [Vance i Heichel, 1991].

Z powyższych względów informacja o bioróżnorodności fenotypowej, genomowej i efektywności wiązania azotu atmosferycznego przez naturalne

populacje rezydujących w glebie bakterii brodawkowych ma ogromne znaczenie praktyczne.

2.2. Identyfikacja, klasyfikacja i nomenklatura – fundamenty taksonomii mikroorganizmów

Etymologia słowa taksonomia odnosi się do greckiego słowa *taksis* – układ, porządek oraz *nomos* – prawo, a termin ten został po raz pierwszy wprowadzony w 1813 roku przez de Candolle [Colwell, 1970].

Taksonomia sensu stricto zajmuje się ustalaniem zasad i metod identyfikowania oraz klasyfikowania różnych grup organizmów, a także nazewnictwem zgodnie z ogólnie ustalonymi normami nomenklatury [Parker i in., 2015]. W szerszym ujęciu badania taksonomiczne obejmują analize bioróżnorodności organizmów, rozpatrują przyczyny i konsekwencje takiego zróżnicowania, a przede wszystkim grupują znane jak i nowo poznawane organizmy, w hierarchiczne ułożone jednostki - taksony tj. m.in.: rodziny, rodzaje, gatunki. Zasady taksonomii opierają się na ustalonych normach, które udostępnione zostały w postaci tzw. kodeksów taksonomicznych. Spójne, jednolite dla wszystkich bakterii standardy nazewnictwa i klasyfikacji pozwalają naukowcom na całym świecie stosować jedną etykietę dla każdego organizmu i minimalizują zamieszanie wokół nazewnictwa [Małek i Sajnaga, 1999; Stackebrandt i in., 2002].

Przez długi czas taksonomia była jedną z najsłabiej rozwijających się dziedzin mikrobiologii, a przyporządkowywanie badanych organizmów do danego taksonu odbywało się jedynie na podstawie oceny cech morfologicznych. Przełomem w taksonomii mikroorganizmów był rozwój technik związanych z szeroko pojętą analizą genomową oraz sekwencjonowaniem genów, co pozwoliło na rozkwit badań dotyczących ich filogenezy [Parker i in., 2015]. Obecnie badania taksonomiczne bazują na dwóch rożnych systemach tj. fenetycznym, w którym grupowanie organizmów opiera się na analizie cech fenotypowych danego organizmu oraz filogenetycznym, w którym grupowanie bazuje na pokrewieństwie ewolucyjnym [Vandamme i in., 1996].

Tak jak wcześniej wspomniano, taksonomia to szeroko zakrojona dziedzina nauki, która obejmuje trzy powiązane ze sobą działy: identyfikację, klasyfikację oraz nomenklaturę [Murray i Stackebrandt, 1995].

Identyfikacja jest pierwszym z trzech kroków w analizie taksonomicznej. Jej istotą jest dążenie do bezbłędnego rozpoznawania, poprawnej charakterystyki badanego obiektu oraz zestawienia jego cech z cechami innych organizmów. Na tej podstawie może on zostać uznany za już występujący i wcześniej opisywany, bądź zupełnie nowy gatunek. Prawidłowa identyfikacja mikroorganizmów ma fundamentalne znaczenie nie tylko dla taksonomów, ale również dla diagnostów, mikrobiologów klinicznych czy też biologów zajmujących się mikrobiologią żywności [Amaral i in., 2014; Chun i Rainey, 2014; Jain i Pundir, 2017].

W taksonomii bakterii wykorzystuje się badanie cech fenotypowych i genomowych. Charakterystyka cech fenotypowych to klasyczne podejście do identyfikacji. Do najczęściej stosowanych badań fenotypowych należą:

- mikroskopowa ocena morfologii bakterii i makroskopowa ocena tworzonych przez nie kolonii,
- identyfikacja aktywności enzymatycznej,
- analiza zdolności wzrostowych, tolerancji względem różnych czynników np. antybiotyków czy też wykorzystywanie różnych związków, jako źródeł węgla i azotu,
- produkcja barwników.

Stosując metody chemiczne bierze się pod uwagę:

 analizę budowy ściany komórkowej, profili białkowych czy składu kwasów tłuszczowych.

Wykorzystując metody molekularne uwzględnia się:

- analizę profili restrykcyjnych (RFLP),
- analizę zawartości zasad G+C czy porównawczą analizę profili genomowych uzyskanych w oparciu o technikę PCR (np. REP–PCR, ERIC–PCR, AFLP).

Klasyfikacja bakterii jest działem odpowiadającym za szeregowanie tych organizmów w hierarchicznie ułożone taksony, powstające w oparciu o różnice i podobieństwa pewnych ich cech [Prakash i in., 2007]. Każdy wyższy takson skupia więcej organizmów niż taksony niższej rangi [Rainey i Oren, 2011]. Pierwszą podstawową jednostką w systemie klasyfikacji bakterii jest "szczep". Szczepy tworzą gatunek, gatunki tworzą rodzaje, te następnie grupują się w rodziny (Rys. 2.1). W odniesieniu do organizmów bakteryjnych klasyfikacja opiera się

na analizie cech fenotypowych – morfologicznych, fizjologicznych, biochemicznych oraz genomowych [Gillis i in., 2001; Murray i in., 1990; Vandamme i Peeters, 2014]. W zależności od podejścia wyróżnia się dwa systemy klasyfikacji: naturalny – filogenetyczny, oparty na kryterium ewolucyjnym oraz sztuczny – fenetyczny, skupiający osobniki na podstawie jednej bądź kilku cech [Garrity i in., 2005].

Rys. 2.1. Piramida taksonomiczna organizmów

Mnogość i zróżnicowanie organizmów występujących na Ziemi stała się podstawą dla utworzenia klarownego i powszechnie uznawanego systemu nazewnictwa. W tym celu wydzielono w taksonomii gałąź jaką jest nomenklatura, odpowiadająca za nadawanie odpowiednich nazw jednostkom na każdym poziomie systemu hierarchicznego, aby system ten funkcjonował w prawidłowy sposób, musi opierać się na powszechnie akceptowanych zasadach. Przyjęte nazewnictwo organizmów wykorzystuje język łaciński, co ze względu, iż to język martwy, pozwoliło na ujednolicenie systemu nomenklatury [Tindall i in., 2010; Parker i in., 2015].

W celu utrzymania porządku i niezmienności w powyższym systemie nazewnictwa Kongres Międzynarodowych Towarzystw Mikrobiologicznych przyjął w roku 1947 Międzynarodowy Kod Nomenklatury Bakterii (ang. *International Code of Nomenclature of Bacteria*). Nowo opisywane gatunki bakterii wprowadzane są na Listę Nazw Obowiązujących (ang. *Approved List of Bacteria Names*) i po zatwierdzeniu zostają opublikowane, jako tzw. "Validation Lists" w międzynarodowym czasopiśmie IJSEM – "International Journal of Systematic and Evolitionary Microbiology", razem ze szczegółowym opisem i charakterystyką, pozwalającą na identyfikację tych bakterii [Parker i in., 2015]. Przy opisie nowego gatunku bakteryjnego wymagane jest również podanie najbardziej reprezentatywnego, typowego przedstawiciela - tzw. szczepu referencyjnego, od którego pochodzi nazwa całego taksonu. Pieczę nad prawidłowością nazewnictwa nowo opisywanych gatunków bakteryjnych czy taksonów wyższej rangi sprawuje Komisja Sędziowska Międzynarodowego Komitetu Systematyki Bakterii (JCSB ang. Judicial Commission of the International Committee on Systematic Bacteriology), w skład której wchodzą przedstawiciele Międzynarodowych Naukowych Towarzystw Mikrobiologicznych (IUMS – ang. International Union of Microbiological Society) [Chun i Rainey, 2014; Donelli i in., 2013; Oren, 2011].

Nomenklatura mikroorganizmów podlega ściśle określonym regułom:

- nazewnictwo taksonów jest w języku łacińskim,
- nazwa gatunkowa składa się zawsze z dwóch członów, jest to tzw. system binominalnego nazewnictwa,
- nowy takson podlega zasadom kodu nomenklaturowego,
- prawo priorytetu przysługuje nazwom najstarszym, które wprowadzone zostały w oparciu o powyższe zasady.

Binominalny system nazewnictwa funkcjonuje od XVIII wieku i został opracowany przez szwedzkiego botanika Carl'a von Linné, uważanego za ojca współczesnej taksonomii [Parker i in., 2015; Rainey, 2011]. Według nomenklatury binominalnej pierwszy człon nazwy gatunkowej pochodzi od nazwy rodzaju drugi oznacza dany gatunek. W przypadku możliwości wyróżnienia podgatunku stosuje się skrót "subsp.", poprzedzający epitet, określający dany podgatunek. Taksony wyższej rangi otrzymują jednoczłonowe nazwy, które w zależności od poziomu hierarchicznego posiadają odpowiednią końcówkę np. rodzina – *Rhizobia<u>ceae</u>*, rząd – *Rhizobia<u>les</u>* [Vandamme i in., 1996; Overmann i in., 2019].

Te trzy dziedziny czyli identyfikacja, klasyfikacja i nomenklatura są ściśle od siebie zależne, a ich granice przenikają się. Dlatego też w obecnych badaniach taksonomicznych, bazuje się na analizie wielu cech, łącząc techniki fenotypowe, genomowe jak i pokrewieństwo filogenetycznego i jest to tzw. taksonomia wielokierunkowa (Rys. 2.2) [Gillis i in., 2001; Rainey i Oren, 2011].

Rys. 2.2. Zależności zachodzące pomiędzy identyfikacją, klasyfikacją i nomenklaturą w taksonomii wielokierunkowej [Opracowanie własne]

2.3. Koncepcja gatunku bakteryjnego – czy istnieje uniwersalne podejście do klasyfikacji tych organizmów?

Co to jest gatunek bakteryjny? Niewiele pytań jak to skupiło dotychczas tak wiele uwagi. Już pierwsze próby opracowania satysfakcjonującego systemu klasyfikacji organizmów prokariotycznych przysparzały mikrobiologom ogromne trudności. Badacze poszukiwali systemu, który opierając się na odpowiednich, uniwersalnych metodach pozwoliłby na obiektywne wyodrębnienie gatunku, jako podstawowej jednostki taksonomicznej, jednocześnie podpartej o naturalne pokrewieństwo organizmów, co pozwoliłoby na rekonstrukcję ich ewolucyjnej historii [Gevers i in., 2005].

Ze względu na prostą morfologię, organizmy domen *Bacteria* i *Archaea* są często niemożliwe do rozróżnienia. Ponadto, trudności w odtworzeniu ich filogenezy sprawia fakt, braku zapisu kopalnego tych organizmów [Oren, 2011]. Dlatego też, do dnia dzisiejszego nie udało się utworzyć oficjalnego, jednolitego systemu klasyfikacji, który zyskałby aprobatę wszystkich mikrobiologów. Zgadzają się z tym nawet autorzy "*Bergey's Manual of Systematic Bacteriology*", którzy przyznają, że najbardziej bliska oficjalnej, klasyfikacja bakterii to taka, która jest powszechnie akceptowalna przez szerokie grono społeczności naukowej

[Brenner i in., 2001]. Podstawowy problem tkwi w fakcie, iż wszelkie próby definicji gatunku, sformułowania jednej, trwałej zatrzymywane już są solidnych etapie budowania podstaw teoretycznych, pozwalających na na wyjaśnienie wpływów jakie procesy biologiczne wywierają na spójność oraz dywergencję w obrębie gatunków [Cohan, 2006; Gevers i in., 2005].

Obecnie istniejące definicje gatunku bakteryjnego w dużej mierze opierają się na opublikowanych w 1987 roku zaleceniach Międzynarodowego Komitetu Systematyki Bakterii i stopniowo rozszerzane są o nowo stosowane i wprowadzane do taksonomii techniki badań bakterii [Wayne i in., 1987; Stackebrandt i in., 2002]. Na ich podstawie udało się opracować dość dobrze sprawdzającą się przy opisywaniu nowych taksonów, powszechnie akceptowalną definicję gatunku. Zgodnie z tym wilokierunkowym podejściem gatunek prokariotyczny definiuje się, jako monofiletyczną, genomowo spójną grupę organizmów, wykazującą wysoki stopień podobieństwa wielu niezależnych od siebie cech fenotypowych [Rosselló– Móra i Amann, 2001; Vandamme i in., 1996].

Pierwsze analizy genomowe, włączone oficjalnie do badań wymaganych przy określaniu przynależności gatunkowej, opierały się na analizie stopnia hybrydyzacji DNA-DNA. Na tej podstawie izolaty zaliczane są do jednego gatunku, kiedy stopień hybrydyzacji DNA-DNA wynosi 70% i więcej, a różnica w temperaturze topnienia (ΔT_m) między homologicznymi i heterologicznymi hybrydami DNA wynosi mniej niż 5°C, podczas gdy stopnień podobieństwa DNA–DNA poniżej 50% wskazuje na odrębną przynależność gatunkową badanych bakterii [Gevers i in., 2005; Oren, 2011]. Wyznaczony na 70% stopnień podobieństwa DNA-DNA, jako granica gatunku bakteryjnego, nie znajduje jednak konkretnego odzwierciedlenia w żadnej koncepcji gatunku, a został jedynie doświadczalnie określony na podstawie analiz stopnia hybrydyzacji DNA-DNA w oparciu o gatunki powszechnie akceptowalne i zidentyfikowane na podstawie cech fenotypowych. Dopóki hybrydyzacja DNA-DNA nie zostanie wyparta przez nowsze techniki wciąż stanowi ona standard wymagany przy opisywaniu nowych gatunków [Stackebrandt i in., 2002; Ursing i in., 2009]. Najnowsze doniesienia wspierają zastosowanie hybrydyzacji DNA-DNA poprzez pomiar średniego podobieństwa sekwencji nukleotydowych (ANI) pomiędzy wszystkimi wspólnymi genami dla analizowanych par szczepów [Konstantinidis i Tiedje, 2005; Goris i in., 2007].

który pozwolił na sformułowanie, wydawałoby Przełomem, się, uniwersalnego drzewa życia, było wprowadzenie do badań filogenetycznych analizy porównawczej sekwencji genu 16S rRNA u organizmów prokariotycznych i 18S rRNA w przypadku organizmów eukariotycznych. Uzyskane wyniki wprowadziły ogromne zmiany dzieląc dotychczas wszystkie organizmy na trzy domeny: Eukarya, Bacteria i Archaea. [Woese i in., 1984]. Wysoce konserwatywna sekwencja genu kodującego 16S rRNA stała się najważniejszą makrocząsteczką stosowana w taksonomii bakterii, pozwalająca na wnioskowanie o ewolucji organizmów prokariotycznych i ich klasyfikacji do rodzaju i gatunku. Takie podejście zostało powszechnie zaakceptowane i przyjęte również przez "Bergey's Manual of Systematic Bacteriology" [Brenner i in., 2001]. Na postawie tego markera szczepy, które wykazują stopień podobieństwa sekwencji 16S rDNA mniejszy niż 97% względem wszystkich opisanych dotychczas mikroorganizmów, można uznać za przedstawicieli nowego gatunku, ponieważ do chwili obecnej nie ma przykładów, aby szczepy o takim stopniu różnicy w sekwencji genu 16S rRNA, wykazywały stopień hybrydyzacji DNA-DNA wynoszące więcej niż 70% [Gevers i in., 2005; Coenye i in., 2005]. Nie oznacza to jednak, że bakterie, których stopień podobieństwa sekwencji genu 16S rRNA jest większy niż 97% należą do jednego gatunku. Istnieją bowiem dowody, że niektóre szczepy posiadające niemal identyczne sekwencje 16S rRNA nie są ze sobą tak blisko spokrewnione, jak to wynikało ze stopnia podobieństwa ustalonego na podstawie hybrydyzacji DNA-DNA lub oznaczania średniego podobieństwa sekwencji nukleotydowych dla zsekwencjonowanych genomów organizmów prokariotycznych - ANI (ang. Average Nucleotide Identity) [Konstantinidis i Tiedje, 2005; Roselló–Móra i Amman, 2001].

Wysoka konserwatywność sekwencji 16S rDNA stanowi wyraźną przeszkodę w afiliacji bakterii do gatunku. W związku z tym do badań taksonomicznych bakterii i analizy pokrewieństwa wprowadzono technikę opierającą się o analizę połączonych sekwencje kilku, przeważnie od trzech do pięciu, genów należących do tzw. genów metabolizmu podstawowego, występujących powszechnie u wszystkich mikroorganizmów. MLSA, czyli wielolokusowa analiza sekwencji (ang. *Multilocus Sequence Analysis*) pozwala na dokładną ocenę historii ewolucyjnej

i stanowi odniesienie pozwalające na wyznaczenie właściwej przynależności gatunkowej bakterii [Bishop i in., 2009; Hanage i in., 2005].

Biorąc wszystkie powyższe aspekty pod uwagę wydaje się, że globalne podejście, które sugeruje filogenetyczna koncepcja gatunku, jest bardzo słuszne i może stanowić jedyne właściwe spojrzenie na gatunek w przypadku organizmów prokariotycznych. Istnieje wiele zalet przemawiającym za taką koncepcją gatunku, mianowicie [Staley, 2009]:

- opiera się ona na teorii filogenetycznej, wywodzącej się z analizy sekwencji genów rdzeniowych i białek;
- jest to podejście pragmatyczne, bazujące na metodologii analiz filogenomowych;
- w przeciwieństwie do danych z hybrydyzacji DNA–DNA, dane pochodzące z analizy sekwencji są archiwizowane i łatwo dostępne za pośrednictwem internetowych platform i baz danych;
- może być stosowana do wszystkich organizmów prokariotycznych.

Niewatpliwie gatunek jest podstawową jednostką taksonomiczną, a odpowiedź na postawione na początku rozdziału pytanie: "Czy istnieje uniwersalne podejście do klasyfikacji organizmów?", pozwoli rozwikłać problem koncepcji gatunku bakteryjnego i określenia pokrewieństwa filogenetycznego między rożnymi gatunkami bakterii. Z tego powodu ustalenie uniwersalnej koncepcji gatunku jest niezmiernie ważne. Rodzi się zatem kolejne pytanie, dlaczego jeszcze nie udało się uzyskać konsensusu i stworzyć jednej uniwersalnej, powszechnie akceptowalnej definicji gatunku. Po pierwsze, do niedawna nie było wiadomo, czy bakterie i archeony rzeczywiście posługują się tymi samymi mechanizmami ewolucyjnymi, co rośliny i zwierzęta. Ponadto morfologia i sposób rozmnażania mikroorganizmów nie mogą być porównywane do tych cech występujących u organizmów wyższych, więc nie jest możliwe odnoszenie świata bakterii i archeonów do świata organizmów eukariotycznych będących na wyższym etapie ewolucji. Jak stwierdził już w roku 1809 roku, JB Lamarck: "Najważniejsze odkrycia praw, metod i postępu natury prawie zawsze powstały z badania małych przedmiotów, które zawiera". W oparciu o tę przesłankę i wnioski płynące z szeroko zakrojonych badań filogenetycznych i genomowych, biolodzy zajmują się i starają się rozwiązać kwestię pojęcia gatunku odnoszącego się do różnych organizmów [Baumann i in., 1993; Staley, 2009; Whitaker i in., 2003].

Chociaż filogenetyczna koncepcja gatunku (PSC – ang. *Phylogenetic Species Conception*) wydaje się być najbardziej uniwersalna i odpowiednia, być może dalszy rozwój biologii pozwoli na stworzenie bardziej globalnej, odnoszącej się nie tylko do mikroorganizmów, koncepcji gatunku, która pozwoli na uniwersalną klasyfikację wszystkich organizmów na Ziemi i będzie powszechnie akceptowana przez wszystkich biologów. Przyjęcie uniwersalnej koncepcji gatunku będzie stanowić duży krok w kierunku dalszego rozwoju szeroko pojetej biologii [Staley, 2009].

2.4. Metody taksonomii wielokierunkowej

Mimo, iż terminy taksonomia i systematyka są często używane zamiennie to ich znaczenie jest zgoła odmienne. Podczas gdy taksonomia opiera się na teorii i praktyce klasyfikowania organizmów, systematyka bazuje na badaniu różnorodności organizmów i analizie związków między nimi, a w tym ich ewolucyjnego pokrewieństwa (filogeneza) i wszystkich możliwych interakcji biologicznych [Amann i in., 1995; Coenye i in., 2005; Gevers i in., 2005; Rosselló– Móra i Amann, 2001; Vandamme i in., 1996].

Techniki powszechnie stosowane kilkadziesiąt lat temu nie były wystarczające, aby dostarczyć kompletnego szkicu, na którym można oprzeć taksonomię bakteryjną. Większość badań opierało się na cechach, takich jak kształt i wielkość komórki bakteryjnej, kolor kolonii, reakcja na barwienie metodą Gramma, zdolność ruchu, zakres gospodarza, patogenność czy asymilacja różnych źródeł węgla i azotu [Clarridge, 2004; Woese i in., 1984]. Zaczęto zatem szukać nowszych narzędzi, pozwalających na znacznie większą precyzję w badaniach ewolucyjnego związku między prokariontami. Rozwój technik molekularnych pozwolił utorować drogę do bardziej kompleksowego podejścia w dostarczaniu pełnych informacji o mikroorganizmach [Prakash i in., 2007; Schildkraut i in., 1961].

Rys. 2.3. Schemat przedstawiający zdolność dyskryminacyjną technik i metod stosowanych w taksonomii wielokierunkowej [Opracowanie własne]

Wielokierunkowa taksonomia bakterii zapewnia naturalny system obejmujący powiazane ze soba obszary identyfikacji, klasyfikacji i nomenklatury i ma na celu odzwierciedlenie filogenezy i pokrewieństwa badanych mikroorganizmów. Patrząc wstecz, na przestrzeni kilku ostatnich dziesięcioleci, najbardziej spektakularne zmiany w systematyce bakterii dotyczyły głównie obszarów identyfikacji i klasyfikacji podczas gdy, zasady nomenklatury bakteryjnej w dużej mierze nie uległy zmianom. Podejście do taksonomii przeobraziło się z prostych procedur, w których badano ograniczoną liczbę wspomnianych wielokierunkowego cech komórki bakteryjnej, do podejścia powyżej z zastosowaniem technik fenotypowych, genomowych i chemotaksonomicznych, a badania filogenetyczne opierające się o analizę sekwencji genu 16S rRNA stały się rutynową procedurą w taksonomii mikroorganizmów. Konsekwencją takiego podejścia był wzrost liczby dotychczas wyodrębnionych (istniejących) taksonów [Murray i Stackebrandt, 1995; Vandamme i Peeters, 2014].

Wielokierunkowe podejście rozpoczyna się od wyboru technik, które mają być stosowane stopniowo, w celu scharakteryzowania i sklasyfikowania pojedynczego lub dowolnej grupy szczepów, a ich właściwa afiliacja do danego taksonu zależy od poziomu rozdzielczości stosowanej metody. W taksonomii wyróżniamy techniki o dużej rozdzielczości, z których te oparte na analizie sekwencji genów są najbardziej rozpowszechnione i ujawniają różnice na poziomie gatunku i/lub rodzaju oraz różne metody genotypowania, które niekoniecznie są istotne na poziomie gatunku, ale mogą być wykorzystane do różnicowania szczepów [Vandamme i Peeters, 2014].

Rys. 2.4. Droga postępowania od momentu wyizolowania bakterii z materiału środowiskowego do opublikowania doniesienia o nowym gatunku [Opracowanie własne]

2.4.1. Metody fenotypowe

Przed epoką biologii molekularnej, taksonomia bakterii opierała się wyłącznie na badaniach porównawczych cech fenotypowych. Jedną z głównych niedogodności takiego podejścia do taksonomii jest warunkowa natura ekspresji genów, a zatem i różnice fenotypowe bakterii zależne od warunków środowiskowych [Moore i in., 1996; On i Holmes, 1991; On i Holmes, 1992; Prakash, 2007; Vandamme i in., 1996; Vandamme i in., 2014].

Klasyczna taksonomia numeryczna, czyli analiza występowania bądź braku danej cechy znana jest od pierwszej połowy XX wieku i definiowana, jako "grupowanie organizmów w taksony przy użyciu metod numerycznych". Cechy wybrane do analiz porównawczych powinny obejmować szerokie spektrum właściwości morfologicznych, fizjologicznych oraz biochemicznych organizmu, będących obserwowalnym odzwierciedleniem ekspresji ich genów [Rosselló–Móra

i Amann, 2001; Prakash i in. 2007; Vandamme i in., 1996]. Dodatkowo warunki hodowli jak i procedury przygotowania testów, a w konsekwencji również wyniki tych badań powinny być mierzalne i wysoce powtarzalne, tak aby zachować odpowiednie standardy oraz uniwersalność diagnostyczną pomiędzy laboratoriami [On i Holmes, 1991; On i Holmes, 1992; Vandamme i in., 1996]. Przyjmuje się, że optymalna liczba wykonywanych testów w taksonomii numerycznej powinna oscylować w granicach 100. Wyniki tych testów przedstawia się w postaci binarnej (0/1), gdzie 0 oznacza wynik negatywny natomiast wynik dodatni zapisywany jest jako 1. Następnie zakodowane w ten sposób dane poddaje się komputerowej analizie wykorzystując współczynnik podobieństwa. Najczęściej stosuje się prosty współczynnik podobieństwa (ang. Simple Matching – S_{SM}) rzadziej współczynnik Jaccarda (S_J). Uzyskane dane generowane są komputerowo w postaci macierzy stopnia podobieństwa fenotypowego badanych szczepów, a wyniki obrazuje się w postaci dendrogramu. Główną wadą takiego podejścia do taksonomii bakterii jest to, że uzyskane informacje nie odzwierciedlają filogenezy badanych organizmów i in.. 2007; Rosselló-Móra 2001: Tindall [Prakash i Amann. i in., 2010].

Analiza fenotypu bakterii ogranicza się zawyczaj do takich parametrów jak kształt komórki, morfologiia kolonii, testy biochemiczne, optymalne pH i temperatura itp. Badanie składu chemicznego komórki – chemotaksonomia, jest również częścią fenotypowej charakterystyki organizmu i obejmuje analizę ilościową oraz jakościową zawartości cukrów, lipidów i białek występujących w komórkach, pozwalając na odzwierciedlenie zróżnicowania bakterii na różnych poziomach taksonomicznych [Busse i in., 1996; Prakash i in., 2007; Tindall i Garrity, 2008; Tindall i in., 2010]. Dla przykładu badania związane z analizą chromatograficzną kwasów tłuszczowych bakterii znajdują zastosowanie w ich klasyfikacji na różnych poziomach taksonomicznych, co związane jest m.in. z różnicami w długości łańcucha węglowego, występowaniem wiązań nienasyconych oraz rozgałęzień czy też obecnością grupy hydroksylowej. Wykazano, że róznice w profilach kwasów tłuszczowych wśród różnych rodzajów bakterii brodawkowych korelują z ich różnicami w sekwencjach genu kodującego 16S rRNA [Suneja i in., 2017].

Należy podkreślić, że stosowane metody i testy do analiz fenotypowych muszą być wysoce wystandaryzowane stąd coraz częstsze stosowanie testów typu API czy BIOLOG. Wykorzystanie takiego podejścia pozwala na uzyskanie powtarzalnych wyników, a ponadto usprawnia i przyspiesza pracę w szczególności, gdy mamy do czynienia z duża ilością analizowanych szczepów.

Minimalne standardy stosowane do wstępnego scharakteryzowania i sklasyfikowania danego mikroorganizmu na podstawie cech fenotypowych określa opracowany przez ICSB (ang. *The International Committee on Systematic Bacteriology*) i ICSP (ang. *International Committee on Systematics of Prokaryotes*) kodeks bakteriologiczny [Labeda, 2000; Logan i in., 2009; Tindall i in., 2010].

2.4.2. Metody genomowe

Rozwój technik i metod biologii molekularnej znacząco wpływa na podejście do współczesnej taksonomii. Co prawda klasyczna systematyka zastosowaniem metod fenotypowych nie została całkowicie wyparta, Z ale analizy genomu zdecydowanie nad nią górują. Wyjaśnienie struktury DNA i rozszyfrowanie kodu genetycznego rozpoczęły nową erę w badaniach biologicznych, a co za tym idzie dały również nowe spojrzenie na klasyfikację mikroorganizmów [Tindall i in., 2010]. Jeszcze długo przed poznaniem sekwencji całego genomu bakterii uważano, że różniące się zawartości G+C w DNA prokariontów mają bezpośrednie powiązanie z budową ich genomu i wartości te brano pod uwagę przy określaniu przynależności taksonomicznej organizmów [De Ley, 1968]. Wprowadzenie metod hybrydyzacji kwasów nukleinowych (DNA-DNA i DNA-RNA) było kolejnym krokiem, który umożliwił pośrednie porównywanie genomów. Największy rozwój badań taksonomicznych nastąpił wraz z wprowadzeniem analizy sekwencji genu 16S rRNA przez Carla Woese na początku lat 70-tych ubiegłego wieku [Fox i in., 1977]. Ten marker molekularny pozwala na badanie przynależności taksonomicznej i filogenezy mikroorganizmów. Należy podkreślić, że analiza sekwencji genu 16S rRNA ze względu na swoją wielkość (~1500 pz) jest częściej wykorzystywana w badaniach taksonomicznych bakterii niż cząsteczka 23S rDNA (~2900 pz) [Isenbarger i in., 2008; Tindall i in., 2010; Villegas i in., 2006].

Najnowsze doniesienia dotyczące taksonomii nowo izolowanych szczepów coraz częściej opierają się również o badanie całych genomów. Paradoksalnie, pomimo tego ogromnego postępu, malejących kosztów związanych

z sekwencjonowaniem i rosnącej liczbie dostępnych już zsekwencjonowanych genomów, uzyskiwane informacje nie są jeszcze powszechnie wykorzystywane do celów taksonomicznych, mimo iż obecnie stosowane techniki genetyczne, w tym hybrydyzacja DNA–DNA, analiza sekwencji genów 16S rRNA i zawartość zasad G+C w DNA mają istotne ograniczenia [Goris i in., 2007; Ramasamy i in., 2014; Rosselló–Móra, 2005; Stackebrandt i in., 2002; Vandamme i Peeters, 2014].

2.4.2.1. Określanie zawartości zasad G+C w genomowym DNA

Analiza zawartości zasad G+C w DNA wyrażana w procentach molowych jest jedną z klasycznych metod wykorzystywanych w badaniach taksonomicznych bakterii. Została zaproponowana na początku lat 50–tych XX wieku, kiedy to wykazano, że suma zasad purynowych równa się sumie zasad pirymidynowych w DNA (A+G = T+C), a stosunek ilościowy A/T i G/C wynosi 1,0 [Stackebrandt i Goebel, 2008].

W przypadku organizmów prokariotycznych zawartość G+C w genomowym DNA waha się od 20 do 80 mol%, a im większa jest różnica w zawartości G+C między badanymi organizmami, tym wykazują one między sobą mniejszy stopień pokrewieństwa. Przyjmuje się, że w obrębie jednego rodzaju różnice w zawartości zasad G+C w DNA nie przekraczają 10 mol%, natomiast za graniczną wartość różnic w zawartości G+C w przypadku gatunku uznaje się 5 mol%. Należy również wspomnieć, iż procent par G+C w DNA rzutuje na wysokość temperatury topnienia DNA, im większa zawartość G+C w DNA tym wyższa jest T_m (ang. *melting temperature*) tej cząsteczki [Vandamme i in., 1996].

Dotychczas stosowane metody służące do wyznaczania zawartości G+C w badanym DNA różnicujemy na pośrednie i bezpośrednie. Pośrednio możemy tego dokonać metodą wirowania w gradiencie gęstości chlorku cezu lub poprzez termiczną denaturację dwuniciowej cząsteczki DNA. Bezpośrednia metoda opiera się m. in. na hydrolizie DNA nukleazą P1 oraz alkaliczną fosfatazą, a zawartość uzyskanych w ten sposób zasad określa się dokonując pomiarów przy zastosowaniu wysokosprawnej chromatografii cieczowej. Znajomość zawartości GC stanowi również podstawę podczas dobierania odpowiednich warunków hybrydyzacji DNA–DNA [Tamaoka i Komagata, 1984].

2.4.2.2. Oznaczanie stopnia podobieństwa DNA–DNA metodą hybrydyzacji

Technika hybrydyzacji DNA–DNA (DDH) opiera się na reasocjacji dwóch jednoniciowych cząsteczek DNA, które wykorzystując komplementarność zasad azotowych, tworzą dwuniciowy DNA, między dwoma gatunkami bakterii, przy wykorzystaniu właściwości fizykochemicznych jakimi charakteryzują się kwasy nukleinowe. W wysokiej temperaturze dochodzi do denaturacji dwuniciowego DNA poprzez zerwania wiązań wodorowych, które w wyniku stopniowego obniżania temperatury będą odtworzone i cząsteczka wróci do formy natywnej, dwuniciowej [Broekhuijsen i in., 2003].

Dotychczas opracowane metody reasocjacji DNA–DNA opierają się na trzech parametrach tj.: zawartości G+C (mol%), sile jonowej roztworu i temperaturze topnienia hybrydowego DNA, z których jedyną zmienną jest temperatura topnienia heterodupleksu dwóch organizmów i im wyższy jest stopień podobieństwa DNA między dwoma badanymi organizmami tym bardziej wzrasta temperatura topnienia DNA [Wayne i in., 1987; Prakash i in., 2007]. Doświadczenie przeprowadza się w określonych warunkach, w których następuje reasocjacja i powstają cząstki hybrydowe. Im więcej powstałych hybryd tym stopień podobieństwa sekwencji DNA dwóch organizmów jest wyższy. Uzyskane wyniki dla heterodupleksu porównuje się z wynikami uzyskanymi dla DNA referencyjnego (homodupleku) i na tej podstawie otrzymujemy właściwy stopień podobieństwa DNA–DNA [Rosselló–Móra, 2006].

Technika hybrydyzacji inaczej reasocjacji DNA–DNA oparta na ogólnym porównaniu sekcji genomu dwóch różnych bakterii, znalazła zastosowanie w określaniu przynależności gatunkowej bakterii. Zgodnie z zaleceniami komisji ds. systematyki z roku 1987 roku, przyjmuje się, że stopień podobieństwa DNA–DNA, określony metodą hybrydyzacji, wynoszący 70% lub więcej wskazuje, że badane organizmy należą do jednego gatunku. Należy jednak zauważyć, że ta technika podaje względny procent podobieństwa sekwencji DNA, a nie rzeczywistą identyczność sekwencji nukleotydowej [Stackebrandt i Goebel, 2008; Wayne i in., 1987]. Mimo iż, metoda hybrydyzacji DNA–DNA jest stale stosowana w celu określania przynależności gatunkowej to spotyka się z krytyką, spowodowaną przede wszystkim brakiem zbiorczych baz danych, stanowiących źródło informacji o stopniu podobieństwa DNA różnych gatunków bakterii, co w dzisiejszych czasach jest ogromną niedogodnością [Rosselló–Móra, 2006].

Dlatego też tak długo jak sekwencjonowanie całego genomu nie będzie ekonomicznie i powszechnie dostępnym podejściem w taksonomii, DDH pozostanie jednym z głównych parametrów w wyznaczaniu gatunków organizmów prokariotycznych [Broekhuijsen i in., 2003, Prakash i in., 2007].

2.4.2.3. Metody molekularne wykorzystywane w analizie polimorfizmu genomowego DNA

Rozwój biologii molekularnej i metod opartych o analizę DNA zrewolucjonizował podejście do identyfikacji i klasyfikacji bakterii. Techniki pozwalające na wykrywanie naturalnie występującego polimorfizmu genomowego, związanego z rearanżacjami – delecjami, insercjami i mutacjami punktowymi w DNA, na stałe weszły do taksonomii i pozwalają na identyfikację i wykrywanie różnic między szczepami, w obrębie gatunków. Ocenie porównawczej podlegają wzory prażków DNA, uzyskanych poprzez jego trawienie restryktazami badź poprzez analizę fragmentów DNA zamplifikowanego w reakcji PCR przy udziale odpowiednich starterów. Analiza numeryczna wzorów DNA pozwala na identyfikację i różnicowanie bakterii oraz określanie ich polimorfizmu genomowego i badanie ich pokrewieństwa [Janssen i in., 1996; Prakash i in., 2007].

Badania takie jak analiza restrykcyjna amplifikowanego rDNA (ARDRA – ang. *Amplified Ribosomal DNA Restriction Analysis*), elektroforeza w zmiennym polu elektrycznych (PFGE – ang. *Pulsed Field Gel Electrophoresis*), polimorfizm losowo amplifikowanych fragmentów DNA (RAPD – ang. *Random Amplification of Polymorphic DNA*) czy inne metody oparte na reakcji PCR takie jak ERIC–PCR, BOX–PCR, AFLP (ang. *Amplified Fragment Length Polymorphism*) na stałe weszły do badań taksonomicznych i pozwalają na badanie różnic genomowych między szczepami należącymi do jednego gatunku bakterii [Olive i Bean, 1999; Rosselló–Móra i Amann, 2001; Vandamme i in., 1996].

RFLP, czyli analiza polimorfizmu długości fragmentów restrykcyjnych, różnicuje bakterie na podstawie wzorów profili (*fingerprint*) uzyskanych w wyniku trawienia DNA jednym bądź kilkoma enzymami restrykcyjnymi opierając się na losowym rozmieszczeniu miejsc restrykcyjnych w genomie. Ze względu na bardzo dużą liczbę fragmentów DNA uzyskiwanych przy zastosowaniu enzymów

rozpoznających czteronukleotydowe sekwencje DNA, najczęściej stosowane są enzymy restrykcyjne rozpoznające sześcio– bądź ośmionukleotydowe sekwencje w DNA. Technika z zastosowaniem enzymów o mniejszej rozdzielczości określana jest jako analiza fragmentów restrykcyjnych o niskiej częstotliwości (LFRFA – ang. *Low Frequency Restriction Fragment Analysis*). Analizowane tą metodą fragmenty DNA rozdzielane są z zastosowaniem elektroforezy pulsacyjnej w zmiennym polu elektrycznym (PFGE), ponieważ uzyskiwane fragmenty są zbyt duże, aby można je było zwizualizować stosując standardowe metody rozdziału w żelach agarozowych [Rosselló–Móra i Amann, 2001].

Metoda RFLP, w połaczeniu z PFGE znajduje zastosowanie do badania zróżnocowania zarówno międzygatunkowego jak i wewnątrzgatunkowego. Technikę RFLP stosuje się również w celu analizy wybranego fragmentu genomu łącząc ją z reakcją PCR np. genów kodujących rRNA oraz regionów DNA znajdujących się między genami rRNA (IGS – ang. *Intergenic Spacer Region*). Do badań taksonomicznych opartych na reakcji PCR–RFLP najczęściej wykorzystuje się geny kodujące 16S lub 23S rRNA, ewentualnie region międzygenowy 16–23 rRNA (IGS) [Jarabo–Lorenzo i in., 2003; Laguerre i in., 1994].

Kolejna technika pozwalającą różnicowanie mikroorganizmów na jest AFLP. Metoda ta opiera się na analizie polimorfizmu długości zamplifikowanych fragmentów. Ta trzyetapowa analiza polega na wybiórczej amplifikacji fragmentów otrzymanych W wyniku trawienia enzymami restrykcyjnymi. W pierwszym etapie przeprowadza się trawienie całkowitego DNA stosując jeden lub dwa enzymy restrykcyjne, następnie do obu końców fragmentów restrykcyjnych dołączone zostają tzw. sekwencje adaptorowe, aby w kolejnym etapie zamplifikować tylko te fragmenty, które przy zastosowaniu starterów zwierających sekwencje adaptora i dodatkowych kilku selektywnyh nukleotydów (1 - 3), będą do nich komplementarne [Janssen i in., 1996; van der Wurff i in., 2000]. Ze względu na wysoką powtarzalność wyników, technika AFLP jest szeroko stosowana w badaniach polimorfizmu genomowego wielu różnych grup organizmów, m.in. ryzobiów [Doignon-Bourcier i in., 2000; Gnat i in., 2014; Gnat i in., 2015; Kalita i Małek, 2004; Willems i in., 2001; Stackebrandt i in., 2002].

Szereg metod stosowanych w analizach polimorfizmu DNA bazuje na wykorzystaniu reakcji PCR bez stosowania enzymów restrykcyjnych. Na początku lat 90–tych XX wieku, wykazano, że w genomach organizmów prokariotycznych i eukariotycznych występują miejsca powtarzające się wielokrotnie, tzw. sekwencje repetetywne i stanowią one nawet powyżej 10% całego genomu. Badania nad funkcjonalnością regionów repetetywnych wykazały, że elementy te mogą wpływać na ekspresję swoistych sekwencji kodujących i mogą pełnić funkcje w replikacji genomu oraz przekazywaniu informacji komórkom potomnym. Niektóre regiony mogą brać również udział w tworzeniu kompleksów nukleoproteinowych, rekombinacji wewnątrzgenowej, a pośrednio wpływać także na zdolności adaptacyjne mikroorganizmów [Bidyut i in., 2007].

Sekwencja repetetywna	Wielkość	Organizm w którym pierwotnie zidentyfikowano występowanie sekwencji	Literatura
ERIC	~127 pz	Enterobacteriaceae	Hulton i in., 1991
BOX	~67-637 pz	Steptococcus pneumoniae	Martin i in., 1992
REP	~35 pz	Enterobacteriaceae	Stern i in., 1984
YAPL/RU-2	~168 pz	Yersinia sp.	De Gregorio i in., 2006
Correia	~157 pz	Neisseria sp.	Correia i in., 1988
MaeMITE	~150-435 pz	Microcystis aeruginosa	Kaneko i in., 2007
Chunjie	~178-235 pz	Geobacter uraniireducens Rf4	Chen i in., 2008

Tab. 2.1. Przykładowe sekwencje repetetywne używane w typowaniu molekularnym bakterii

Identyfikacja w genomach bakterii sekwencji repetytywnych zaowocowała lawinowym rozwojem technik opartych na reakcji PCR i wykorzystujących jako startery sekwencje komplementarne do sekwencji powtórzonych w genomie. Technika REP–PCR (ang. *Repetitive Extragenic Palindromic*), oparta jest na 35–nukleotydowych pozagenowych powtórzonych elementach palindromowych o dotychczas nie całkowicie określonej roli, jednak przypuszcza się, że mogą one brać udział w hamowaniu transkrypcji, stabilizowaniu mRNA oraz regulować ekspresję niektórych genów. Technika REP–PCR jest narzędziem służącym do określania zróżnicowania genomowego między organizmami na różnych poziomach taksonomicznych [Espéli i in., 2001; Aranda–Olmedo i in., 2002; Tobes i Pareja, 2006].

Innym narzędziem jest technika ERIC–PCR (ang. *Enterobacterial Repetitive Intragenic Consensus*), oparta na 127–nukleotydowych repetytywnych międzygenowych sekwencjach, występujących w międzygenowych regionach [Versalovic i in., 1994; Hulton i in., 1991]. Po raz pierwszy sekwencje ERIC zostały

zidentyfikowane w genomach *Escherichia coli* i *Salmonella typhimurium*. Ze względu na powszechne występowanie w genomach bakteryjnych oraz charakterystyczną dla danego szczepu liczbę kopii tych sekwencji, elementy ERIC są często stosowane w analizie polimorfizmu genomowego bakterii [Hulton i in., 1991; Wilson i Sharp, 2006].

Poza repetytywnymi sekwencjami REP i ERIC, w analizie polimorfizmu genomowego bakterii wykorzystuje się bardzo często międzygenowe elementy BOX, składające się z kombinacji trzech podjednostek, boxA (59 pz), boxB (45 pz) i boxC (50 pz) [Bilung i in., 2018; Hulton i in., 1991; Martin i in., 1992; Versalovic i in., 1991].

Podobnie jak w przypadku metod opartych na analizie restrykcyjnej, we wszystkich powyżej scharakteryzowanych metodach uzyskuje się zróżnicowane profile genomowego DNA, charakterystyczne dla danego organizmu będące niejako "odciskiem palca" genomu analizowanego mikroorganizmu [Busch i Nitschko, 1999; Jarabo–Lorenzo i in., 2003; Olive i Bean, 1999; Tobes i Pareja, 2006; Vinuesa i in., 2005b].

Wprowadzona na początku lat 90–tych XX wieku metoda RAPD (ang. *The Random Amplifi ed Polymorphic* DNA) pozwala na badanie zróżnicowania blisko spokrewnionych szczepów bakteryjnych poprzez analizę polimorfizmu losowo zamplifikowanych fragmentów DNA. W tym przypadku przeprowadza się prostą reakcję PCR z zastosowaniem jednego, krótkiego (9–10 nukleotydowego) startera. Reakcję PCR prowadzi się w warunkach obniżonej temperatury przyłączania starterów (niska specyficzność przyłączania startera). Tak jak w przypadku wyżej opisanych technik, tak i w metodzie RAPD uzyskane amplikony po rozdzieleniu w żelu agarozowym slużą do generowania profili DNA charakterystycznych dla poszczególnych szczepów, z tą różnicą, iż tutaj analizowane są przypadkowe regiony DNA, niezwiązane z konkretnymi genami ani elementami powtarzającymi się w genomie, a warunki reakcji są mało specyficzne przez co starter może wiązać się do miejsc nie w pełni komplementarnych. Wiąże się to z niską powtarzalnością wyników. Mimo tego, metoda ta jest wciąż stosowana do różnicowania szczepów bakteryjnych [Busse i in., 1996; Olive i Bean, 1999].

2.4.2.4. Analiza sekwencji kwasów nukleinowych

Już w latach 70-tych XX wieku, zaczęto wnioskować, że analizy taksonomiczne oparte jedynie na badaniach cech fenotypowych nie dają pełnego obrazu pozwalającego na dokładna ocenę filogenezy organizmów prokariotycznych. Przełom w badaniach taksonomicznych nastąpił wraz z wprowadzeniem analiz sekwencji genów występujących powszechnie W DNA organizmów prokariotycznych [Fox i in., 1977; Woese i Fox, 1977]. Takie podejście otworzyło drzwi do bardziej obiektywnego systemu klasyfikacji, szczególnie w przypadku taksonów wyższej rangi niż gatunek oraz pozwoliło na wyznaczenie ich filogenetycznego pokrewieństwa, czyli określenia rodowodu. Od tej pory grupę organizmów pochodzących od jednego wspólnego przodka określa się mianem monofiletycznej, jeśli pochodzi od więcej niż jednego przodka to mamy do czynienia z grupą polifiletyczną, natomiast w przypadku, jeśli taksony wywodzą się od wspólnego przodka, ale grupa nie obejmuje wszystkich taksonów potomnych tego samego wspólnego przodka to jest to grupa parafiletyczna (Rys. 2.5). Wprowadzenie do analiz taksonomicznych badań związanych z filogenezą, doprowadziło do wielu zmian i reklasyfikacji wcześniej zidentyfikowanych taksonów [Fox i in., 1977].

Ze względu na wielkość cząsteczek rybosomalnego RNA–5S rRNA (120 pz) i 23S rRNA (2900 pz) powszechne stało się badanie sekwencji 16S rDNA (1500 pz). [Amann i in., 1995; Woese i in., 1990]. Istnieje wiele zalet przemawiających za stosowaniem sekwencji genu 16S rRNA w badaniach filogenetycznych. Należą do nich pełnienie identycznej funkcji u różnych organizmów, powszechność występowania, wysoce konserwatywna natura tego genu, który zawiera również regiony o różnej sekwencji oraz odpowiednia wielkość cząsteczki niosąca wystarczająca ilość informacji [Busse i in., 1996; Santos i Ochman, 2004]. Przyjęto, że bakterie wykazujące nie mniej niż 97% podobieństwa sekwencji 16S rDNA mogą być zaliczone do tego samego gatunku genomowego. W przypadku stopnia podobieństwa sekwencji genu 16S rRNA wynoszącego 95% i więcej, analizowane szczepy zaliczane są do tego samego rodzaju [Amann i in., 1995; Stackebrandt i Goebel, 2008].

Sekwencjonowanie genu 16S rRNA od kilku dziesięcioleci funkcjonuje, jako standard w badaniach taksonomicznych i jest jedną z powszechnie stosowanych technik przy określaniu przynależności rodzajowej i gatunkowej bakterii. Spojrzenie na badania taksonomiczne z zastosowaniem technik molekularnych o wyższej przepustowości niż metody klasycznej mikrobiologii przyczyniły się do gromadzenia coraz większej ilości informacji, co poskutkowało powstaniem wielu baz danych, gromadzących między innymi dane dotyczące sekwencji 16S rDNA małej podjednostki rybosomu, wykorzystywane w badaniu pokrewieństwa filogenetycznego organizmów prokariotycznych, co w ogromnym stopniu ułatwia pracę dzisiejszym naukowcom [Lilburn i Garrity, 2004].

Istnieją jeszcze inne przyczyny, dla których analiza 16S rRNA stała się głównym markerem molekularnym w badaniach filogenetycznych. Przypuszczano bowiem, że nie podlega ona horyzontalnemu transferowi genów (HGT – ang. *Horizontal Gene Transfer*) i rekombinacji. Okazało się jednak, że w obrębie gatunków, a w niektórych przypadkach nawet pomiędzy rodzajami mogą zachodzić takie rearanżacje genetyczne. Z tego względu opieranie filogenezy jedynie na analizie jednego markera może nie w pełni oddawać rzeczywiste pokrewieństwo miedzy organizmami [Santos i Ochman, 2004; van Berkum i in., 2006].

Mimo niewątpliwych atutów płynących z analizy sekwencji genu 16S rRNA, marker ten ma pewne ograniczenia. Wolne tempo ewolucji tej cząsteczki, wysoka konserwatywność sekwencji w przypadku blisko spokrewnionych gatunków, tak jak ma to miejsce w przypadku rodziny *Brydyrhizobiaceae*, zmniejsza możliwość prawidłowego sklasyfikowania badanego organizmu. Ponadto w genomach niektórych bakterii wykazano obecność od 1 do nawet 15 kopii genów kodujących rybosomalne RNA, wykazujących dodatkowo kilkuprocentowe różnice w sekwencji [Acinas i in., 2004].

Biorąc pod uwagę te wszystkie powyższe aspekty, obecnie analizę 16S rDNA uzupełnia się badaniem sekwencji innych genów. Dobór odpowiednich markerów molekularnych nie jest jednak tak oczywisty, ale przyjmuje się, że powinny one charakteryzować się kilkoma cechami. Mianowicie: występować we wszystkich organizmach oraz w jednej kopii, posiadać odpowiednią długość niezbędną do zapewnienia wystarczająco dużej ilości informacji oraz w jak najniższym stopniu ulegać horyzontalnemu transferowi genów, ponadto powinny mieć odpowiednią siłę rozdzielczą [Gevers i Coenye, 2005]. Zaczęto zatem analizowanie sekwencji tzw. genów metabolizmu podstawowego, których połączone sekwencje pozwalają na dokładniejsz odzwierciedlenie historii ewolucyjnej mikroorganizmów oraz ich afiliacje do gatunku [Daubin i in., 2002; Delsuc i in., 2005; Santos i Ochman, 2004]. Do takich badań włącza się takie geny jak np.: kodujące polimerazę RNA, gyrazę, syntazę ATP, DnaK (białko szoku cieplnego Hsp70), syntetazę glutaminy, czy białko RecA uczestniczące w rekombinacji homologicznej [Eisen, 1995; Gaunt i in., 2001; Martens i in., 2008; Stepkowski i in., 2003; Turner i Young, 2000]. Łaczna analiza sekwencji 3-5 genów metabolizmu podstawowego to tzw.: wielolokusową analizę genów - MLSA (ang. Multilocus Metoda pierwotnie Sequence Analysis). ta stosowana w badaniach epidemiologicznych, jako typowanie molekularne patogennych szczepów bakteryjnych w oparciu o sekwencję pięciu – siedmiu genów rdzeniowych (MLST – ang. Multilocus Sequence Typing) [Maiden, 2006], bazuje na analizie połączonych sekwencji tych genów na tej podstawie konstruuje się drzewo filogenetyczne. Dopiero pełen obraz wyników zarówno sekwencji genu 16S rRNA i analizy MLSA pozwala na przyporządkowanie badanego mikroorganizmu do rodzaju i gatunku [Gevers i in., 2005; Hanage i in., 2005].

Rys. 2.5. Schemat pochodzenia organizmów: monofiletycznych – wywodzących się od jednego przodka, parafiletycznych – obejmuje tylko część potomków wspólnego przodka, polifiletycznych – obejmujących organizmy pochodzące od różnych przodków [Opracowanie własne]

2.4.2.5. Analiza wyników przy określaniu stopnia pokrewieństwa bakterii

Wyniki badań historii ewolucyjnej organizmów obrazuje się w sposób graficzny w postaci drzew filogenetycznych, konstruowanych w oparciu o metody taksonomii numerycznej. Jest to najlepszy sposób na wyjaśnienie pokrewieństwa istniejącego pomiędzy organizmami oraz zrozumienie procesów ewolucji na poziomie molekularnym. Taksonomia numeryczna pozwala na grupowanie (tworzenie klastrów) badanych organizmów na podstawie analizy zestawu wielu ich cech i określeniu stopnia podobieństwa każdego organizmu z każdym. Następnie oblicza się tak zwany prosty współczynnik podobieństwa bakterii (SM – ang. *simple matching*), który przy pewnej narzuconej wartości progowej umieszcza, bądź nie, mikroorganizmy w tej samej grupie. Główną zaletą liczbowej oceny stopnia podobieństwa między organizmami jest to, że stanowi ona mierzalną podstawę do decydowania o randze (kategorii) taksonomicznej [Ewens, 2003; Felsenstein, 2004]. W analizach stopnia podobieństwa przyjmuje się, że badane cechy mają taką samą wagę. Dane wprowadzane są w postaci binarnej (0/1) i następnie komputerowo porównywane w sposób taki, że dane każdego szczepu są porównywane z danymi każdego innego szczepu. Na tej podstawie konstruowany jest dendrogram obrazujący stopień wzajemnego podobieństwa poszczególnych szczepów. Takie podejście służy głównie do analiz fenotypowych czy też zobrazowania polimorfizmu genomowego szczepów bakteryjnych, nie pozwala jednak na odwzorowanie filogenezy badanych organizmów [Gillis i in., 2001].

Zagadnienie dotyczące rekonstrukcji genealogii organizmów od dawna stanowi temat rozważań taksonomów. Obecnie, ocenę historii ewolucyjnej bakterii i ich populacji opiera się najczęściej na danych pochodzących z sekwencji nukleotydowych DNA czy też z pierwszorzędowych struktur białek, uważając, że takie informacje są najbardziej wiarygodne. Dane te pozwalają na wnioskowanie statystyczne dotyczące najbardziej podstawowych zdarzeń ewolucyjnych, takich jak mutacje w łańcuchach DNA i/lub zmiany podstawienia w sekwencjach aminokwasowych [Bisen, 2014].

Algorytmy wykorzystywany w konstrukcji dendrogramów dzieli się na cztery grupy:

- algorytmy bazujące na macierzy odległości (ang. Distance matrix);
- metody najwiekszej parsimonii (ang. Maximum parsimony);
- metody największej wiarygodności (ML ang. Maximum likelihood);
- metody najbliższego sąsiada (NJ ang. Neighbor joining).

Jedna z technik konstrukcji drzew filogenetycznych oparta jest na macierzy odległości bazującej na hipotezie, że odległość pomiędzy dwiema dowolnie wybranymi jednostkami taksonomiczymi, mierzona na bazie obserwowanych różnic w sekwencji, może stanowić podstawę do oceny odległości ewolucyjnej pomiędzy tymi jednostkami taksonomicznymi. Na tej podstawie działa algorytm średnich połączeń UPGMA (ang. *Unweighted Pair Group Method with Arithmetic Mean*) służący generowaniu drzew filogenetycznych na podstawie macierzy odległości pomiędzy operacyjnymi jednostkami taksonomicznymi np. w oparciu o analizę sekwencji DNA. Inna technika konstruowania dendrogramu oparta jest na tzw. metodzie najbliższego sąsiada NJ (ang. *Neighbor Joining*). Działa ona iteracyjnie (powtarzając tę samą operację z góry określoną liczbę razy lub aż do spełnienia określonego warunku), w każdym kroku wykonując jedną operację łączenia. Łączenie jednostek taksonomicznych prowadzi do powstawania grup zbudowanych z operacyjnych jednostek taksonomicznych (OTU – ang. *Operational Taxonomic Units*) [Michener i Sokal, 1957].

Do oceny historii ewolucyjnej badanych bakterii można także użyć metod maksymalnej wiarygodności ML (ang. *Maximum Likelihood*) wykorzystującej modele substytucji nukleotydów lub aminokwasów Markowa, która maksymalizuje prawdopodobieństwo osiągnięcia rozkładu danych (sekwencji na drzewie). N a bazie odpowiednio wybranego modelu substytucji konstruuje się funkcje wiarygodności,

a następnie dobiera się odpowiednią topologię, w celu zmaksymalizowania wartość tej funkcji [Felsenstein, 1981; Felsenstein, 2004].

2.4.2.6. Drzewo filogenetyczne

Drzewo filogenetyczne jest graficznym odzwierciedleniem pokrewieństwa filogenetycznego między różnymi organizmami (Rys. 2.6).

Filogram składa się kilku elementów:

- Gałęzi obrazujących relacje ewolucyjne między porównywanymi jednostkami taksonomicznymi: przodek – potomek,
- Liści reprezentujących aktualnie analizowane operacyjne jednostki taksonomiczne OTU (ang. *Operational Taxonomic Units*),
- Węzłów wewnętrznych będących wewnętrznymi jednostkami taksonomicznymi,

 Korzenia – dla drzew filogenetycznych korzeń drzewa jest wspólnym przodkiem wszystkich jednostek taksonomicznych.

Rys. 2.6. Schemat obrazujący elementy budowy ukorzenionego drzewa filogenetycznego; **Objaśnienie:** A, B, C, D, E, F – liście, badane jednostki taksonomiczne (OTU) [Opracowanie własne na podst. Perry i Staley, 1997; Willey i in., 2007]

Wyróżniamy dwa typy drzew filogenetycznych, ukorzenione i nieukorzenione (Rys. 2.7). Gdy strukturę drzewa przedstawia się graficznie, korzeń zawsze odpowiada przodkowi ewolucyjnemu, a wychodzące z niego gałęzie wyznaczają drogi ewolucyjne lub kierunek ewolucji. W przypadku obrazowania graficznego filogramów nieukorzenionych, drzewo nie pokazuje drogi i historii ewolucyjnej badanych organizmów.

Rys. 2.7. Schemat filogramu, ukorzenionego (A) i nieukorzenionego (B) [Spalik i Piwczyński, 2009]

2.5. Charakterystyka roślin bobowatych

Rośliny okrytozalążkowe obejmują 380 rodzin. Wśród nich jest trzecia co do wielkości, po storczykowatych (Orchideaceae) i astrowatych (Astraceae lub Compositeae), rodzina roślin bobowatych (Fabaceae), obejmująca 18 000 gatunków. Ogromna różnorodność morfologiczna roślin bobowatych odzwierciedla się w ich bogactwie form morfotycznych oraz szerokim zakresie występowania. Można je spotkać niemalże we wszystkich zbiorowiskach roślinnych, od bogatych w drzewostany lasów tropikalnych po tereny stepowo – pustynne i obszary alpejskie [Watson i Dallwitz, 1994].

Badania molekularne dotyczące filogenezy roślin bobowatych wykazały ich monofiletyczne pochodzenie, wywodzące się z dużej grupy roślin okrytozalążkowych, obejmujących rodziny uczestniczące w symbiotycznym wiązaniu azotu. Głębsze rozważania dotyczące tego dużego kladu roślin bobowatych, bazujące na analizie morfologicznej i chemicznej sugerują ich bliskie pokrewieństwo z takimi rodzinami jak Connaraceae i Sapindaceae, jednak wyniki molekularne łączą rośliny bobowate z takimi rodzinami jak: Polygalaeae, Surianaceae, Quillaja oraz Rosaceae (Rys. 2.8).

Rys. 2.8. Drzewo filogenetyczne roślin okrytonasiennych. Na schemacie zaznaczono klad Rosids (różowe), z którego wywodzą się rośliny rzędu bobowce (*Fabales*)

Jednak dokładne pochodzenie i pierwotny układ kladystyczny rodziny Fabaceae nie został zdefiniowany. Obecnie uważa się, że najstarsza linia rozwojowa obejmuje plemiona Cercideae i Detarieae oraz rodzaj Duparquetia. Pozostałe bobowate tworzą monofiletyczną, obejmującą 476 rodzajów podrodzinę Faboideae (bobowate właściwe) oraz obejmująca 82 rodzajów podrodzinę Mimosoideae (mimozowe) jak i podrodzinę Caesalpinioideae (brezylkowate) oraz Dialineae, która wyodrębniła się przed podziałem roślin bobowatych na bobowate właściwe, mimozowe i brezylkowate. Dodatkową grupę tworzy klad Umitza (Rys. 2.9).

Rys. 2.9. Taksonomia rzędu bobowce według systemu klasyfikacji APG IV (ang. Angiosperm Phylogeny Group) [Reveal, 2009]

Rośliny z rodziny bobowatych mają bardzo duże znaczenie użytkowe. Nasiona roślin strączkowych są cennym źródłem białek (m.in. soczewica, soja) i olei (np. orzacha podziemna). Niebagatelny pozostaje również ich potencjał leczniczy. W rolnictwie wykorzystywane są jako rośliny pastewne oraz naturalne nawozy, wzbogacające glebę w azot. Spośród przebadanych pod względem zdolności tworzenia brodawek 3500 gatunków rodziny Fabaceae, układy symbiotyczne z ryzobiami tworzy zaledwie 23% gatunków brezylkowych, 90% mimozowych, natomiast pośród motylkowych właściwych ponad 95% [Pueppke i Broughton, 1999].

Na obszarze Polski stwierdzono występowanie przedstawicieli czterdziestu rodzajów rodziny Fabaceae. Należą do nich zarówno rośliny uprawne, dziko rosnące, jak i efemerofity. Najmniej poznany z dotychczas sklasyfikowanych rodzajów bobowatych jest rodzaj *Lembotropis* (Rys. 2.10).

 rodzaj: amorfa (indygowiec) (Amorpha) rodzaj: ciecierzyca (Cicer) rodzaj: cieciorka (Coronilla) rodzaj: fasola (Phaseolus) rodzaj: glediczja (iglicznia) (Gleditschia) rodzaj: słodlin (glicynia) (Wisteria) rodzaj: groszek (Lathyrus) rodzaj: janowiec (Genista) rodzaj: janowczyk (Genistella) rodzaj: karagana (Caragana) rodzaj: kięk (Gymnocladus) rodzaj: kolcolist (Ulex) rodzaj: komonica (Lotus) rodzaj: konicznik (Tetragonolobus) rodzaj: koniczyna (Trifolium) rodzaj: konikleca (Hippocrepis) rodzaj: kozierzdka (Teinanalla) 	 rodzaj: moszenki, truszczelina (Colutea) rodzaj: nostrzyk (Melilotus) rodzaj: orzacha (Arachis) rodzaj: ostrołódka (Oxytropis) rodzaj: przelot (Antyllis) rodzaj: robinia (Robinia) rodzaj: robinia (Robinia) rodzaj: rutwica (Galega) rodzaj: seradela (Ornithopus) rodzaj: siekiernica (Hedysarum) rodzaj: soczewica (Lens) rodzaj: sparceta (Onobrychis) rodzaj: szcodrzyk (Lembotropis) rodzaj: szyplin (Dorycnium) rodzaj: traganek (Astragalus) rodzaj: wilhuma (Onopic)
 rodzaj: konikleca (<i>Hippocrepis</i>) rodzaj: kozieradka (<i>Trigonella</i>) rodzai: lucerna (<i>Medicago</i>) 	 rodzaj: traganek (Astragalus) rodzaj: wilżyna (Ononis) rodzaj: wyka (Vicia)
•rodzaj: łubin (<i>Lupinus</i>)	•rodzaj: złotokap (<i>Laburnum</i>)

Rys. 2.10. Przedstawiciele roślin rodziny *Fabacea*, które występują na terenie Polski, pogrubiony został najmniej poznany rodzaj *Lembotropis* [Opracowanie własne na podst. Wojciechowski i in., 2004]

2.5.1. Rośliny plemienia Geniesteae

Rośliny plemienia Genisteae są jedną z największych grup w rodzinie roślin bobowatych (Fabaceae). W obrębie tego plemienia wyróżnia się 25 rodzajów i ok. 618 gatunków [Cardoso i in., 2013]. Większość z tych roślin preferuje klimat umiarkowany, chociaż kilka gatunków łubinu (*Lupinus* spp.) zamieszkuje obszary tropikalne we wschodniej Brazylii [Polhill i Van Wyk, 2005; Monteiro i Gibbs, 1986; Iganci i Miotto, 2015]. Głównie są to drzewiaste rośliny dorastające do 5 m wysokości, spotykane zarówno w siedliskach górskich jak i stepowych, na łąkach i w przybrzeżnych zaroślach [Nevado i in., 2016]. Prawie wszyscy przedstawiciele tego plemienia wchodzą w mutualistyczną interakcję z symbiotycznymi bakteriami brodawkowymi i przyczyniają się do zwiększania ilości azotu i użyźniania porastanej gleby [Sprent i in., 2017].

Szacunkowe badania ewolucyjne określiły czas pojawienia się roślin plemienia Genisteae na 41 mln lat temu [Lavin i in., 2009]. Pierwotnie rośliny plemienia Genisteae występowały w południowej Afryce, później rozproszyły się na północ, docierając do terenów Morza Śródziemnego, gdzie zlokalizowane zostały rośliny rodzaju *Lupinus* i *Adenocarpus*. Zmiany klimatyczne i środowiskowe mające miejsce w oligocenie odegrały kluczową rolę w specjacji roślin plemienia Geniesteae, a górskie wypiętrzenia w zachodniej i północnej części Ameryki Południowej zaowocowały pojawieniem się setek nowych przedstawicieli rodzaju *Lupinus*. Kolejne wydarzenia klimatyczne i środowiskowe spowodowały, że rośliny Genisteae pojawiły się również u wybrzeży oceanu Atlantyckiego [Cubas i in., 2010; Drummond i in., 2012; Zachos i in., 2001; Fiz–Palacios i Valcárcel, 2013; Hughes i Eastwood, 2006].

Badania filogenetyczne w oparciu o sekwencje genu kodującego dużą podjednostkę, 5,8S rRNA i ITS (wewnętrzne sekwencje transkrybowane, ang. *Internal Transcribal Spacer*) wskazują, że rośliny plemienia Genisteae stanowią monofiletyczną grupę w rodzinie Fabaceae. W skład plemienia Genisteae wchodzi 25 rodzajów, które w analizach molekularnych tworzą trzy grona: jedno grono to monofiletyczny rodzaj *Lupinus* i zróżnicowane grupy Genista i Cytisus, [Käss i Wink, 1997; Percy i Cronk, 2002].

Poza dobrze już poznanymi gatunkami roślin z rodzaju *Lupinus*, *Genista*, *Cytisus* w Polsce występuje również dotychczas mało znany rodzaj *Lembotropis*, który zawiera dwa gatunki *Lembotropis nigricans* (L. Griseb.) (szczodrzyk czerniejący) i *Lembotropis emeriflora* (Rchb.). Szczodrzyk czerniejący występuje w środkowej i południowo – wschodniej Europie. W Polsce spotykany jest głównie na wschodzie i południu, jako roślina dziko rosnąca. Zasiedla widne lasy, ich obrzeża, zarośla, skarpy, przydroża i tereny kolejowe. Preferuje gleby zasadowe, suche lub umiarkowanie wilgotne, ubogie w azot [Zając i Zając, 2001].

Rys. 2.11. Mapa wskazująca występowania *Lembotropis nigricans* na terenie Polski [www.atlas-roslin.pl/htm/wystepowanie-2985.htm]

W ostatnich latach szczodrzyk czerniejący budzi duże zainteresowanie wśród naukowców, dowiedziono bowiem, iż ekstrakty tej rośliny działają bakteriobójczo i mają silne właściwości antyoksydacyjne, a zatem wykazują dość duży potencjał farmakologiczny. Nie mniejsze znaczenie ma również aspekt ekologiczny, gdyż szczodrzyk czerniejący obok szczodrzeńca ruskiego (*Chamaecytisus ruthenicus*) jest jedynym gospodarzem roślinnym dla gąsienic szlaczkonia szafrańca motyla wpisanego do czerwonej księgi motyli Europy oraz czerwonej księgi zwierząt zagrożonych w Polsce. Należy podkreślić również, że roślina ta zasiedla gleby ubogie w azot, a dzięki ich symbiontom bytującym w brodawkach korzeniowych, wzbogaca glebę w ten pierwiastek [Hanganu i in., 2016].

Rys. 2.12. Szczodrzyk czerniejący (Lembotropis nigricans)

2.6. Charakterystyka mikrosymbiontów roślin bobowatych i ich taksonomia

Jak już wcześniej wspomniano, rodzina bobowate (*Fabaceae*) obejmuje około 18 000 gatunków, co stanowi ponad 9,4% wszystkich roślin okrytonasiennych na Ziemi. Prawdopodobne jest, iż rośliny te wyewoluowały około 60 milionów lat temu, na początku okresu trzeciorzędu a sukces ewolucyjny w dużej mierze zawdzięczają zdolności tworzenia układów symbiotycznych z bakteriami zwanymi ryzobiami. Relacja między roślinami bobowatymi a mikrosymbiontami bytującymi głównie w brodawkach korzeniowych makrosymbionta jest modelowym przykładem pozwalającym na badanie układów symbiotycznych występujących w przyrodzie [Rivas i in., 2009].

Ryzobia to ogólna nazwa heterotroficznych bakterii glebowych, zdolnych do tworzenia symbiozy z roślinami bobowatymi. Bakterie te wykazują ogromną plastyczność adaptacyjną, co pozwala im na bytowanie w zróżnicowanych warunkach środowiskowych. Powstała, w wyniku milionów lat koewolucji, interakcja między ryzobiami a roślinami bobowatymi jest znakomicie regulowanym, wieloetapowym procesem. Ponadto ten układ symbiotyczny to jedno

z najważniejszych oddziaływań ekologicznych zarówno dla ludzi jak i dla całych ekosystemów. Proces biologicznego wiązania azotu atmosferycznego ma ogromne znaczenie, ponieważ umniejsza stosowanie sztucznych nawozów azotowych, a zatem przyczynia się do zmniejszenia zawartości toksycznych azotanów (III) i (V) w glebie [Palleroni, 2003].

Historia badań nad ryzobiami sięga początków XIX w., kiedy Frank po raz pierwszy wyizolował z brodawek korzeniowych bakterię i nazwał ją *Rhizobium leguminosarum*, tym samym rozpoczął erę badań nad bakteriami, które do dziś noszą ogólna nazwę ryzobia (bakterie brodawkowe) [Frank, 1889]. Pierwsza klasyfikacja bakterii opierała się jedynie na cechach takich jak ich kształt i wygląd kolonii. Kolejne rozważania dotyczące klasyfikacji bakterii bazowały na badaniach cech fizjologicznych, a w przypadku bakterii brodawkowych również na analizie interakcji bakterii z ich roślinnym gospodarzem. Przełomem w taksonomii bakterii była publikacja z początku XX w., w której Bergey dokonał pełnej klasyfikacji mikroorganizmów, opartej na analizie wielu cech fenotypowych. W dziele tym ryzobia zostały opisane, jako Gram–ujemne, tlenowe pałeczki, nietworzące przetrwalników, różnicowane na podstawie zdolności do tworzenia brodawek korzeniowych na określonych gatunkach roślin bobowatych [Palleroni, 2003, Whitman i in., 2012].

Początkowo rodzaj *Rhizobium* obejmował 6 gatunków bakterii, które w zależności od tempa wzrostu różnicowano na 2 grupy tj.: szybko rosnące obejmuje: *Rhizobium leguminosarum* zakażające groch, *Rhizobium trifolii* zakażające koniczynę, *Rhizobium phaseoli* zakażające fasolę i *Rhizobium meliloti* mikrosymbiont lucerny oraz wolno rosnące czyli *Rhizobium lupini* i *Rhizobium japonicum* wchodzące w symbiozę odpowiednio z łubinem i soją [Vincent, 1970].

Kolejne lata badań doprowadziły do wyróżnienia w rodzinie *Rhizobiaceae* rodzaju *Bradyrhizobium*, obejmującego gatunki wolno rosnących ryzobiów oraz *Phyllobacterium*, do którego pierwotnie zaliczono dwa organizmy – *Phyllobacterium myrsinacearum* i *Phyllobacterium rubiacearum* [Rivas i in., 2017; Whitman i in., 2012].

Wgląd w molekularną strukturę genomu bakterii pozwolił na badanie filogenezy niezależnie od charakterystyki cech fenotypowych i tym samym zapoczątkował szereg zmian w klasyfikacji ryzobiów. Na tej podstawie do rodziny *Rhizobiaceae* włączono rodzaj *Azorhizobium*, a w roku 1984 wydzielono kolejny nowy rodzaj – *Sinorhizobium* [de Lajudie i in., 1998; Woese i in., 1984]. Ponadto zaproponowano włączenie *Agrobacterium* sp. do rodzaju *Rhizobium*, włączenie *Ensifer adherens* do rodzaju *Mesorhizobium* [Willems i in., 2001; Young i in., 2001] oraz podzielono symbionty soi, sklasyfikowane do rodzaju Bradyrhizobium na dwa gatunki tj.: *Bradyrhizobium japonicum* i *B. elkanii*. W tym czasie opisano również wiele nowych gatunków, między innymi *Bradyrhizobium elkanii*, *Sinorhozibium xinjiangensis* czy *Rhizobium galegae*. Niektóre wówczas zaproponowane zmiany na stałe utrwaliły się w taksonomii ryzobiów, jak np.: wydzielenie rodziny *Mesorhizobioaceae*, obejmującej ryzobia o średnim tempie wzrostu oraz *Bradyrhizobaiceae*, która grupuje bakterie wolno rosnące [Jarvis i in., 1997]. Inne, jak chociażby propozycja włączenia *Agrobacterium* sp. do rodzaju *Rhizobium* spotkały się z późniejszą krytyką [Lindstrom, 2009; Rivas i in., 2017].

Wraz ze zwiększającym się zasobem informacji i mnogością danych zaczęła nasuwać się jednak pewna refleksja, czy na pewno właściwe jest opieranie taksonomii wyłącznie na analizie sekwencji 16S rDNA i 23S rDNA. Okazało się, że cząsteczka 16S rDNA może wykazywać wewnątrzgatunkową heterogenność sekwencji, co tym bardziej odwodzi od wyznaczania nowego gatunku na podstawie analizy tylko tego markera molekularnego. Dlatego gdy w grę wchodzi ustalenie pozycji gatunkowej i rodzajowej bakterii, wykorzystanie dodatkowych markerów molekularnych przy wnioskowaniu 0 pokrewieństwie filogenetycznym i przynależności zwłaszcza gatunkowej jest w pełni konieczne i uzasadnione [Young i in., 2004; Valverde i in., 2006; Ramírez-Babena i in., 2008]. Z powyższych względów, określając historię ewolucyjną i przynależność gatunkową ryzobiów dodatkowo analizuje się połączone sekwencje kilku genów metabolizmu podstawowego (ang. housekeeping genes) [Gaunt i in., 2001; Maiden, 2006; Martens i in., 2008; Reinhold-Hurek i in., 2015]. Badania te mają zastosowania szczególnie w przypadku rodzajów Bradyrhizobium, dla którego konserwatywność sekwencji genu 16S rRNA jest bardzo wysoka [Van Berkum i in., 2006; Vinuesa i in., 2008].

Nie mniej istotne znaczenie w opisywaniu nowych gatunków ryzobiów ma również analiza sekwencji innych genów: *nifH*, który koduje reduktazę nitrogenazy zaangażowaną w asymilację azotu atmosferycznego oraz genów symbiotycznych takich ja: *nodA*, *nodC*, *nodD*, a w przypadku bradyryzobiów również *nodZ* [Zurkowski i Lorkiewicz, 1976; Winsor, 1989; Fellay i in., 1998; Perret i in., 2000]. Należy podkreślić, że analiza sekwencji genów *nodA* i *nodC* wykorzystywana jest w określaniu biowaru roślinnego, do którego należą badane ryzobia [Wei i in., 2009; Villegas i in., 2006; Mnasri i in., 2007].

Postęp i szeroko pojęty rozwój biologii molekularnej doprowadził do tego, że obecnie scharakteryzowane bakterie brodawkowe grupowane są w 20 rodzajach: *Bosea, Paraburkholderia, Aminobacter, Neorhiozbium, Allorhizobium, Pararhizobium, Ciceribacter, Rhizobium, Mesorhizobium, Ensifer, Bradyrhizobium, Phyllobacterium, Microvirga, Azorhizobium, Ochrobactrum, Methylobacterium, Cupriavidus, Devosia, Shinella, Labrys* [Stępkowski i in., 2018; Weir, 2016].

Rys. 2.13. Najnowszy podział rodzajowy bakterii brodawkowych. Na rysunku podkreślone zostały rodzaje ryzobiów infekujące rośliny plemienia Genisteae [Stępkowski i in., 2018]

2.6.1. Charakterystyka bakterii rodzaju *Bradyrhizobium*, jako dominującej grupy mikroorganizmów zakażających rośliny plemienia Genisteae

Tak jak wspomniano w poprzednim rozdziale, ewolucyjny sukces roślin lądowych w dużej mierze skorelowany jest z rozwojem mikroflory glebowej. W szczególności dotyczy to roślin, które wykształcily zdolność tworzenia układów symbiotycznych z glebowymi bakteriami promującymi ich rozwój, zwanymi ryzobiami [Willems, 2006].

Grupa tych mikrosymbiontów, to dwadzieścia rodzajów bakterii (Rys. 2.13). Jednym z nich jest rodzaj *Bradyrhizobium* obejmujący na dzień dzisiejszy 50 gatunków bakterii pochodzących z terenów Europy, Afryki Północnej, Ameryki Południowej i Azji [Stępkowski i in., 2018]. Tak szeroki zasięg geograficzny tych bakterii skorelowany jest z ich możliwościami adaptacyjnymi, mianowicie bradyryzobia lepiej od pozostałych ryzobiów radzą sobie ze zmieniającymi się warunkami środowiskowymi [Delmont i in., 2012; Guha i in., 2016; Okubo i in., 2012; Parker, 2015; Sprent i in., 2017; VanInsberghe i in., 2015].

Rodzaj Bradyrhizobium to zróżnicowana grupa mikroorganizmów obejmująca bakterie infekujące różne gatunki roślin, jak na przykład wodne z rodzaju Aeschynomene. Rodzaj ten po raz pierwszy został wyodrębniony w 1982 roku przez Jordana, który zaproponował wydzielenie z istniejącego już rodzaju Rhizobium, izolatu o długim czasie generacji tj.: Rhizobium japonicum. Gatunek ten został sklasyfikowany W nowym rodzaju Bradyrhizobium i nazwano go Bradyrhizobium japonicum. Następnie z brodawek korzeniowych soi wyizolowano bakterie o długim czasie generacji (ESG – ang. Extra Slowly Growing), które sklasyfikowano do nowego gatunku Bradyrhizobium liaoningense [Hollis i in., 1981; Kuykendall i in., 1992; Willems i in., 2001; Xu i in., 1995]. Dalszy rozwój badań i wprowadzenie metod taksonomii wielokierunkowej, pozwolił na uznanie dwóch kolejnych gatunków bradyryzobiów - Bradyrhizobium yuanmingense, obejmującego symbionty roślin z rodzaju Lespedeza rosnących w Chinach oraz Bradyrhizobium betae, do którego właczono szczepy wyizolowane z guzowatych narośli na buraku cukrowym (Beta vulgaris). Co ciekawe B. betae wykazuje 99% stopień podobieństwa sekwencji 16S rDNA z B. japonicum, co sugeruje ich bliskie pokrewieństwo, natomiast wyniki innych badań, a mianowicie brak produktów amplifikacji w reakcji PCR ze starterami genów nifH (kodującego reduktazę nitrogenazy) i nodD, a także wyniki testów roślinnych, wskazują na brak zdolności B. betae do wiązania azotu w układzie symbiotycznym [Rivas i in., 2009]. Do bradyryzobiów zaliczany jest także gatunek Bradyrhizobium canariense, obejmujący mikrosymbionty infekujące rośliny z plemion Genisteae i Loteae [Yao i in., 2002; Vinuesa i in., 2005a].

Do chwili obecnej opisano 50 gatunków bakterii należących do rodzaju *Bradyrhizobium*. Analiza filogenetyczna powszechnie stosowanych do tego celu markerów, wykazała że gatunki te wywodzą się z dwóch głównych linii rozwojowych, są nimi: supergrupa *Bradyrhizobium japonicum* (*Bradyrhizobium* grupa I) zawierająca 30 gatunków oraz supergrupa *Bradyrhizobium elkanii* (*Bradyrhizobium* grupa II) z 18 gatunkami. Gatunki *Bradyrhizobium denitrificans* oraz *Bradyrhizobium oligotrophicum* na drzewie filogenetycznym grupują się niezależnie poza wspomnianymi supergrupami (Rys. 2.14) [Beukes i in., 2016; Gevers i in., 2005; Jordan, 1982; Menna i in., 2009; Stępkowski i in., 2018].

Rys. 2.14. Drzewo filogenetyczne bakterii rodzaju *Bradyrhizobium* i innych bakterii brodawkowych skonstruowane w oparciu o analizę MLSA [Stępkowski i in., 2018]

Dotychczas scharakteryzowano bakterie wyizolowane z brodawek korzeniowych 66 spośród 77 sklasyfikowanych gatunków roślin plemienia Genisteae (Tab. 2.2). Badania potwierdzają, że dominującą grupą bakterii zakażających te rośliny są bakterie rodzaju *Bradyrhizobium* [Sprent, 2017; Parker, 2015].

Rodzaj/Gatunek rośliny	Pochodzenie geograficzne	Rodzaj mikrosymbionta
Adenocarpus		<u> </u>
Adenocarpus decorticans	Moroko	Rhizobium
Adenocarpus foliolosus	Wyspy Kanaryjskie	Bradyrhizobium
Adenocarpus hispanicus	Hiszpania	Bradyrhizobium, Phyllobacterium
Argyrolobium		
Argyrolobium lunare	Południowa Afryka	Mesorhizobium
Argyrolobium rupestre	Południowa Afryka	Bradyrhizobium
Argyrolobium sericeum	Południowa Afryka	Bradyrhizobium
Argyrolobium velutinum	Południowa Afryka	Mesorhizobium
Argyrolobium uniflorum	Senegal, Tunezja	Rhizobium, Ensifer
Calicotome		
Calicotome infesta	Włochy	Bradyrhizobium
Calicotome spinosa	Włochy	Bradyrhizobium, Rhizobium
Chamaecytisus		
Chamaecytisus proliferus	Maroko, Wyspy Kanaryjskie, Nowa Zelandia	Bradyrhizobium
Chamaecytisus	Polska	Bradyrhizobium
ratisbonensis		
Chamaecytisus ruthenicus	Rosja	Bradyrhizobium
Cytisus	~	
Cytisus aeolicus	Włochy	Bradyrhizobium
Cytisus arboreus	Maroko	Rhizobium
Cytisus balansae	Hiszpania	Bradyrhizobium
Cytisus grandiflorus	Portugalia	Bradyrhizobium
Cytisus laburnum	Hiszpania	Bradyrhizobium
Cytisus multiflorus	Hiszpania	Bradyrhizobium
Cytisus proliferus	Wyspy Kanaryjskie	Bradvrhizobium
Cytisus purgans	Hiszpania	Agrobacterium, Rhizobium
Cytisus scoparius	Belgia, Irlandia, Polska,	Bradvrhizobium. Mesorhizobium.
	Hiszpania, UK, USA: Australia,	Ochrobactrum cytisi. Ensifer.
	Nowa Zelandia	Rhizobium.
		Phyllobacterium
Cytisus striatus	Hiszpania	Bradvrhizobium
Cytisus triflorus	Algieria, Maroko	Bradyrhizobium
Cytisus villosus	Algieria, Maroko	Bradyrhizobium
Genista	8	
Genista aspalathoides	Włochy	Bradyrhizobium
Genista germanica	Polska	Bradyrhizobium
Genista hystrix	Hiszpania	Bradyrhizobium
Genista linifolia	Hiszpania	Bradyrhizobium
Genista monspessulana	Hiszpania	Bradvrhizobium
Genista saharae	Algieria, Tunezia	Ensifer. Phyllobacterium.
	8 J	Mesorhizobium.
		Rhizobium. Neorhizobium
Genista stenopetala	Wyspy Kanaryjskie	Bradyrhizobium
Genista svlvestris	Chorwacia	Bradvrhizobium
Genista tinctoria	Polska, Rosia, Słowenia	Bradvrhizobium.
		Phyllobacterium.
		Rhizobium
Genista versicolor	Hiszpania	Bradyrhizobium
Laburnum	*	Ý ·
Laburnum anagyroides	Belgia, Chorwacja	Bradyrhizobium
Lupinus		*
Lupinus albescens	Brazylia	Bradyrhizobium
Lupinus albus	Polska, Hiszpania	Mesorhizobium
Lupinus angustifolius	Australia, Polska, Południowa	Bradyrhizobium

Tab. 2.2. Rodzaje bakterii brodawkowych infekujące rośliny plemienia Genisteae [Stępkowski i in., 2018]

	Afryka, Hiszpania	
Lupinus arboreus	USA-Kalifornia, Nowa Zelandia	Bradyrhizobium
Lupinus bandelierae	Boliwia	Bradyrhizobium
Lupinus bicolor	USA-Kalifornia	Bradyrhizobium
Lupinus bracteolaris	Brazylia	Bradyrhizobium
Lupinus breviscapus	Boliwia	Bradyrhizobium
Lupinus campestris	Meksyk	Bradyrhizobium
Lupinus cosentinii	Australia, Hiszpania	Bradyrhizobium
Lupinus hispanicus	Hiszpania	Bradyrhizobium
Lupinus honoratus	Argentyna	Ochrobactrum
Lupinus lepidus	USA-Washington	Bradyrhizobium
Lupinus leucophyllus	USA-Washington	Bradyrhizobium
Lupinus luteus	Poland, Hiszpania, USA	Bradvrhizobium. Mesorhizobium
Lupinus mariae-iosephae	Hiszpania	Bradyrhizobium
Lupinus micranthus	Algieria, Hiszpania, Tuneziaa	Bradyrhizobium
	8, <u>F</u> ,J	Microvirga, Phyllobacterium
Lupinus misticola	Peru	Bradyrhizobium
Lupinus montanus	Meksyk	Bradyrhizobium
Lupinus mutabilis	Ekwador	Bradyrhizobium
Lupinus nootkatensis	USA-Alaska	Bradyrhizobium
Lupinus noraguariensis	Brazylia	Bradyrhizobium
Lupinus paraguariensis	Brazylia	Bradyrhizobium
Lupinus parannis	USA	Bradyrhizobium
Lupinus perennis	Belgia Niemcy Nowa	Bradyrhizobium Bradyrhizobium Bosea
Lupinus poryphytius	Zelandia Polska	Rhizohium
Luninus monostachus	Roliwin	Rngoolum Bradyrhizobium
Lupinus pychosiacnys	Brazylia	Bradyrhizobium
Lupinus sarioous		Bradyrhizobium
Lupinus simulans	USA Makauk	Dradyrnizobium Pradyrhizobium
Lupinus succulantus	Meksyk USA Kalifornia	Magarhizobium
		Misnovino a
	USA-Teksas Dalimia	Microvirga Dun dunking kinun
	Boliwia Drogwie	Bradyrnizobium Bradyrhizobium
Lupinus uleanus	Brazylia	Braayrnizobium
<u>Retama</u>		D 1 1 · 1 ·
Retama monosperma	Algieria, Maroko, Hiszpania	Bradyrhizobium
Retama raetam	Algieria, Tunezja	Agrobacterium, Mesorhizobium,
		Rhizobium, Ensifer,
		Bradyrhizobium
Retama sphaerocarpa	Algieria, Maroko, Hiszpania	Bradyrhizobium, Phyllobacterium
Spartium		
Spartium junceum	Chorwacja, Włochy, Słowenia,	Bradyrhizobium, Phyllobacterium
	Hiszpania	
Teline		
Teline canariense	Hiszpania	Bradyrhizobium
Teline monspessulana	Włochy	Mesorhizobium
Teline stenopetala	Hiszpania	Bradyrhizobium
Ulex		
Ulex europaeus	Nowa Zelandia, Portugalia	Bradyrhizobium

Przewaga bakterii z rodzaju *Bradyrhizobium* nad pozostałymi bakteriami zdolnymi do mutualistycznej relacji z roślinami plemienia Genisteae związana jest najprawdopodobniej ze wspomnianymi wcześniej możliwościami adaptacyjnymi [Delmont i in., 2012; Okubo i in., 2012; Parker, 2015; Sprent i in., 2017].

W przypadku ryzobiów obok analizy sekwencji genu 16S rRNA i genów metabolizmu podstawowego analizuje się również sekwencje genów *nodA*, *nodC*,

(warunkujących proces brodawkowania tzw. geny *nod* (ang. *nodulation*)), oraz genów związanych z procesem wiązania azotu atmosferycznego np.: geny *nifD* i *nifH*. Na podstawie analizy wyżej wymienionych genów wykazano, że dotychczas scharakteryzowane bradyryzobia tworzą 16 głównych grup, określanych jako Klady I – XVI [Beukes i in., 2016; Parker, 2015; Lu i in., 2009; Horn i in., 2014; Lorite i in., 2010]. Zgodnie z tym schematem klasyfikacji szczepy rodzaju *Bradyrhizobium* zakażające rośliny plemienia Genisteae grupują się w Kladzie I, Kladzie II, Kladzie II, Kladzie VII, Kladzie XI, Kladzie XIII, Kladzie XV i Kladzie XVI a przynależność ta jest ściśle związana z miejscem izolacji danego szczepu [Lu i in., 2009; Marek–Kozaczuk i in., 2013]. Wniosek ten wiąże zjawisko rozpraszania się roślin na poszczególnych terenach z ich adaptacją do nowo kolonizowanego obszaru, co skorelowane jest z różnicami w sekwencji genów *nod*, w stosunku do symbiontów roślin plemienia Genisteae pochodzących z obszarów ich pierwotnego występowania [Stępkowski i in., 2018].

2.7. Symbioza ryzobiów z roślinami bobowatymi

Nawiązanie symbiozy ryzoboium – roślina bobowata jest złożonym, wieloetapowym i ściśle kontrolowanym procesem. Skutkiem tej symbiotycznej interakcji jest utworzenie brodawki korzeniowej we wnętrzu, której ryzobia wiążą azot atmosferyczny [Brencic i Winans, 2005].

W pierwszym etapie symbiozy ryzobium – roślina bobowata, dochodzi do adsporpcji bakterii na włośnikach korzeniowych rośliny [Skorupska i in., 2006]. Najbardziej zaangażowanymi cząsteczkami sygnalnymi inicjującymi proces symbiozy są flawonoidy, produkowane przez rośliny w sytuacjach stresowych takich jak np.: głód azotowy oraz czynniki Nod syntetyzowane przez ryzobia [Cooper, 2007; Lee i Hirsch, 2006]. Produkowane przez partnera roślinnego wydzieliny działają jak chemoatraktanty dla ryzobiów. Obok specyficznych gatunkowo flawodoidów, rośliny wydzielają również betainy, ksantony, kwasy, związki o charakterze fenolowym czy kwasy aldonowe [Cooper, 2007; Skorupska i in., 2010; Weston i Mathesius, 2013]. Natomiast w przypadku bakterii brodawkowych wpływ na zapoczątkowanie procesów symbiotycznych mają obok wspomnianych już czynników Nod, również białka sekrecyjne, polisacharydy powierzchniowe, N–acylowane laktony homoseryny pełniące funkcje sygnalne w procesie '*quorum*

sensing' [Downie, 2010; Fraysse i in., 2003]. Flawonoidy wiażąc się z białkiem NodD, są czynnikiem odpowiadającym za aktywację genów brodawkowania (ang. nod – nodulation genes) u mikrosymbiontów. Białko NodD przyłącza się do występujących w DNA konserwatywnych sekwencji tzw. kaset nod (nod box). Mimo, że wiązanie NodD z DNA nie zależy od obecności flawonoidów to są one niezbędnie do aktywacji promotorów genów nod [Brencic i Winans, 2005; Broughton i in., 2013; Gibson i in., 2008]. Zainicjowana kaskada zdarzeń prowadzi u bakterii do indukcji syntezy lipochitooligosacharydowych czynników Nod, które w zależności od gatunku mikroorganizmu, mogę różnić się budową chemiczną. Różnice te dotyczą rodzaju kwasu tłuszczowego na nieredukującym końcu, liczby i typu podstawników na redukującym końcu oraz długości rdzenia oligosacharydowego [Cooper, 2007; Crossman i in., 2008]. Geny odpowiadające za syntezę czynników Nod możemy podzielić na dwie grupy, jedną z nich stanowią geny operonu nodABC tzw. geny wspólne brodawkowania (ang. Common Nodulation Genes), drugą zaś geny specyficzne w stosunku do gospodarza tj.: geny nod, noe i nol, odpowiadające za chemiczne modyfikacje czynników brodawkowania [Perret i in., 2000]. Zlokalizowane w epidermie korzeni receptory kinazowe LysM rozpoznają czynnik Nod i zapoczątkowują szereg następujących po sobie reakcji, które w efekcie prowadzą do powstania brodawki korzeniowej [Geurts i Bisseling, 2002; Gough i Jacquet, 2013; Heidstra i Bisseling, 1996; Oldroyd i in., 2011; Radutoiu i in., 2003]. Powstanie brodawek korzeniowych zależy również od struktur powierzchniowych występujących u bakterii. Należą do nich lipopolisacharydy (LPS), polisacharydy kapsularne (CPS) oraz egzopolisacharydy (EPS) [Fraysse i in., 2003].

Tworzenie brodawki korzeniowej rozpoczyna się od adsorpcji bakterii na włośnikach korzeniowych, gdzie na skutek zmiany depolaryzacji błony cytoplazmatycznej, zaburzenia poziomu wewnątrzkomórkowego Ca²⁺, przebudowy cytoszkieletu i utworzenia nici preinfekcyjnej dochodzi do widocznej deformacji włośnika korzeniowego i powstania struktury zwanej "laską pasterza" (ang. *shephard's crook*) (Rys. 2.15). Na skutek skręcenia włośnika powstaje uchyłek, w którym zamknięte bakterie zaczynają się namnażać i doprowadzają do miejscowej hydrolizy ściany komórkowej, a błona cytoplazmatyczna włośka ulega wpukleniu i dochodzi do powstania nici infekcyjnej [Gage, 2004; Harris i in., 2003; Oldroyd i in., 2011]. Nić infekcyjna odpowiada za wprowadzenie bakterii do powstającego zawiązka brodawki korzeniowej (prymordium), gdzie na drodze endocytozy dochodzi do uwolnienia bakterii. Następnie są one otaczane wytwarzaną przez rośliny błoną perybakteroidalną, która zabezpiecza bakterie przed reakcja obronną gospodarza, a także pełni rolę w wymianie substancji między symbiotycznymi partnerami i powstają tzw. symbiosomy. W obrębie tych struktur dochodzi do powstania bakteroidów efektywnie wiążących azot atmosferyczny, a komórki merystemu brodawki dzielą się. Czas tworzenia brodawek jest dla rośliny okresem, kiedy następuje szereg zmian metabolicznych. Zahamowana zostaje aktywności systemu immunologicznego, dochodzi do zaburzeń w obrębie obiegu auksyn, a także następuje indukcja genów kodujących białka biorące udział we wszystkich etapach symbiozy (noduliny) [Gage, 2004; Oldroyd i in., 2011].

Rys. 2.15. Etapy inicjacji symbiozy między ryzobiami a roślinami bobowatymi [Stasiak i in., 2016]

Budowa anatomiczna i morfologia pozwala na różnicowanie brodawek na dwa podstawowe typy: zdeterminowane i niezdeterminowane, charakteryzujące się różnym czasem funkcjonowania merystemów oraz miejscem ich powstawania. W wewnętrznej warstwie kory pierwotnej korzenia tworzą się brodawki niezdeterminowane, natomiast w zewnętrznej warstwie kory pierwotnej korzenia zdeterminowane. Występują również brodawki kołnierzykowate, które są pośrednią formą posiadającą cechy zarówno brodawek typu pierwszego jak i drugiego [Haag i in., 2000; Popp i Ott, 2011; Timmers, 2008; Vasse i in., 1990]. Kształt brodawek determinowany jest aktywnością tkanki merystematycznej i w przypadku brodawek niezdeterminowanych, jej ciągła aktywność prowadzi do powstania gradientowych stref wzrostu i w konsekwencji cylindrycznego kształtu, natomiast brodawki zdeterminowane, nie wykształcają trwałego merystemu, ich komórki podlegają bakteryjnej infekcji i przyjmują kształt kulisty. W brodawkach typu niezdeterminowanego występuje kilka stref: strefa I obejmująca niezakażoną strefę merystematyczną, za nią znajdują się kolejno: strefa zakażania, w której ryzobia są uwalniane z nici infekcyjnej do komórek roślinnych; II – III strefa przejściowa, gdzie komórki roślinne zawierające bakteroidy osiągają ostateczny stopień zróżnicowania; III strefa, w której dojrzałe bakteroidy aktywnie wiążą azot; IV – w której dochodzi do degradacji komórek roślinnych i bakteroidalnych. Ostatnia V strefa saprofityczna, gdzie obumarłe komórki roślinne są kolonizowane przez pałeczkowate ryzobia pochodzące głównie z nici infekcyjnych [Barnett i Fisher, 2006; Gage, 2004; Margaert i in., 2006; Terpolilli i in., 2012; Timmers i in., 2000, Van de Velde i in., 2010; Wielbo i in., 2010].

2.7.1. Wiązanie azotu przez ryzobia w mutualistycznej interakcji z roślinnym gospodarzem

Bakterie brodawkowe zwane powszechnie ryzobiami występują w przyrodzie w dwóch formach, tj. jako wolno żyjące saprofity bytujące w glebie oraz jako wiążące azot atmosferyczny endosymbionty roślin bobowatych. Rośliny bobowate pełnią ważną rolę w produkcji żywności dla ludzi i paszy dla zwierząt, a ich resztki pozbiorowe stanowią ważne źródło azotu dla innych roślin i korzystnie oddziałują na żyzność gleby. Ważnym czynnikiem wpływającym na rozwój roślin bobowatych i ich plony są symbiotyczne bakterie wiążące azot cząsteczkowy (N₂) i zaopatrujące swojego gospodarza w ten pierwiastek. Bakterie brodawkowe prowadza redukcje tego pierwiastka do formy amonowej przyswajalnej przez rośliny i jest to ich główna rola w tej mutualistycznej interakcji [Vance i Heichel, 1991].

W mikroaerofilnym środowisku panującym wewnątrz symbiosomu dochodzi do ekspresji genów, które kodują enzymatyczny kompleks nitrogenazy, odpowiadający za proces wiązania N₂. Wytworzenie odpowiedniego dla działania nitrogenazy środowiska związane jest z kilkoma mechanizmami t.j.: z występowaniem dwuskładnikowego, wrażliwego na tlen systemu białek bakteryjnych FixJ–FixL, które kontrolują ekspresję genu *nifA* i stanowią główny regulator procesu wiązania azotu oraz ekspresją genów kodujących roślinną leghemoglobinę co ma przełożenie na utrzymanie niskiego poziomu tlenu w brodawce. Mechanizmy te mają bezpośredni związek z ekspresją genu *nifA*, głównego regulatora w procesie wiązania azotu [Dixon i Kahn, 2004; Gibson i in., 2008; Ott i in., 2005]. Funkcję w ochronie nitrogenazy przed szkodliwym działaniem tlenu pełni również struktura brodawek zapewniająca barierę dla dyfuzji tlenu oraz warstwa ciasno upakowanych komórek kory chroniąca bakteroidy [Dixon i Kahn, 2004].

Reakcja katalizowana nitrogenaze prowadzi redukcji przez do cząsteczkowego azotu do amoniaku z wytworzeniem wodoru. Najczęściej występująca u ryzobiów nitrogenaza, wymaga do poprawnego działania jonów molibdenu i jest to najpowszechniej występująca forma tego enzymu -Mo-nitrogenaza. Nitrogenaza molibdenowa obok niewątpliwych korzyści wynikających z jej działania ma również dwie dość niekorzystne właściwości. Po pierwsze ma wysokie wymagania energetyczne a po drugie charakteryzuje się dużą wrażliwością na tlen. Kompleks enzymatyczny nitrogenazy składa się z dwóch głównych podjednostek, czyli reduktazy dinitrogenazy NifH, będącej białkiem Fe o masie molekularnej ok. 60 kDa (azoferredoksyna) i dinitrogenazy NifD/NifK, który to enzym jest ok. 240 kDa heterotetramerycznym białkiem Mo-Fe (molibdoferredoksyna) [Rubio i Ludden, 2005]. Aktywność nitrogenazy zależy ponadto od kilkunastu innych białek kodowanych przez geny nif. I tak np. u Rhizobium leguminosarum i Sinorhizobium meliloti obok podstawowych genów kodujących opisaną powyżej reduktazę dinitrogenazy (*nifH*) i dinitrogenazę (nifDK), ważne są również inne geny nif m.in. regulatorowy gen nifA, nifEN kodujące prekursor Fe–S nitrogenazy, nifB odpowiedzialny za kodowanie kofaktora Fe-Mo. Ponadto w proces wiązania azotu zaangażowanie są tzw. geny fix (ang. fixation - fixJ, fixK oraz fixL), których produkty uczestniczą w procesie wiązania azotu N₂, poprzez kodowanie systemu regulatorowego FixL/FixJ i regulatorowego białka FixK [Barnett i Kahn, 2006; Dixon i Kahn, 2004; Wielbo i Skorupska, 2003].

Wiązanie azotu, jako mutualistyczny związek między rośliną a bakterią jest korzystny dla oby partnerów. Wysoki poziom aktywności nitrogenazy utrzymuje się dzięki pochodzącym z procesu fotosyntezy kwasom karboksylowym, które stanowią stałe źródło energii oraz poprzez zapewnienie bakteroidom odpowiednio niskiego stężenia tlenu [Gibson i in., 2008; Prell i Poole, 2006; White i in., 2007]. Redukowany w tym procesie azot atmosferyczny zostaje przekształcony w przyswajalną dla roślin formę, dostarczaną w dwojaki sposób, bezpośrednio przez kanały amonowe oraz pośrednio w formie amidów (w brodawkach niezdeterminowanych) bądź ureidów (w brodawkach zdeterminowanych) eksportowanych z brodawek do roślin [Gibson i in., 2008; White i in., 2007].

3. Cel pracy

Badaniami, których wyniki omawia niniejsza praca doktorska, objęto 33 szczepy wyizolowane z brodawek korzeniowych szczodrzyka czerniejącego (*Lembotropis nigricans*) rosnącego na terenie województwa lubelskiego. W analizach uwzględniono również szczepy referencyjne reprezentujące różne rodzaje bakterii brodawkowych.

Celem przedstawionej rozprawy doktorskiej, było określenie stopnia pokrewieństwa mikrosymbiontów *Lembotropis nigricans* względem innych bakterii brodawkowych oraz oznaczenie ich pozycji taksonomicznej na poziomie rodzaju i gatunku stosując analizy taksonomii wielokierunkowej tj.: określając cechy fenotypowe izolatów, informację pochodzącą z ich genomu, a także łączące je relacje filogenetyczne.

Szczegółowe cele pracy:

- Ustalenie stopnia podobieństwa fenotypowego izolatów z brodawek korzeniowych *Lembotropis nigricans* oraz szczepów referencyjnych reprezentujących znane gatunki i rodzaje bakterii brodawkowych w oparciu o badania szeregu cech fizjologicznych, morfologicznych i biochemicznych mikroorganizmów, takich jak np.: zdolność wykorzystywania różnych związków jako jedyne źródło węgla i azotu, stopień tolerancji względem różnych stężeń NaCl, antybiotyków i barwników, aktywność enzymatyczna m.in. katalazy czy peroksydazy;
- Oznaczenie stopnia zróżnicowania genomowego mikrosymbiontów szczodrzyka czerniejącego metodą ERIC–PCR, BOX–PCR i AFLP;
- Określenie stopnia pokrewieństwa ryzobiów specyficznych dla *Lembotropis* nigricans oraz szczepów referencyjnych rodzaju *Bradyrhizobium* metodą PCR-RFLP 16S rDNA;
- Oznaczenie zakresu gospodarza ryzobiów specyficznych dla *Lembotropis* nigricans w laboratoryjnych testach roślinnych z udziałem różnych gatunków roślin bobowatych;
- Określenie efektywności wiązania azotu atmosferycznego przez badane izolaty w układach symbiotycznych z różnymi gatunkami roślin bobowatych;
- Ustalenie historii ewolucyjnej bakterii wyizolowanych z brodawek szczodrzyka czerniejącego w oparciu o reprezentantów poszczególnych

subfenonów i genotypów tych bakterii określonych metodami (ERIC-PCR, BOX-PCR, AFLP, PCR-RFLP 16S rDNA);

- Oznaczenie zawartości zasad azotowych G+C (mol%) w DNA bakterii specyficznych dla *Lembotropis nigricans;*
- Analiza filogenezy i przynależności gatunkowej badanych mikrosymbiontów, techniką MLSA (ang. *Multilocus Sequence Alignment*) czterech konserwatywnych genów, tj. genu *atpD*, *dnaK*, *gyrB*, *recA*;
- Zaklasyfikowanie do odpowiedniego gatunku ryzobiów specyficznych dla szczodrzyka czerniejącego na podstawie stopnia podobieństwa DNA–DNA oznaczonego metodą hybrydyzacji;
- Odkreślenie symbiotycznego pokrewieństwa ryzobiów specyficznych dla szczodrzyka czerniejącego z innymi gatunkami ryzobiów na podstawie analizy sekwencji nukleotydowej genów wspólnych *nod*, tj. *nodC* i *nodZ*.

Wyznaczone cele osiągnięto stosując następujący schemat postepowania:

- Charakterystyka fenotypowa mikrosymbiontów (określenie czasu generacji, temperaturowego zakresu wzrostu, zdolność aktywnego ruchu, asymilacji różnych źródeł węgla i azotu, tolerancji względem pH, stężenia NaCl, antybiotyków, barwników, testy enzymatyczne oraz inne testy badające cechy fizjologiczne i biochemiczne);
- Analiza polimorfizmu genomowego metodami BOX–PCR, ERIC–PCR, AFLP oraz PCR–16S RFLP oraz określenie zawartość zasad G+C w DNA;
- 3. Analiza sekwencji genu 16S rRNA;
- 4. Analiza sekwencji genów metabolizmu podstawowego: *atpD*, *dnaK*, *gyrB*, *recA*;
- 5. Oznaczanie stopnia podobieństwa metodą hybrydyzacji DNA-DNA;
- 6. Określenie historii ewolucyjnej genów symbiotycznych (nodC, nodZ);
- Analiza zakresu gospodarza i efektywności wiązania N₂ w oparciu o pomiar suchej masy pędów i test acetylenowy.

4. Materiały i metody

4.1. Materiały

4.1.1. Szczepy bakteryjne użyte w badaniach

Nazwa szczepu	Gospodarz roślinny	Kraj pochodzenia	Źródło pochodzenia
Izolaty Lembotropis nigricans (LN1-LN33)	Lembotropis nigricans	Polska	ZGiM
Bradyrhizobium diazoefficens USDA110 ^T	Glycine sp.	USA	USDA
Bradyrhizobium elkanii USDA76 ^T	Glycine sp.	USA	USDA
Bradyrhizobium japonicum USDA6 ^T	Glycine sp.	USA	USDA
Bradyrhizobium liaoningense USDA3622 ^T	Glycine sp.	USA	USDA
Bradyrhizobium yuanmingense CCBAU10071 ^T	Lespendeza cuneata	Chiny	CCBAU
Ensifer fredii $USDA205^{T}$	Glycine sp.	USA	USDA
Ensifer fredii USDA440	<i>Trifolium</i> sp.	Polska	ZGiM
Ensifer meliloti L5 – 30	Medicago sativa	Polska	ZGiM
Ensifer meliloti MVII	Medicago sativa	Polska	ZGiM
Ensifer meliloti SU47	Medicago sativa	Polska	ZGiM
Mesorhizobium amorphae ICMP 15022 ^T	Amorpha fruticosa	USA	USDA
Mesorhizobium ciceri USDA3383 ^T	Cicer arietinum	USA	USDA
Mesorhizbouim huakuii USDA4779 ^T	Astragalus sinicus	USA	USDA
Mesorhizobium loti USDA3471 ^T	Lotus corniculatus	USA	USDA
Mesorhizobium ciceri UPMCa7 ^T	Cicer arietinum	Polska	ZGiM
Mesorhizobium albiziae CCBAU 61158	Albizia kalkora	Polska	ZGiM
<i>Rhizobium leguminosarum</i> bv. trifolii ANU843	Trifolium sp.	Polska	ZGiM
<i>Rhizobium leguminosarum</i> bv. trifolii 21	<i>Trifolium</i> sp.	Polska	ZGiM

<i>Rhizobium</i> <i>leguminosarum</i> bv. <i>viciae</i> 3	<i>Trifolium</i> sp.	Polska	ZGiM
<i>Rhizobium leguminosarum</i> bv. viciae 3841	Vicia faba	Polska	ZGiM

Objaśnienia skrótów źródła pochodzenia szczepów:

ZGiM – Zakład Genetyki i Mikrobiologii UMCS, Lublin, Polska USDA - United State Department of Agriculture, Beltsville, USA CCBAU - Beijing Agricultural University, Chiny

4.1.2. Spis stosowanych odczynników chemicznych

•	ampicylina	•	L-arginina
•	auramina	•	L-asparagina
•	błękit bromotymolowy	•	L-cysteina

- cynk w pyle •
- cytrynian sodu
- czerwień Kongo
- czerwień metylowa
- czerwień obojętna
- D-arabinoza
- D-celobioza
- dekstryna
- D-fruktoza
- D-galaktoza
- D-glukoza
- D-ksyloza
- DL-izoleucyna
- DL-ornityna
- DL-walina
- D-mannoza
- D-trehaloza
- **EDTA** sól sodowa kwasu ٠ etylenodiaminotetraoctowego
- etanol 95%
- fiolet krystaliczny

- L-cysteina
- L-fenyloalanina •
- L-glutamina
- L-histydyna •
- L-hydroksyprolina •
- L-leucyna
- L-metionina
- L-prolina
- L-ramnoza
- L-seryna
- L-treonina •
- L-tyrozyna
- maltoza •
- mocznik
- NaCl
- NaNO₃
- nigrozyna •
- mleko w proszku •
- oranż akrydyny •
- rafinoza .
- rifampicyna •
- sacharoza .

- glicerol
- glicyna
- H₂SO₄
- hipuran sodu
- inulina
- kwas L-asparaginowy
- kwas L-glutaminowy
- laktoza
- L-alanina
- L-lizyna

- safranina
- salicyna
- **SDS** siarczan dodecylu sodu
- skrobia
- streptomycyna
- tetracyklina
- **TRIS** Tris(hydroksymetylo)aminometan
- Tween 20
- winian sodu
- zieleń metylowa

4.1.3. Podłoża hodowlane

Podłoża sterylizowano w autoklawie w temperaturze 121°C przez 30 minut pod ciśnieniem 0,75 atmosfery. Podłoża wymagające innych warunków sterylizacji zaznaczono w dalszej części rozdziału. Antybiotyki sterylizowano poprzez filtracje, stosując filtry strzykawkowe – Whatman o średnicy porów 0,2 μm i dodawano do uprzednio wyjałowionej pożywki.

•	Podłoże 79CA	

Składnik	
mannitol	10 g
K ₂ HPO ₄	0,5 g
$MgSO_4 \cdot 7H_2O$	0,2 g
NaCl	0,1 g
glicerofosforan wapnia	0,1 g
wyciąg drożdżowy	1 g
kwaśny hydrolizat kazeiny	1 g
H ₂ O destylowana	do 1000 ml
pH 7,2 – 7,4	

W celu sporządzenia podłoża półpłynnego lub stałego, powyższe składniki uzupełniano agarem w ilości odpowiednio, 3,5 g/1000 ml podłoża i 20 g/1000 ml podłoża.

Składnik	
NH4Cl	0,27 g
K ₂ HPO ₄	0,22 g
$MgSO_4 \cdot 7 H_2O$	0,25 g
FeCl ₃	0,02 g
CaCl ₂	0,04 g
mannitol	10 g
H ₂ O destylowana	do 1000 ml
pH 6,8	
jako indykator zmiany pH użyto błękit bromotymolowy (0,0025%)	

• Podłoże BS – Modyfikowane podłoże Bergersena

Podłoże BS stosowano do badania różnych związków chemicznych jako jedyne źródła węgla lub azotu, sterylizowano w autoklawie w temperaturze 117°C przy ciśnieniu 0,5 atmosfery przez 10 minut.

• Podłoże Hoaglanda

Składnik	
5mM Ca ₃ (PO ₄) ₂	1,55 g
5mM KCl	0,375 g
1mM KH ₂ PO ₄	0,136 g
2mM MgSO ₄ · 7 H ₂ O	0,4925 g
0,25mM C ₆ H ₅ O ₇ Fe	2 ml
42,5µM H ₃ BO ₄	1 ml
$9\mu M MnCl_2 \cdot 4 H_2O$	1 ml
$0,3\mu M CuSO_4 \cdot 5 H_2O$	1 ml
$0,75\mu M ZnSO_4 \cdot 7 H_2O$	1 ml
$0,1\mu M Na_2 MoO_4 \cdot 7 H_2 O$	1 ml

agar	20 g
H ₂ O destylowana	do 1000 ml

pH 7,2

• Podłoże Hoffera

Składnik	
mannitol	20 g
KNO ₃	5 g
NaCl	3,8 g
KCl	0,1 g
$MgCl_2 \cdot 6 H_2O$	1 g
$MgSO4 \cdot 7 H_2O$	0,6 g
glicerofosforan wapnia	0,8 g
agar	20 g
H ₂ O destylowana	do 1000 ml

• Minimalne podłoże TMRT (identyfikacja indolu)

Skladnik	
mannitol	10 g
$CaCl_2 \cdot 2H_2O$	0,2 g
$MgSO_4 \cdot 7H_2O$	0,25 g
Tris	1,21 g
wyciąg drożdżowy	0,2 g
L-tryptofan	0,061 g
H ₂ O destylowana	do 1000 ml

• Podłoże do badania aktywności fosfatazy

Składnik	
podłoże BS	1000 ml
1% roztwór soli sodowej fenyloftaleiny	10 ml
Podłoże sterylizowano przez filtrowanie	

• Podłoże do badania rozkładu trifosforanów (TCP)

Składnik	
Glukoza	10 g
NH ₄ Cl	5 g
NaCl	1 g
MgSO ₄	1 g
10% CaCl ₂	100 ml
10% K ₂ HPO ₄	50 ml
Ca ₃ (PO) ₄	4 g
H ₂ O destylowana	do 1000 ml
agar	20 g
рН 7,2	

• Woda peptonowa

рН 7,2 – 7,6	
H ₂ O destylowana	do 1000 ml
KNO ₃	0,1 g
Na ₂ CO ₃	0,2 g
NaCl	5 g
pepton	10 g
Składnik	

• Podłoże na rozkład eskuliny

Składnik	
eskulina	1 g
FeCl ₃	0,5 g
agar	20 g
Woda peptonowa	do 1000 ml

• Agar odżywczy

Składnik	
Trypton	5 g
Wyciąg wołowy	3 g
agar	20 g
H ₂ O destylowana	do 1000 ml

• Podłoże Hoffera

Składnik	
mannitol	20,0 g
KNO ₃	5,0 g
NaCl	3,8 g
KCl	0,1 g
$MgCl_2 \cdot 6 H_2O$	1,0 g
$MgSO_4 \cdot 7 H_2O$	0,6 g
glicerofosforan wapnia	0,8 g
agar	20 g
H ₂ O destylowana	do 1000 ml

• Podłoże z mlekiem lakmusowym

Odtłuszczone mleko w proszku przygotowano wg przepisu podanego na opakowaniu, po czym dodano 0,1% azolitminy.

• Podłoże na wykrywanie melanin

Składnik	
stałe podłoże 79CA	1000 ml
L-tyrozyny	600 µg/ml
CuSO ₄	40 µg/ml

4.1.4. Odczynniki i bufory

4.1.4.1. Odczynniki stosowane do testów fenotypowych

• Odczynnik Grieesa A

Składnik	
kwas sulfanilowy	8 g
5N kwas octowy	1000 ml

• Odczynnik Grieesa B

Składnik	
α-naftylamina	5 g
5N kwas octowy	1000 ml
odczynnik filtrowano przez bibułę filtracyjną	

• Odczynnik wykrywający aktywność katalazy i peroksydazy

Składnik		
roztwór pirokatechiny	0,2%	
roztwór H ₂ O ₂	1%	
stosunek objętościowy 1:1		

• Odczynnik Kovacsa – na wykrywanie indolu

Składnik	
p-dimetyloaminobenzaldehyd	5 mg
aldehyd amylowy	75 mg
stężony HCl	25 ml

• 1% roztwór soli sodowej difosforanu fenoloftaleiny

Składnik	
sól sodowa difosforanu fenoloftaleiny	1 g
H ₂ O destylowana	do 100 ml

4.1.4.2. Odczynniki do izolacji i elektroforetycznego rozdziału DNA

•	0,5	\mathbf{M}	NaCl
---	-----	--------------	------

Składnik	
NaCl	2,9 g
H ₂ O destylowana	do 100 ml

• Odczynnik GES

Składnik		
tiocyjanian guanidyny	60 g	
0,5M EDTA /pH 8,0/	20 ml	
H ₂ O destylowana	20 ml	
rozpuścić w temperaturze 65°C, a następnie po ochłodzeniu dodać:		
10% sarkozyl	5 ml	
H ₂ O destylowana	do 100 ml	
odczynnik sterylizowano przez jałowy filtr strzykawkowy		

• 0,5 M EDTA

Składnik	
EDTA	18,6 g
H ₂ O destylowana	do 100 ml
pH 8,0	

• 10 % sarkozyl

Składnik	
sarkozyl	10 g
H ₂ O destylowana	do 100 ml

• 70% etanol

Składnik

95% etanol	14 ml
H ₂ O destylowana	5 ml

• 7,5 M octan amonu

Składnik	
octan amonu	57,825 g
H ₂ O destylowana	do 100 ml

• Roztwór chloroformu i alkoholu izoamylowego (w proporcji 24:1)

Składnik	
chloroform	24 ml
alkohol izoamylowy	1 ml

• Bufor 10x TBE

Składnik		
Tris	108 g	
0,5 M EDTA	10 ml	
kwas borowy	55 g	
H ₂ O destylowana	do 1000 ml	
pH 8,0		

• Bufor 1x TE

Składnik	
Tris	1,21 g
EDTA	0,372 g
H ₂ O destylowana	do 1000 ml
рН 8,0	

• Bufor 50x TAE

Składnik	
Tris	242 g
kwas octowy (lodowaty)	57,1 g
0,5M EDTA /pH 8,0/	100 ml
H ₂ O destylowana	do 1000 ml

4.1.4.3. Roztwory do oznaczania zawartości G+C w DNA

- DNA faga λ
- Roztwór nukleazy P1

Składniknukleaza0,1 mg (aktywność 389 U/mg)40mM bufor TAE1 mlZnSO42 mMpH 5,31

• Roztwór fosfatazy alkalicznej

Składnik	
fosfataza alkaliczna	2,4 U (aktywność 1U/µl)
0,1M Tris-HCl	1 ml
pH 8,1	

4.1.4.4. Pozostałe roztwory

• 3M octan sodu

Skła	dnik
onia	ullin

octan sodu	24,6 g
H ₂ O destylowana	do 100 ml

• 75% etanol

Składnik	
95% etanol	15 ml
H ₂ O destylowana	4 ml

• 1 M NaCl

Składnik	
NaCl	58,44 g
H ₂ O destylowana	do 1000 ml

• 10 % SDS

Składnik	
SDS	10 g
H ₂ O destylowana	100 ml

• 4 M bufor hybrydyzacyjny z formamidem

Składnik	
20x SSC	6,25 ml
100% formamid dejonizowany	12,5 ml
2% sarkozyl	1,25 ml
20% SDS	25 μl
10x stężony roztwór blokujący	5 ml

• 100% formamid

Składnik

Skiaunik	
amberlit	5 g
formamid	do 1000 ml

mieszać na mieszadle w temperaturze pokojowej przez 30 minut, następnie przesączyć przez bibułę filtracyjną i rozlać do kolb po 25 ml; przechowywać w temperaturze –18°

• 20x SSC

Skladnik	
NaCl	175,3 g
cytrynian sodu	84,2 g
H ₂ O destylowana	do 1000 ml

• roztwór streptawidyna – peroksydaza

Składnik	
BSA (albumina bydlęca)	1 g
Triton X-100	0,1 g
PBS	100 ml

10x stężony roztwór blokujący (Zestaw DIG Luminescent Detection Kit, • Roche)

Składnik	
10% roztwór blokujący	2 g
bufor maleinowy	20 ml
rozpuścić mieszając w bloku grzew poprzez autoklawowanie, przechowywa	czym w temperaturze 65°C; jałowić ić w 4°C
• Bufor maleinowy	
Składnik	
0,1M kwas maleinowy	11,6 g
0,15 M NaCl	8,7 g
H ₂ O	do 1000 ml
pH 7,2; bufor należy sterylizować	
• 1 M Tris	
Składnik	
Tris	121,14 g
H ₂ O destylowana	1000 ml
рН 9,5	
• 0,1 M Tris	
Składnik	
1 M Tris	10 ml
H ₂ O destylowana	90 ml
рН 9,5	
• 0,1 M NaCl	
Składnik	
1 M NaCl	10 ml
H ₂ O destylowana	90 ml

• Bufor octanowy

Składnik	
5M octan potasu	60 ml
kwas octowy lodowaty	11,5 ml
H ₂ O destylowana	28,5 ml
• 2% sarkozyl	
Składnik	
sarkozyl	2 g
H ₂ O destylowana	100 ml
• 0,1% HgCl ₂	
Składnik	
HgCl ₂	0,1 g
H ₂ O destylowana	do 100 ml
• 1M Na ₂ CO ₃	
Składnik	
Na ₂ CO ₃	10,6 g
H ₂ O destylowana	do 100 ml
• 0,2% KNO3	
Składnik	
KNO ₃	0,2 g
H ₂ O destylowana	do 100 ml
• 0,1 M metyloimidazol (pH 7)	
Składnik	
1-metyloimidazol	8,21 g
H ₂ O destylowana	do 1000 ml

-	0 ,2 111 1020		metyiomnauzoia	
S	kładnik			

•	0,2 M roztworu	karbodiimidu	w 10 mM 1	1-metyloimidazolu
---	----------------	--------------	------------------	-------------------

N,N' - dicykloheksylokarbodiimid	41,266 g
H ₂ O destylowana	do 1000 ml

• 0,02% Calcofluor

Składnik

0,02% Calcofluoru	0,02 g
H ₂ O destylowana	do 100 ml

4.1.4.5. Startery do reakcji PCR

Nazwa startera	Sekwencja startera (5'-3')	Sekwencja docelowa	Referencje	
BOXA1	CTACGGCAAGGCGACGCTGACG	-	[Versalovic i in., 1994]	
ERIC-1	CACTTAGGGGTCCTCGAATGTA	przypadkowe	[Versalovic i in.,	
ERIC-2	AAGTAAGTGACTGGGGTGAGCG	DNA	1991]	
PstI–G	GACTGCGTACATGCAGG	sekwencje oflankowane	[Valsangiacomo i in., 1995]	
PstI–GC	GACTGCGTACATGCAGGC	restrykcyjnym i <i>Pst</i> I		
fD1	AGAGTTTGATCCTGGCTCAG		[Weisburg i in., 1991]	
rD1	AAGGAGGTGATCCAGCC			
atpDf1	ATCGGCGAGCCGGTCGACGA	r (r D	[Gaunt i in.,	
atpDr	GCCGACACTTCCGAACCNGCCTG	— atpD	2001]	
TSdnaK2	GTACATGGCCTCGCCGAGCTTCA		[Stępkowski i in., 2003]	
TSdnaK4	GGCAAGGAGCCGCAYAAGG	- anak		
gyrB343F	TTCGACCAGAAYTCCTAYAAGG		[Martens i in., 2007]	
gyrB1043R	AGCTTGTCCTTSGTCTGCG	— gyrв		
rpoB83F	CCSATCGAGGTTCACAGAAGGC	rpoB	[Martens i in., 2008]	
rpoB1061R	AGCGTGTTGCGGATATAGGCG			
nodCFu	AYGTHGTYGAYGACGGITC	- and C	[Laguerre i in., 2001]	
nodCI	CGYGACAGCCANTCKCTATTG	— noac		
TSnodZ	VTKGAGYAACGGTGARYTGCTCA		[Stępkowski i in.,	
TSnodZ	GCGAAGTGAWSCCGCAACTC	— noaz	2003]	

4.1.4.6. Enzymy i wzorce mas molekularnych

- Ligaza DNA faga T4 (Fermentas)
- Enzymy restrykcyjne (Fermentas)

Enzym restrykcyjny	Prototyp	Specyficzność 5'→3'
PstI	PstI	CTGCA↓G
Hin6I	HinfI	G↓CGC
HinfI	HhaI (GCG↓C)	G↓ANTC
MspI	HpaI	C↓CGG
RsaI	RsaI	GT↓AC
TaqI	TaqI	T↓CGA

Objaśnienia: N=G, A, T lub C

• Adaptory (Proligo Primers&Probes)

PstI-AR	5' TGTACGCAGTCTACG 3'
PstI-AF	5' CTCGTAGACTGCGTACATGCA 3'

• Wzorce mas cząsteczkowych DNA (Fermentas)

4.1.4.7. Komercyjne zestawy do izolacji, amplifikacji oczyszczania i kwasów nukleinowych

- Zestaw do sekwencyjnej reakcji amplifikacji kwasów nukleinowych BigDye® Terminator Cycle Sequencing Kit (Applied Biosystems)
- Zestaw do oczyszczania DNA po reakcjach enzymatycznych Clean-up (A&A Biotechnology)
- DIG Luminescent Detection Kit (Roche)
- Zestaw do usuwania terminatorów po reakcji sekwencyjnej ExTerminator (A&A Biotechnology)
- Zestaw do przygotowywania reakcji PCR REDTaq[®] ReadyMix[™] PCR Reaction Mix
- Zestaw do izolacji DNA z żeli agarozowych GeneMATRIX Agarose Out DNA Purification Kit (EURx)

4.1.4.8. Numery dostępu sekwencji DNA szczepów referencyjnych użytych w badaniach

Gatunek bakterii	Numer dostępu sekwencji 16S rRNA w bazie danych GeneBank
Bradyrhizobium americanum CMVU 44	NR149803.1
Bradyrhizobium arachidis LMG 26795	NR117791.1
Bradyrhizobium betae LMG 21987	NR029104.1
Bradyrhizobium cajani LMG 29967	NR157657.1
Bradyrhizobium canariense BTA–1	NR042177.1
Bradyrhizobium centrolobii BR 10245	KF927049.1
Bradyrhizobium centrosemae A9	NR149804.1
Bradyrhizobium cytisi CTAW11	NR116360.2
Bradyrhizobium daqingense CCBAU 15774	NR118648.1
Bradyrhizobium denitrificans LMG 8443	NR118982.1
Bradyrhizobium diazoefficiens USDA 110	AB909430.1
Bradyrhizobium elkanii USDA 76	NR036953.1
Bradyrhizobium embrapense SEMIA 6208	NR145861.1
Bradyrhizobium erythrophlei CCBAU 53325	NR135877.1
Bradyrhizobium ferriligni CCBAU 51502	NR135878.1
Bradyrhizobium ganzhouense RITF806	NR133706.1
Bradyrhizobium guangdongense CCBAU 51649	NR145893.1
Bradyrhizobium guangxiense CCBAU 53363	NR145894.1
Bradyrhizobium huanghuaihaiense CCBAU 23303	NR117945.1
Bradyrhizobium icense LMTR	NR133707.1

Bradyrhizobium ingae	NR133985.1			
Bradyrhizobium iriomotense EK05	NR112671.1			
Bradyrhizobium japonicum BGA-1	AY386714.1			
Bradyrhizobium japonicum USDA 6	HQ143390.1			
Bradyrhizobium jicamae PAC68	NR043036.1			
Bradyrhizobium kavangense 14	KP899562.1			
Bradyrhizobium lablabi CCBAU 23086	NR117513.1			
Bradyrhizobium liaoningense LMG 18230	NR114733.1			
Bradyrhizobium lupini USDA 3051	NR134836.1			
Bradyrhizobium macuxiense BR 10303	KX527919.1			
Bradyrhizobium manausense BR 3351	NR133986.1			
Bradyrhizobium namibiense 5– 10	NR159233.1			
Bradyrhizobium neotropicale BR10247	KJ661686.1			
Bradyrhizobium oligotrophicum S58	KF583880.1			
Bradyrhizobium ottawaense 0099	NR133988.1			
Bradyrhizobium pachyrhizi PAC48	AY628092.2			
Bradyrhizobium paxllaeri LMTR 21	NR133708.1			
Bradyrhizobium retamae Ro19	NR118548.1			
Bradyrhizobium rifense CTAW71	NR116361.2			
Bradyrhizobium subterraneum 58 2-1	KP308152.1			
Bradyrhizobium stylosanthis BR 446	NR151930.1			
Bradyrhizobium tropiciagri SEMIA 6148	NR145862.1			
Bradyrhizobium valentinum LmjM3	NR125638.1			
Bradyrhizobium vignae 7-2	NR147716.1			
Bradyrhizobium viridifuturi SEMIA 690	NR145860.1			
Bradyrhizobium yuanmingense CCBAU 10071	NR028768.1			
Bosea thiooxidans DSM 9653	NR041994.1			
Gatunek bakterii	Numer dostępu	i sekwencji genó	w w bazie dany	ch GeneBank
Bradyrhizohium arachidis	HM107217 1	KI560556 1	<u>вуго</u> IX437675 1	IX437682 1
CCBAU 051107	1111107217.1	13300330.1	J2XTJ/0/J.1	3/173/002.1
Bradyrhizobium betae LMG 21987	FM253129.1	AY923046.1	FM253217.1	GU562860.1

Bradyrhizobium canariense BTA–1	AY386739.1	AY923047.1	FM253220.1	FM253263.1
Bradyrhizobium cytisi CTAW	GU001613.1	KF962684.1	JN186292.1	JN186288.1
Bradyrhizobium daqingense CCBAU 15774	HQ231289.1	KF962684.1	JX437669.1	JX437676.1
Bradyrhizobium denitrificans LMG 8443	FM253153.1	KF962685.1	FM253239.1	FM253282.1
Bradyrhizobium diazoefficiens USDA 110	CP029603.1	NC004463.1	NC004463.1 883814 – 886249	NC004463.1 5951778 – 5955896
Bradyrhizobium elkanii USDA 76	AY386758.1	AM168363.1	AM418800.1	EF190188.1
Bradyrhizobium huanghuaihaiense CCBAU 23303	HQ231682.1	KF962686.1	JX437672.1	JX437679.1
Bradyrhizobium icense LMTR 13	KF896192.1	KF896182.1	KF896201.1	CP016428.1
Bradyrhizobium iriomotense LMG 24129	AB300994.1	JF308944.1	AB300997.1	HQ587646.1
Bradyrhizobium japonicum USDA 6	AM168320.1	AM168362.1	AM418801.1	NC017249.1 472002 – 4476120
<i>Bradyrhizobium jicamae</i> PAC 68	FJ428211.1	JN207408.1	HQ873309.1	HQ587647.1
Bradyrhizobium kavangense 14 – 3	KX661392.1	KR259949.1	KX661397.1	KF962713.1
Bradyrhizobium lablabi CCBAU 23086	GU433473.1	KF896185.1	JX437670.1	JX437677.1
Bradyrhizobium liaoningense LMG 18230	AY386752.1	AY92304.1	FM253223.1	FM253266.1
Bradyrhizobium namibiense 5- 10	KX661387.1	KP402058.1	KX661393.1	KM378306.1
Bradyrhizobium oligotrophicum LMG 10732	JQ619232.1	KF962688.1	KF962697.1	KF962713.1
Bradyrhizobium ottawaense OO99	HQ455212.1	JF308816.1	HQ873179.1	HQ587518.1
Bradyrhizobium pachyrhizi PAC 48	FJ428208.1	KF532217.1	HQ873310.1	HQ587648.1
Bradyrhizobium paxllaeri LMTR 21	KF896186.1	AY923038.1	KF896195.1	KP308154.1
Bradyrhizobium retamae Ro19	KC247101.1	KF896184.1	KF896204.1	KF962714.1
Bradyrhizobium rifense CTAW 71	GU001617.1	JQ945187.1	KC569466.1	KC569468.1
Bradyrhizobium subterreneum 58	KX661391.1	KP308157.1	KX661396.1	KX661391.1
Bradyrhizobium vignae 7 – 2	KX683215.1	KR259951.1	KX683216.1	KM378308.1
Bradyrhizobium yuanmingense CCBAU 10071	AY386760.1	AY923029.1	FM253226.1	FM253269.1
Rhodopseudomonas palustris CGA009	NC005296.1 c196204 – 194774	NC005296.1 360754 – 362649		NC005296.1 c3687141 – 3683017
Gatunek bakterii	Numer dostępu GeneBank	ı sekwencji genu	<i>nodC</i> w bazie d	lanych
Bradyrhizobium arachodis CCBAU 051107	HM107267.1			
Bradyrhizobium canariense BLUT1	EU333389.1			

Dug dughi - chiun cutici	
CTAW11_	EU597844.2
Bradyrhizobium daqingense CCBAU 15774	HQ231326.1
Bradyrhizobium diazoefficiens USDA 110	CP032617.1
Bradyrhizobium elkanii SEMIA 5019	KY607996.1
Bradyrhizobium ganzhouense RITF806	JX292035.1
Bradyrhizobium ingae BR 10250	KF927054.1
Bradyrhizobium iriomotense	AB301000 1
Bradyrhizobium iaponicum	FE694757 1
BGA 1	
Bug durkiz obium ignonioum	A D012206 1
USDA 6	AP012200.1
PAC68	AB5/3869.1
Bradyrhizobium lablabi CCBAU 23086	GU433565.1
Bradyrhizobium liaoningense CCBAU 21332	GU433578.1
Bradyrhizobium manausense BR 3351	KF786002.1
Bradyrhizobium neotropicale BR 10247	KJ661727.1
Bradyrhizobium ottawaense OO99	CP029425.1
Bradyrhizobium pachyrhizi PAC48	AB573868.1
Bradyrhizobium retamae Ro19	KC247112.1
Bradyrhizobium retamae Ro19 Bradyrhizobium rifense CTAW71	KC247112.1 EU597853.2
Bradyrhizobium retamae Ro19 Bradyrhizobium rifense CTAW71 Bradyrhizobium sp. BCO1	KC247112.1 EU597853.2 AJ560656.1
Bradyrhizobium retamae Ro19 Bradyrhizobium rifense CTAW71 Bradyrhizobium sp. BCO1 Bradyrhizobium sp. BLUH1	KC247112.1 EU597853.2 AJ560656.1 AJ560655.1
Bradyrhizobium retamae Ro19 Bradyrhizobium rifense CTAW71 Bradyrhizobium sp. BCO1 Bradyrhizobium sp. BLUH1 Bradyrhizobium sp. BRT3	KC247112.1 EU597853.2 AJ560656.1 AJ560655.1 AJ560622.1
Bradyrhizobium retamae Ro19 Bradyrhizobium rifense CTAW71 Bradyrhizobium sp. BCO1 Bradyrhizobium sp. BLUH1 Bradyrhizobium sp. BRT3 Bradyrhizobium sp. BTA-1	KC247112.1 EU597853.2 AJ560656.1 AJ560655.1 AJ560622.1 AJ560653.1
Bradyrhizobium retamae Ro19 Bradyrhizobium rifense CTAW71 Bradyrhizobium sp. BCO1 Bradyrhizobium sp. BLUH1 Bradyrhizobium sp. BRT3 Bradyrhizobium sp. BTA-1 Bradyrhizobium sp.	KC247112.1 EU597853.2 AJ560656.1 AJ560655.1 AJ560622.1 AJ560653.1 HO428053.1
Bradyrhizobium retamae Ro19 Bradyrhizobium rifense CTAW71 Bradyrhizobium sp. BCO1 Bradyrhizobium sp. BLUH1 Bradyrhizobium sp. BRT3 Bradyrhizobium sp. BTA-1 Bradyrhizobium sp. CCBAU 23332	KC247112.1 EU597853.2 AJ560655.1 AJ560622.1 AJ560653.1 HQ428053.1
Bradyrhizobium retamae Ro19 Bradyrhizobium rifense CTAW71 Bradyrhizobium sp. BCO1 Bradyrhizobium sp. BLUH1 Bradyrhizobium sp. BRT3 Bradyrhizobium sp. BTA-1 Bradyrhizobium sp. CCBAU 23332 Bradyrhizobium sp. WM9	KC247112.1 EU597853.2 AJ560656.1 AJ560655.1 AJ560622.1 AJ560653.1 HQ428053.1 AF222753.1
Bradyrhizobium retamae Ro19 Bradyrhizobium rifense CTAW71 Bradyrhizobium sp. BCO1 Bradyrhizobium sp. BLUH1 Bradyrhizobium sp. BRT3 Bradyrhizobium sp. BTA-1 Bradyrhizobium sp. CCBAU 23332 Bradyrhizobium sp. WM9 Bradyrhizobium sp. WM9	KC247112.1 EU597853.2 AJ560655.1 AJ560655.1 AJ560652.1 AJ560653.1 HQ428053.1 AF222753.1 IX514897.2
Bradyrhizobium retamae Ro19 Bradyrhizobium rifense CTAW71 Bradyrhizobium sp. BCO1 Bradyrhizobium sp. BLUH1 Bradyrhizobium sp. BRT3 Bradyrhizobium sp. BTA-1 Bradyrhizobium sp. CCBAU 23332 Bradyrhizobium sp. WM9 Bradyrhizobium valentinum I miM3	KC247112.1 EU597853.2 AJ560655.1 AJ560622.1 AJ560653.1 HQ428053.1 AF222753.1 JX514897.2
Bradyrhizobium retamae Ro19 Bradyrhizobium rifense CTAW71 Bradyrhizobium sp. BCO1 Bradyrhizobium sp. BLUH1 Bradyrhizobium sp. BRT3 Bradyrhizobium sp. BTA-1 Bradyrhizobium sp. CCBAU 23332 Bradyrhizobium sp. WM9 Bradyrhizobium valentinum LmjM3 Bradyrhizobium yuanmingense NBRC 100594	KC247112.1 EU597853.2 AJ560656.1 AJ560655.1 AJ560622.1 AJ560653.1 HQ428053.1 AF222753.1 JX514897.2 AB354633.1
Bradyrhizobium retamae Ro19Bradyrhizobium rifenseCTAW71Bradyrhizobium sp. BCO1Bradyrhizobium sp. BLUH1Bradyrhizobium sp. BRT3Bradyrhizobium sp. BTA-1Bradyrhizobium sp.CCBAU 2332Bradyrhizobium sp. WM9Bradyrhizobium sp. WM9Bradyrhizob	KC247112.1 EU597853.2 AJ560655.1 AJ560655.1 AJ560653.1 HQ428053.1 AF222753.1 JX514897.2 AB354633.1 Numer dostępu sekwencji genu nodZ w bazie danych GeneBank
Bradyrhizobium retamae Ro19Bradyrhizobium rifenseCTAW71Bradyrhizobium sp. BCO1Bradyrhizobium sp. BLUH1Bradyrhizobium sp. BLUH1Bradyrhizobium sp. BTA-1Bradyrhizobium sp. CCBAU 23332Bradyrhizobium sp. WM9Bradyrhizobium sp. WM9Bradyrhizobium valentinumLmjM3Bradyrhizobium yuanmingenseNBRC 100594Bradyrhizobium canarienseSEMIA 928	KC247112.1 EU597853.2 AJ560655.1 AJ560655.1 AJ560653.1 HQ428053.1 AF222753.1 JX514897.2 AB354633.1 Numer dostępu sekwencji genu nodZ w bazie danych GeneBank HQ259495.1
Bradyrhizobium retamae Ro19Bradyrhizobium rifenseCTAW71Bradyrhizobium sp. BCO1Bradyrhizobium sp. BLUH1Bradyrhizobium sp. BLUH1Bradyrhizobium sp. BTA-1Bradyrhizobium sp.CCBAU 23332Bradyrhizobium sp. WM9Bradyrhizobium sp. WM9Bradyrhizobium sp. WM9Bradyrhizobium valentinumLmjM3Bradyrhizobium yuanmingenseNBRC 100594Bradyrhizobium canarienseSEMIA 928Bradyrhizobium arachidisCzR2	KC247112.1 EU597853.2 AJ560655.1 AJ560655.1 AJ560653.1 HQ428053.1 AF222753.1 JX514897.2 AB354633.1 Numer dostępu sekwencji genu nodZ w bazie danych GeneBank HQ259495.1 KJ135034.1
Bradyrhizobium retamae Ro19Bradyrhizobium rifenseCTAW71Bradyrhizobium sp. BCO1Bradyrhizobium sp. BLUH1Bradyrhizobium sp. BLUH1Bradyrhizobium sp. BTA-1Bradyrhizobium sp.CCBAU 23332Bradyrhizobium sp. WM9Bradyrhizobium sp. WM9Bradyrhizobium sp. WM9Bradyrhizobium valentinumLmjM3Bradyrhizobium yuanmingenseNBRC 100594Bradyrhizobium canarienseSEMIA 928Bradyrhizobium arachidisCzR2Bradyrhizobium jicamae PAC68	KC247112.1 EU597853.2 AJ560655.1 AJ560655.1 AJ560653.1 HQ428053.1 AF222753.1 JX514897.2 AB354633.1 Numer dostępu sekwencji genu nodZ w bazie danych GeneBank HQ259495.1 KJ135034.1 KC527000.1
Bradyrhizobium retamae Ro19Bradyrhizobium rifenseCTAW71Bradyrhizobium sp. BCO1Bradyrhizobium sp. BCO1Bradyrhizobium sp. BLUH1Bradyrhizobium sp. BRT3Bradyrhizobium sp. BTA-1Bradyrhizobium sp.CCBAU 2332Bradyrhizobium sp. WM9Bradyrhizobium sp. WM9Bradyrhizobium valentinumLmjM3Bradyrhizobium yuanmingenseNBRC 100594Gatunek bakteriiBradyrhizobium canarienseSEMIA 928Bradyrhizobium arachidisCzR2Bradyrhizobium jicamae PAC68Bradyrhizobium japonicumSEMIA 5079	KC247112.1 EU597853.2 AJ560656.1 AJ560655.1 AJ560653.1 HQ428053.1 AF222753.1 JX514897.2 AB354633.1 Numer dostępu sekwencji genu nodZ w bazie danych GeneBank HQ259495.1 KJ135034.1 HQ259499.1

Bradyrhizobium valentinum	KC526996.1
I miM3	
Bradyrhizobium lablabi	KC526990.1
CCBAU 23086	
Bradyrhizobium paxllaeri	KC526991.1
LMTR 21	
Bradyrhizobium elkanii	HQ259596.1
SEMIA 5019	
Bradyrhizobium genosp.	JX645470.1
TUXTLAS-17 Pop321	
Bradyrhizobium tropiciagri	HQ259505.1
SEMIA 6148	
Bradyrhizobium diazoefficiens	HQ259519.1
SEMIA 6059	
Bradyrhizobium sp. SA1 GC1d	EU364749.1

4.2. Metody

4.2.1. Izolacja szczepów ryzobiowych z brodawek korzeniowych

Szczodrzyki czerniejące (*Lembotropis nigricans*), pochodzące ze stanowiska zlokalizowanego we wschodniej części Polski (woj. lubelskie 51°08'47.2"N 23°24'43.3"E), zostały wykopane z gleby, nie naruszając ich systemu korzeniowego. Po opłukaniu korzeni pod bieżącą wodą, zbierano brodawki, które następnie sterylizowano powierzchniowo poprzez:

- 3 krotne płukanie wodą bieżącą,
- 3-krotne płukanie wodą jałową,
- inkubację 5 minut w 0,1% roztworze HgCl₂,
- 3 krotne płukanie wodą jałową,
- inkubację 5 minut w 75% alkoholu etylowym,
- 3 krotne płukanie wodą jałową.

Brodawki przenoszono na szalki Petriego, rozgniatano jałowym skalpelem, po czym ich zawartość wysiewano sektorowo – redukcyjnie na podłoże 79CA zestalone 1,5% agarem [4.1.3] i inkubowano 7 dni w temperaturze 28°C. Wyrosłe kolonie bakteryjne pasażowano na nowe płytki z podłożem 79CA, uzyskując w ten sposób czyste kultury bakteryjne. Wyizolowane szczepy przechowywano na skosach agarowych 79CA w temperaturze 4°C.

4.2.2. Hodowla szczepów bakteryjnych

Bakterie brodawkowe hodowano na stałej lub płynnej pożywce 79CA. W przypadku niektórych testów diagnostycznych do hodowli bakterii stosowano inne podłoża opisane w tekście. Bakterie rodzajów: *Mesorhizobium*, *Rhizobium* i *Ensifer* inkubowano przez 3 dni w temperaturze 28°C, z kolei bakterie rodzaju *Bradyrhizobium* przez 7 dni. Płynne hodowle bakteryjne prowadzono na wytrząsarce Infors HT Multitron PRO przy 180 rpm. Szczepy bakteryjne niebędące ryzobiami namnażano na wzbogaconym agarze odżywczym [4.1.3] w temperaturze 37°C.

4.2.3. Testy fenotypowe

Wszystkie testy fenotypowe wykonano dwa razy w trzech powtórzeniach. Wyniki testów zapisywano jako (+) lub (-), co oznacza, odpowiednio wzrost lub brak wzrostu drobnoustroju na danym podłożu lub obecność lub nieobecność danej cechy.

4.2.3.1. Oznaczanie czasu generacji

Dla określenia czasu generacji zakładano hodowle bakteryjne w płynnym podłożu 79CA, które przez 18 godzin wytrząsano w temperaturze 28°C. Następnie hodowlę odmładzano przez 6 – krotne rozcieńczenie (1:5) w podłożu i mierzono absorbancję przy długości fali 600 nm (OD₆₀₀). Przygotowano rozcieńczenia 10⁻⁴, 10⁻⁵, 10⁻⁶ i wysiewano po 100 µl z każdego rozcieńczenia, na podłoże stałe 79CA. Płytki inkubowano w temperaturze 28°C przez 7 dni. Odmłodzoną hodowlę ponownie wytrząsano przez 4 godzin. Po tym czasie mierzono gęstość optyczną (OD₆₀₀), przygotowywano rozcieńczenia (10⁻⁴, 10⁻⁵, 10⁻⁶) i wysiewano po 100 µl hodowli z każdego rozcieńczenia na płytki z podłożem 79CA. Płytki umieszczano w termostacie (28°C). Obliczono miano bakterii w czasie początkowym (T₀) oraz po 4–godzinnej inkubacji hodowli (T₄). Na podstawie tych danych ustalano czas generacji bakterii według wzoru:

G=1/v V= logN0- logN4/ log2(T4-T0) Objaśnienia:

- G czas generacji
- V szybkość podziałów
- $N_0 liczba$ komórek bakteryjnych w czasie T_0
- N_8 liczba komórek bakteryjnych w czasie T_4
- $T_0-\mbox{czas}$ początkowy; $T_4-\mbox{czas}$ końcowy

4.2.3.2. Wykorzystywanie związków chemicznych, jako jedyne źródło węgla

Izolaty z brodawek korzeniowych *Lembotropis nigricans* wysiewano na podłoże stałe BS, w którym mannitol zastąpiono innym źródłem węgla (1%), a mianowicie: sacharozą, laktozą, maltozą, trehalozą, celobiozą, cytrynianem sodu, D-arabinozą, dekstryną, D-fruktozą, D-galaktozą, D-glukozą, D-ksylozą, D-rafinozą, glicerolem, hipranem sodu, inuliną, L-alaniną, L-argininą, L-asparaginą, L-glutaminą, L-lizyną, L-ramnozą, L-tyrozyną, salicyną, skrobią, Tweenem 20 lub winianęm sodu. Jako wskaźnika pH użyto błękitu bromotymolowego w stężeniu 0.0025%. Inkubację prowadzono przez 7 dni w temperaturze 28°C. Stopień wzrostu określano względem kontroli, którą stanowiły badane izolaty wysiane na podłoże BS bez modyfikacji.

4.2.3.3. Wykorzystywanie związków chemicznych, jako jedyne źródło azotu

Badane szczepy wysiewano na podłoże stałe BS, w którym standardowe źródło azotu (NH₄Cl) zastąpiono innymi związkami (1%): L-tyrozyną, L-treoniną, L-leucyną, DL-waliną, L-fenyloalaniną, L-metioniną, L-histydyną, L-alaniną, kwasem L-asparaginowym, kwasem L-glutaminowym, L-seryną, NaNO₃, DL-ornityną, L-argininą, L-proliną, L-hydroksyproliną, L-cysteiną, DL-izoleucyną, L-lizyną, glicyną lub hipuranem sodu. Po 7 dniowej inkubacji w temperaturze 28°C odczytywano wynik, kontrolę stanowiły szczepy rosnące na podłożu zawierającym NH₄Cl.

4.2.3.4. Określenie tolerancji względem różnych wartości pH podłoża

Izolaty wysiewano na podłoże stałe 79CA o pH 6, 7, 8, 9, 10 oraz 79CA płynne o pH 4 i 5. Inkubację prowadzono w temperaturze 28°C. Po 7 dniach oceniano stopień wzrostu na podłożach stałych oraz przyrost gęstości optycznej w podłożach płynnych przy długości fali 600 nm w porównaniu z OD₆₀₀ hodowli w czasie 0 (mierzonym w dniu założenia hodowli).

4.2.3.5. Określenie temperaturowego zakresu wzrostu

Płynne hodowle badanych szczepów w podłożu 79CA inkubowano przez 18 godzin w wytrząsarce (28°C, 180 rpm), następnie odmładzano je przez 10–krotne rozcieńczenie i mierzono ich gęstość optyczną przy długości fali 600 nm (OD₆₀₀ wyjściowe). Tak przygotowane hodowle inkubowano przez 7 dni w temperaturach: 6°C, 15°C, 28°C, 37°C, 42°C i ponownie mierzono ich gęstość optyczną przy tej samej długości fali. Na podstawie zmian OD₆₀₀ określano zdolność wzrostu bakterii w badanych temperaturach.

4.2.3.6. Określenie oporności na antybiotyki

Badane izolaty wysiewano na podłoże stałe 79CA zawierające różne stężenia antybiotyków:

Antybiotyk	Stężenie (µg/ml)
ampicylina	100; 200; 300;
tetracyklina	10; 20; 40;
streptomycyna	10; 20; 50; 100; 200;
rifampicyna	20; 50; 100; 150; 200;

Wyniki odczytywano po 7 dniach inkubacji bakterii w temperaturze 28°C. Kontrolę stanowiły bakterie rosnące na podłożu 79CA bez antybiotyków.

4.2.3.7. Określenie tolerancji względem barwników

Mikrosymbionty *L. nigricans* wysiewano na podłoże stałe 79CA z dodatkiem różnych barwników:

auramina nigrozyna czerwień metylowa oranż akrydyny czerwień obojętna 0,013; 0,025; 0,05; 0,1; 0,2;	Barwnik	Stężenie (µg/ml)
safranina fiolet krystaliczny zieleń metylowa	auramina nigrozyna czerwień metylowa oranż akrydyny czerwień obojętna safranina fiolet krystaliczny zieleń metylowa	0,013; 0,025; 0,05; 0,1; 0,2;

Wyniki posiewów odczytywano po 7 dniach inkubacji bakterii w temperaturze 28°C. Kontrolą były bakterie wysiane na podłoże stałe 79CA bez barwników.

4.2.3.8. Określenie tolerancji względem różnych stężeń NaCl

Badane szczepy bakteryjne wysiewano na podłoże 79CA bez NaCl oraz zawierające różne stężenia NaCl: 0,5%, 1%, 2%, 3%. Po inkubacji (7 dni, 28°C) odczytywano wyniki, tj. wzrost lub jego brak.

4.2.3.9. Test na aktywność ureazy

Obecność ureazy badano stosując zmodyfikowane płynne podłoże BS, w którym NH4Cl zastąpiono 2% mocznikiem. Wskaźnikiem pH był błękit bromotymolowy użyty w stężeniu 0,4%. Bakterie hodowano przez 7 dni w temperaturze 28°C. Wynik odczytano na podstawie zmiany zabarwienia podłoża. Zmiana barwy z zielonej na niebieską świadczy o alkalizacji podłoża będącej konsekwencją rozkładu mocznika, czyli o aktywności ureazy. Kontrolę pozytywną stanowił szczep *Rhizobium leguminosarum* by. *viciae* 3841.

4.2.3.10. Test na aktywność katalazy

Aktywność katalazy badano na podłożu stałym 79CA. Inkubację bakterii prowadzono w temperaturze 28°C przez 7 dni. Na wyrosłe pojedyncze kolonie nakrapiano kroplę 3% roztworu perhydrolu (H₂O₂). Pojawienie się pęcherzyków gazu świadczyło o aktywności katalazy.

4.2.3.11. Test na aktywność reduktazy azotanowej

W celu stwierdzenia obecności reduktazy azotanowej zakładano płynne hodowle w podłożu BS, w którym NH₄Cl zastąpiono 0,2% KNO₃ i inkubowano przez 7 dni w temperaturze 28°C. Po tygodniowej inkubacji hodowlę podzielono na dwie części. Do pierwszej z nich dodawano 1 ml odczynnika Griessa A [4.1.4.1], a następnie kroplami 1 ml odczynnika Griessa B [4.1.4.1]. Prowadzono obserwację zmiany zabarwienia hodowli. Zmiana zabarwienia na kolor czerwony świadczący o redukcji azotanów (V) do azotanów (III), a więc o aktywności reduktazy azotanowej (V) – wynik dodatni. Jeżeli odbarwienie nie nastąpiło, do drugiej części hodowli dodawano cynk w pyle, a następnie 1 ml odczynnika Griessa A i kroplami 1 ml odczynnika Griessa B. Czerwone zabarwienie hodowli w tej próbie świadczyło o redukcji azotanów (V) do azotanów (III) przez cynk i o braku aktywności reduktazy azotanowej (V). Brak zabarwienia hodowli zarówno w pierwszej, jak i drugiej próbie wskazuje na redukcję azotanów do NH₃ lub N₂. Kontrolę pozytywną stanowiły szczepy *Rhizobium leguminosarum* bv. *viciae* 3 (redukcja azotanów (V) do azotanów (III)) oraz *Ensifer fredii* USDA440 (redukcja azotanów (V) do NH₃).

4.2.3.12. Test na aktywność fosfatazy

Obecność fosfatazy badano wysiewając bakterie na podłoże stałe BS uzupełnione 10 ml 1% wodnego roztworu soli sodowej difosforanu fenoloftaleiny. Bakterie inkubowano przez 7 dni w temperaturze 28°C. Na wyrosłe bakterie nakraplano 10% roztwór NaOH. Obserwowano zmianę zabarwienia kolonii – różowe zabarwienie kolonii bakteryjnej świadczyło o pozytywnym wyniku testu, czyli aktywności fosfatazy, natomiast brak zmiany zabarwienia świadczyło o braku aktywności fosfatazy. Jako kontrolę pozytywną używano szczepu *Rhizobium leguminosarum* bv. *trifolii* 21.

4.2.3.13. Test z mlekiem lakmusowym

Symbionty *L. nigricans* wysiewano do probówek z podłożem zawierającym odtłuszczone mleko w proszku z dodatkiem 0,1% azolitminy [4.1.3]. Inkubację prowadzono przez 14 dni w temperaturze 28°C. Po tym czasie obserwowano zmianę zabarwienia podłoża na kolor różowy, co świadczy o zakwaszeniu lub zmianę zabarwienia podłoża na kolor niebieski bądź fioletowy świadczącą o alkalizacji podłoża.

4.2.3.14. Określenie zdolności do wytwarzania indolu

W celu stwierdzenia zdolności wytwarzania indolu przez bakterie wysiewano je do płynnego podłoża TMRT [4.1.3]. Po 7 dniach inkubacji do hodowli bakteryjnej wkraplano odczynnika Kovacsa [4.1.4.1]. Pojawienie się czerwonego pierścienia na powierzchni płynnej hodowli świadczy o obecność indolu.

4.2.3.15. Test na rozkład trifosforanów (TCP)

Badane szczepy wysiewano na podłoże stałe TCP [4.1.3], a następnie inkubowano w temperaturze 28°C przez 7 dni. Po tym czasie dokonywano odczytu wyników. Wynikiem dodatnim była obecność strefy przejaśnienia, świadcząca o rozkładzie trifosforanów. Brak przejaśnień podłoża wokół kolonii bakteryjnej to wynik ujemny. Kontrolą pozytywną był szczep *Mesorhizobium ciceri* UPMCa7^T.

4.2.3.16. Określenie zdolności syntezy melanin

Badane szczepy wysiewano na podłoże stałe 79CA z dodatkiem L-tyrozyny i CuSO₄ [4.1.3]. Inkubowano je przez 7 dni w temperaturze 28°C, po czym na wyrośnięte kolonie nakrapiano 50 μl 10% SDS w buforze TBE (pH 8,3). O wyniku dodatnim testu, czyli produkcji melaniny świadczyło brązowe zabarwienie kolonii bakteryjnej. Brak zabarwienia kolonii to wynik negatywny. Kontrolą pozytywną był szczep *Ensifer fredii* USDA440.

4.2.3.17. Określenie zdolności do aktywnego ruchu

Zdolność ruchu badano na półpłynnym podłożu 79CA (0,35% agaru). Izolaty bakteryjne punktowo wkłuwano w agarowe podłoże. Po 7 dniach inkubacji w temperaturze 28°C określano stopień rozprzestrzenienia się bakterii. Kontrolą pozytywna był szczep *Ensifer meliloti* L5 – 30.

4.2.3.18. Analiza numeryczna wyników testów fenotypowych

Analizę numeryczną w oparciu o wyniki testów fenotypowych badanych symbiontów *L. nigricans* oraz szczepów referencyjnych przeprowadzono przy udziale programów komputerowych FENAL 1.0 beta oraz NTSYS–pc 2.02g (ang. *Numerical Taxonomy System*).

Poszczególne cechy każdego OTU (ang. *Operational Taxonomic Units*), czyli badanego szczepu bakteryjnego, zapisywano w arkuszu kalkulacyjnym programu FENAL jako (+) lub (-) odpowiednio w przypadku obecności lub braku danej właściwości. W programie tym, wszystkie badane izolaty porównywane są między sobą pod względem analizowanych cech fenotypowych, co wyrażone jest w procentowych współczynnikach podobieństwa SM (ang. *Simple Matching*) dla każdej pary szczepów. Obliczone w programie FENAL współczynniki podobieństwa fenotypowego pomiędzy badanymi szczepami wykorzystywano do konstrukcji dendrogramu metodą UPGMA (ang. *Unweighted Pair Group Method with Arithmetic Mean*) – w programie NTSYS–pc.

4.2.4. Analizy genomowe

4.2.4.1. Izolacja genomowego DNA

Hodowle bakteryjne namnażano w 25 ml płynnego podłoża 79CA w wytrząsarce, przez 5 – 7 dni w temperaturze 28°C. Po tym czasie sprawdzano czystość hodowli poprzez posiew redukcyjny bakterii na płytkę Petriego z agarem 79CA. Hodowle odwirowywano w probówkach o pojemności 10 ml przez 10 minut przy 14 000 obr/min. Osad zawieszano w 200 µl buforu TE, a następnie dodawano 1 ml odczynnika GES [4.1.4.2]. Mieszaninę intensywnie wytrząsano i inkubowano w temperaturze pokojowej ok. 10 minut w celu uzyskania lizy komórek. Lizaty następnie ochładzano w lodzie, dodawano do nich 500 µl zimnego 7,5 M roztworu octanu amonu, mieszano i inkubowano w lodzie przez 10 minut. Po tym czasie dodawano 1 ml mieszaniny chloroform:alkohol izoamylowy (24:1) [4.1.4.2], intensywnie wytrząsano i wirowano przez 10 minut przy 14 000 obr./min. Fazę wodną przenoszono do nowych probówek typu Eppendorf, dodawano 0,6 objętości zimnego izopropanolu, wytrząsano aż do wytrącenia kłaczków DNA i inkubowano 30 minut w temperaturze -20°C. Uzyskany DNA odwirowywano przez 15 minut przy 14 000 obr./min w temperaturze 4°C, przemywano trzykrotnie 70% etanolem i wirowano przez 5 minut przy 14 000 obr./min. Następnie suszono 3 minuty w wirówce próżniowej. Uzyskany osad rozpuszczano w jałowej wodzie, wirowano 5 minut przy 14 000 obr./min. Supernatant przenoszono do nowych próbówek typu Eppendorf i przetrzymywano w temperaturze -20°C.

4.2.4.2. Oznaczanie stężenia i czystości DNA metodą spektrofotometryczną

Sporządzano 50–krotne rozcieńczenia próbek wyizolowanego DNA w jałowej wodzie (2µl DNA + 98µl wody MiliQ). Mierzono absorbancję przy długości fali 260 nm oraz 280 nm przy użyciu spektrofotometru SmartSpec[™] 3000 firmy BioRad. Czystość DNA oznaczano na podstawie stosunku A260:A280. Dla czystej próbki ta wartość powinna wynosić 1,7 – 2,0. Natomiast stężenie DNA określano przyjmując, że próba zawiera 50 µg dwuniciowego DNA w 1 ml roztworu, kiedy absorbancja przy 260 nm równa się 1, uwzględniano przy tym rozcieńczenia próbek DNA.

4.2.4.3. Łańcuchowa reakcja polimeryzacji w metodzie BOX–PCR, ERIC–PCR

Reakcja PCR w metodzie BOX-PCR:

Powielanie fragmentów DNA w reakcji PCR przeprowadzano w 25 µl mieszaniny reakcyjnej o składzie:

- matryca DNA (100 ng)
- 12,5 µl mieszaniny "REDTaq[®] ReadyMix[™] PCR Reaction Mix" składającej się z 1x stężonego buforu, polimerazy o stężeniu 1,25 U/próbę oraz dNTP o stężeniu 0,2 mM
- 50 pmol startera BOXA1 (0,5 μl startera o stężeniu wyjściowym 100 μM)
- 1,5 µl MgCl₂ o stężeniu końcowym 1,5 mM (wyjściowe 25 mM)
- jałowa woda MiliQ do objętości 25 μl

Reakcję przeprowadzano w cienkościennych próbówkach typu Eppendorf o objętości 200 µl przy zastosowaniu następującego cyklu reakcji:

Temperatura [°C]	Czas	Liczba cykli
95	4 min	1
94	60 sek	
53	60 sek	35
65	8 min	
65	16 min	1
4	00	

Reakcja PCR w metodzie ERIC-PCR:

Powielanie fragmentów DNA w reakcji PCR przeprowadzano w 25 µl, mieszaniny reakcyjnej o składzie:

- 12,5µl mieszaniny "REDTaq[®] ReadyMix[™] PCR Reaction Mix" składającej się z 1x stężonego buforu, polimerazy o stężeniu 1,25 U/próbę oraz dNTP o stężeniu 0,2 mM
- 1,5 μl MgCl₂ o stężeniu końcowym 1,5 mM (wyjściowe 25 mM)
- matryca DNA (100 ng)
- 50 pmol startera ERIC-1 oraz 50 pmol startera ERIC-2 (0,5 μl każdego ze starterów o stężeniu wyjściowym 100 μM)
- woda dejonizowana do objętości 25 μl

Reakcję przeprowadzano w cienkościennych próbówkach typu Eppendorf o objętości 200 µl przy zastosowaniu następującego cyklu reakcji:

Temperatura [°C]	Czas	Liczba cykli
95	5 min	1
94	30 sek	
52	60 sek	35
65	8 min	
65	4 min	1
4	∞	

4.2.4.4. AFLP – analiza polimorfizmu długości zamplifikowanych fragmentów DNA

4.2.4.4.1. Trawienie genomowego DNA

Genomowy DNA do analizy AFLP trawiono z zastosowaniem enzymu restrykcyjnego *Pst*I. Mieszanina reakcyjna zawierała:

- 2 µg DNA
- 2,5 jednostki U enzymu PstI
- 2 µl 10x stężonego buforu dołączonego przez producenta
- woda jałowa MilliQ do końcowej objętości 20 μl

Trawienie prowadzono przez 18 godzin w temperaturze 37°C. Wynik cięcia enzymatycznego sprawdzano elektroforetycznie.

4.2.4.4.2. Przygotowanie adaptorów

Jednoniciowe oligonukleotydy PstI–AR oraz PstI–AF [4.1.4.5] rozcieńczano do stężenia 10 µM, mieszano w równych objętościach i denaturowano przez 10 minut w 95°C. Następnie mieszaninę pozostawiano do renaturacji w temperaturze pokojowej przez 30 minut. W ten sposób otrzymano dwuniciowe adaptory, które są częściowo komplementarne do lepkich końców powstałych w badanym DNA genomowym po jego trawieniu enzymem *Pst*I.

4.2.4.4.3. Ligacja trawionego DNA i adaptorów

Do 16 μ l DNA, trawionego enzymem *Pst*I, dodano 1 μ l ligazy faga T4 (1U/1 μ l), 2 μ l 10x stężonego buforu dla ligazy, 1 μ l dwuniciowych adaptorów o stężeniu 10 μ M i inkubowano przez 4 godziny w temperaturze 37°C. Po tym czasie DNA wytrącano dodając 100 μ l mieszaniny 95% etanolu i 3M octanu sodu w stosunku objętościowym 24:1. Próbki inkubowano przez 30 minut w –20°C, a następnie wirowano przez 20 minut w temperaturze 4°C, przy 14 000 obr./min. DNA przemywano dwa razy 70% etanolem i suszono 3 minuty w wirówce próżniowej. Tak przygotowany DNA zawieszano w 50 μ l jałowej wody MilliQ i rozpuszczano w temperaturze 4°C.

4.2.4.4.4. PCR selektywny

PCR z selektywnymi starterami PstI–G i PstI–GC prowadzono w mieszaninie o objętości 25µl, która zawierała:

- 12,5 µl mieszaniny "REDTaq[®] ReadyMix[™] PCR Reaction Mix" składającej się z 1x stężonego buforu, polimerazy o stężeniu 1,25 U/próbę oraz dNTP o stężeniu 0,2 mM
- 1,5 μl MgCl₂ o stężeniu końcowym 1,5 mM (wyjściowe 25 mM)
- 5 µl 10x rozcieńczonego DNA po ligacji
- 30 pmol startera PstI-G lub PstI-GC (0,3 μl startera o stężeniu wyjściowym 100 μM na każdą reakcję, przygotowano dwie osobne reakcje)
- woda dejonizowana do objętości 25 μl

Temperatura [°C]	Czas	Liczba cykli
94	2 min	1
95	30 sek	
60-54 (spadek temp. o 1°/cykl)	30 sek	7
72	30 sek	
94	45 sek	
53	45 sek	33
72	45 sek	
72	7 min	1
4	∞	

Reakcję prowadzono w cienkościennych probówkach typu Eppendorf o objętości 200 µl stosując następującu cykl reakcji:

4.2.4.5. Rozdział produktów amplifikacji

Produkty amplifikacji uzyskane metodą: BOX–PCR, ERIC–PCR oraz AFLP rozdzielano drogą elektroforezy w 1,5% żelu agarozowym. Próbki przygotowywano pobierając 10 µl mieszaniny reakcyjnej po reakcji PCR i dodawano 2 µl buforu obciążającego (6x stężonego). Elektroforezę prowadzono przez 2,5 godziny przy napięciu 100 V, jako wzorzec wielkości fragmentów DNA wykorzystywano "GeneRuler[™] 100 bp DNA Ladder, #SM0333 (100 – 10000 bp). Po zakończeniu rozdziału elektroforetycznego, żel wybarwiano roztworem bromku etydyny (0,5µg/ml), opłukiwano wodą i oglądano pod lampą UV.

4.2.4.6. Komputerowa analiza wyników

Analizę wielkości zamplifikowanych fragmentów przeprowadzano przy udziale programu BIO – GENE ver. 11.01 (Vilber-Lourmat). Do grupowania szczepów wykorzystywano metodę UPGMA, a dendrogramy przedstawiające pokrewieństwo profili genomowego DNA badanych bakterii konstruowano wykorzystując technikę UPGMA.

4.2.4.7. Analiza polimorfizmu długości fragmentów restrykcyjnych genu 16S rRNA (RFLP – Restriction Fragment Length Polymorphism)

4.2.4.7.1. Amplifikacja genu kodującego 16S rRNA

Powielanie genu 16S rRNA, mikrosymbiontów *L. nigricans,* w reakcji PCR przeprowadzano w mieszaninie reakcyjnej o składzie:

- 12,5 μl mieszaniny "ReadyMix Taq PCR" składającej się z buforu stężonego 1x, polimerazy o stężeniu 1,25 U/próbę oraz dNTP o stężeniu 0,2 mM
- 1,5 μl MgCl₂ o stężeniu końcowym 1,5 mM (wyjściowe 25 mM)
- matryca DNA 100 ng
- 30 pmol startera rD1,
- 30pmol startera fD1,
- jałowa woda MiliQ do objętości 25 μl

Reakcję prowadzono w cienkościennych probówkach typu Eppendorf o objętości 200 µl stosując następujący cykl reakcji:

Temperatura [°C]	Czas	Ilość cykli
94	3 min	1
94	45 sek	
55	45 sek	30
72	2 min	
72	7 min	1
4	∞	

Produkty amplifikacji rozdzielano drogą elektroforezy w 1% żelu agarozowym przez 30 min., przy napięciu 120V i następnie wybarwiano je bromkiem etydyny i wizualizowano w świetle UV.

4.2.4.7.2. Trawienie 16S rDNA enzymami restrykcyjnymi

Produkt amplifikacji 16S rDNA poddawano trawieniu pięcioma endonukleazami restrykcyjnymi w oddzielnych reakcjach dla każdego z enzymów:

Składniki mieszaniny	Objętość	Temperatura i czas
reakcyjnej		inkubacji
Jeden z enzymów restrykcyjnych: <i>Hin6</i> I, <i>Hinf</i> I, <i>Msp</i> I, <i>Rsa</i> I, <i>Taq</i> I	0,5 µl enzymu o stężeniu wyjściowym 10U/µl	2700/4 ~~ 1-
10x stężonego buforu dla enzymu restrykcyjnego	2 μl – stężenie końcowe buforu – 1x	(Hin6I, HinfI, MspI, (BsaI)
produkt reakcji PCR	15 µl	$65^{\circ}C/4$ godz. (<i>Taq</i> I)
jałowa woda	do końcowej objętości 20 µl	

Produkty trawienia rozdzielano drogą elektroforezy w 2% żelu agarozowym przy napięciu 100 V przez 2 godziny DNA, wybarwiano bromkiem etydyny i wizualizowano w świetle UV.

4.2.4.7.3. Komputerowa analiza produktów reakcji RFLP – 16S rDNA

Analizę wielkości fragmentów restrykcyjnych wykonywano przy pomocy programu komputerowego BIO-GENE 11.01. Profile wielkości fragmentów RFLP–16S rDNA otrzymane po trawieniu endonukleazami dla każdego z badanych szczepów zamieniano w macierz binarną. Wzajemny stopień podobieństwa powstałych wzorów 16S rDNA obliczano stosując współczynnik Nei i Li, natomiast grupowanie szczepów, w oparciu o uzyskane profile 16S rDNA, przeprowadzano metodą UPGMA. W powyższych etapach analizy stosowano dwa programy komputerowe: FENAL 1.0 beta oraz NTSYS-pc 2.02g. Na podstawie analizy RFLP–16S rDNA wybrano 11 szczepów do dalszych analiz.

4.2.4.8. Określanie zawartości zasad G+C w DNA genomowym

Określenie zawartości zasad G+C przeprowadzono zgodnie z procedurą opisaną przez Tamaoka i Komagata (1984), wprowadzając niewielkie modyfikacje. DNA o stężeniu 1 mg/ml inkubowano w 100°C przez 5 minut, po czym ochładzano je w lodzie. 10 µl zdenaturowanego DNA hydrolizowano do nukleotydów dodając 10 µl roztworu nukleazy P1 o stężeniu 0,1 mg/ml i następnie prowadząc inkubację przez 2 godziny w 37°C. Po tym czasie dodawano 10 µl fosfatazy alkalicznej (2,4 U) i inkubowano w 37°C przez 1 godzinę (hydroliza do nukleozydów). Z próbek pobierano 5 µl mieszaniny i nanoszono na kolumnę Wakosil 5C₁₈ chromatografu LC4A (Shimadzu). Fazę nośną stanowiła mieszanina 0,2 M (NH₄)H₂PO₄:CH₃CN

w stosunku 40:1,4 (v/v). Detekcji nukleozydów dokonano w oparciu o absorbancję w świetle UV o długości fali 270 nm. Próbą referencyjną była mieszanina nukleozydów DNA faga λ (49.9 mol% zasad G+C) uzyskana w identyczny sposób jak opisano powyżej. Według niej obliczano molarne współczynniki absorbancji dla każdego nukleozydu. Skład zasad G+C w DNA obliczano ze wzoru:

mol%G + C =
$$\frac{\text{mol}(G_r + C_r)}{\text{mol}(G_r + C_r + A_r + T_r)} \times 100\%$$

 $N_{\rm r}$ – ilość moli nukleozydu obliczona na podstawie: pole powierzchni piku/współczynnik molarnej absorbancji. Współczynnik molarnej absorbancji poszczególnych nukleozydów obliczano w stosunku do współczynnika molarnej absorbancji 2'-deoksytymidyny (przyjęto, że wartość ta wynosi 1000)

4.2.4.9. Analiza filogenetyczna genu 16S rRNA

Do analizy filogenetycznej genu 16S rRNA wybrano następujące szczepy: LN1, LN2, LN4, LN10, LN11, LN20, LN23, LN24, LN26, LN30, LN32. Amplifikację genu 16S rRNA opisano w rozdziale 4.2.4.7.1.

4.2.4.9.1. Oczyszczanie amplikonów DNA uzyskanych w reakcji PCR

DNA powielone w łańcuchowej reakcji polimerazy oczyszczano przy użyciu zestawu do oczyszczania DNA po reakcji PCR Clean – up firmy A&A Biotechnology, zgodnie z instrukcją dołączoną przez producenta.

4.2.4.9.2. Sekwencyjna reakcja PCR

Sekwencyjna reakcję PCR przeprowadzano wykorzystując zestaw "BigDye® Terminator Cycle Sequencing Kit" firmy Applied Biosystems [4.1.4.7] oraz startery fD1, rD1 [4.1.4.5].

Reakcję przeprowadzono w objętości 10 µl mieszaniny reakcyjnej zawierającej:

2 µl 2,5x stężonego "BigDye Terminator 3.1 Ready Reaction Mix";

- 1 µl 5x stężonego "BigDye Sequencing Buffer";
- 1 μl startera fD1 lub rD1 o stężeniu 5 pmol (wyjściowe 100 pmol), (przygotowywano odrębne reakcje dla obu starterów);
- DNA o stężeniu 20 50 ng;
- jałową wodę destylowaną do końcowej objętości 10μl.

Temperatura [°C]	Czas	Ilość cykli
96	60 sek	1
96	10 sek	
50	5 sek	25
60	4 min	
4	∞	

Reakcję PCR prowadzono w cienkościennych probówkach typu Eppendorf o objętości 200 µl przy zastosowaniu następującego cyklu reakcji:

4.2.4.9.3. Oczyszczanie produktu reakcji sekwencyjnej

Do oczyszczania produktu po reakcji sekwencyjnej stosowano zestaw do usuwania terminatorów – "ExTerminator" firmy A&A Biotechnology [4.1.4.7], procedurę prowadzono wedle instrukcji dołączonej przez producenta.

4.2.4.9.4. Odczyt sekwencji genu kodującego 16S rRNA

W celu odczytania sekwencji genu 16S rRNA, próbki wysyłano do Pracowni Sekwencjonowania firmy Genomed w Warszawie.

4.2.4.9.5. Analiza filogenetyczna genu 16S rRNA

Pliki sekwencji 16S rDNA izolatów z brodawek korzeniowych szczodrzyka czerniejącego, poddawano edycji i eksportowano do formatu FASTA używając narzędzia bioinformatycznego – Chromas 2.6.6.

Do analiz filogenetycznych włączono sekwencje genu 16S rRNA szczepów referencyjnych, należących do różnych rodzajów i gatunków bakterii brodawkowych, pobranych z bazy danych GenBank dostępnej na stronie NCBI (ang. *National Center for Biotechnology Information*, www.ncbi.nlm.nih.gov).

Program ClustalX został wykorzystany do sporządzenia zestawień dopasowanych sekwencji (ang. *alignment*). Zastosowano domyślne ustawienia dla kar za rozpoczęcie przerwy i jej kontynuację, odpowiednio GO:10 (ang. *gap opening*) i GE:0.2 (ang. *gap extension*). Kolejnym etapem była edycja otrzymanych przyrównań sekwencji oraz obliczenie stopnia podobieństwa pomiędzy analizowanymi sekwencjami z użyciem programu BioEdit.

Drzewa filogenetyczne skonstruowano z wykorzystaniem metody "największej wiarygodności". W metodzie tej wybór modelu ewolucji oraz obliczenie jego parametrów wykonywano w programie jModelTest 2.1.10, obliczano parametry każdego z 56 różnych modeli substytucji nukleotydowych w programie PAUP 4.0, następnie wybierano najlepszy z modeli dla analizowanych sekwencji DNA używając algorytmu programu jModelTest. Wynikiem przeprowadzonego testu modelu podstawień nukleotydowych jest ocena prawdopodobieństwa jego wystąpienia, w ewolucji danej sekwencji, wyrażona w formie ujemnego logarytmu naturalnego (-lnL). Parametr ten jest podstawą obliczeń hierarchicznego testu proporcji wiarygodności (hLRT) oraz testu kryterium informacyjnego Akaike'a (AIC) w celu ustalenia, który model najbardziej pasuje do badanych zestawień sekwencji DNA.

Model wybrany dla danej sekwencji oraz jego parametry: proporcję miejsc niezmiennych (I), kształt rozkładu Gamma (G) oraz częstość substytucji nukleotydowych A/C/G/T stanowią podstawę analizy filogenetycznej metodą ML. Do jej wykonania używano programu MEGA 7.0, który konstruuje filogram oraz oblicza współczynnik poparcia "bootstrap" dla 1000 pseudoreplikatów zestawień dopasowanych sekwencji.

Analizowana sekwencja	Zastosowany model substytucji ¹	Parametr proporcji miejsc niezmiennyc h (I)	Parametr kształtu rozkładu gamma (G)	Częstość A/C/G/T	Macierz substytucji Ra/Rb/Rc/Rd/Re/R f ²
16S rDNA	GTR+G+I	0,57	0,41	0,167/0,314/0,30 4/0,212	0,054/0,063/0,045/ 0,014/0,742/0,024
atpD	GTR+G+I	0,38	0,43	0,195/0,330/0,31 4/0,161	0,016/0,121/0,013/0, 098/0,173/0,006
dnaK	GTR+G+I	0,31	0,38	0,256/0,307/0,33 8/0,098	0,059/0,062/0,019/0, 064/0,123/0,019
gyrB	GTR+G+I	0,44	0,67	0,209/0,321/0,31 2/0,158	0,053/0,155/0,017/0, 090/0,116/0,026
rpoB	GTR+G+I	0,03	0,20	0,212/0,314/0,31 4/0,160	0,041/0,101/0,026/0, 098/0,146/0,025
nodC	GTR+G+I	0,38	1,56	0,173/0,321/0,28 6/0,220	0,061/0,208/0,030/0, 064/0,129/0,028
nodZ	GTR+G+I	0,28	1,31	0,225/0,263/0,28 2/0,230	0,035/0,205/0,018/0, 066/0,164/0,023

Tab. 4.1. Podstawowe informacje dotyczące modeli substytucji

¹GTR (ang. *general time reversible*) – model substytucji nukleotydów zakładający odwracalność ewolucji model uwzględnia parametry I oraz G

²Ra=[A–C], Rb=[A–G], Rc=[A–T], Rd=[C–G], Re=[C–T], Rf=[G–T]

4.2.4.10. Wielolokusowa analiza sekwencji genów – *atpD*, *dnaK*, *gyrB*, *recA* (MLSA – multilocus sequence alignment)

Wybrane do badań geny metabolizmu podstawowego (*dnaK, atpD, recA*, *gyrB*) zamplifikowano w reakcjach PCR z zastosowaniem starterów opisanych w rozdziale 4.1.4.5, a skład mieszaniny reakcyjnej był identyczny jak w przypadku amplifikacji genu 16S rRNA, opisanej w rozdziale 4.2.4.7.1.

gen dnaK		
Temperatura [°C]	Czas [s]	Ilość cykli
94	60	1
94	60	
55	60	35
72	40	
72	420	1
4	∞	
gen <i>atpD</i>		
Temperatura [°C]	Czas [s]	llość cykli
94	150	1
94	45	
55	60	30
72	90	
72	420	1
4	œ	
gen gyrB		
Temperatura [°C]	Czas [s]	llość cykli
95	300	1
95	60	
58	60	35
72	60	
72	600	1
4	00	

Reakcję PCR prowadzono według poniższych warunków:

gen <i>rpoB</i>			
Temperatura [°C]	Czas [s]	Ilość cykli	
95	300	1	
94	45		
60	60	35	
74	90		
72	300	1	
4	∞		

Produkty reakcji amplifikacji poszczególnych genów poddano procedurom opisanym w rozdziałach 4.2.5.9.1 – 4.2.5.9.5. Dendrogramy konstruowano osobno dla sekwencji każdego genu, a także dla połączonych sekwencji wszystkich analizowanych genów.

4.2.4.11. Hybrydyzacja DNA–DNA

Hybrydyzację DNA–DNA przeprowadzano używając DNA jedenastu wybranych mikrosymbiontów *Lembotropis nigricans* (LN1, LN2, LN4, LN10, LN11, LN20, LN23, LN24, LN26, LN30, LN32) i DNA szczepów referencyjnych takich jak: *Bradyrhizobium japonicum* USDA6^T, *Bradyrhizobium elkanii* 76^T, *Bradyrhizobium lioaningense* 3622^T, *Bradyrhizobium yuanmingense* CCBAU 10071^T, *Bradyrhizobium diazoefficiens* USDA 110^T, *Mesorhizobium albiziae* CCBAU61158 i *Ensifer meliloti* MVII. Procedurę powtarzano 3–krotnie, stosując takie same układy szczepów i określano stopień podobieństwa DNA–DNA pomiędzy badanymi izolatami *Lembotropis nigricans* i między nimi a szczepami referencyjnymi.

4.2.4.11.1. Wiązanie DNA do powierzchni płytki CovaLink

DNA przeznaczony do związania z powierzchnią płytki, fragmentowano przy udziale enzymu restrykcyjnego *Alu*I. W tym celu przygotowano 20 μ l mieszaniny reakcyjnej składającej się z 0,5 μ l enzymu *Alu*I (10U/1 μ l) i 2 μ l buforu dołączonego przez producenta, pozostałą objętość stanowiła woda i badany DNA o końcowym stężeniu 0,5 μ g/ μ l. Całość inkubowano przez 2 h w temperaturze 37°C.

Pofragmentowany DNA denaturowano 10 minut w 95°C i schładzano w lodzie. Do zdenaturowanego DNA dodawano 880 µl wody i 100 µl 0,1 M roztworu 1-metyloimidazolu (pH 7) i następnie pobierano 75 µl mieszaniny (750 ng DNA) i nanoszono do dołków płytki CovaLink (Nunc). Do każdego dołka dodawano 25 µl świeżo przygotowanego 0,2 M roztworu karbodiimidu w 10 mM 1–metyloimidazolu. Płytki inkubowano 24 h w 50°C. Po tym czasie przeprowadzono sześciokrotne płukanie płytek roztworem 0,4 M NaOH + 0,25% SDS w ilości 300 µl na dołek, następnie jeden raz buforem hybrydyzacyjnym w ilości 200 µl na dołek.

4.2.4.11.2. Znakowanie DNA fotobiotyną

Próbki DNA o objętości 10 µl i stężeniu 1 µg/µl denaturowano w 100°C przez 10 minut. Następnie ochładzano je w lodzie, krótko wirowano i dodawano ciemni równą objętość roztworu fotobiotyny o stężeniu 1 mg/ml. W Próby umieszczano w lodzie i naświetlano przez 15 minut lampą rtęciową o mocy 400W, umieszczoną 10 cm nad probówkami. Po tym czasie do mieszaniny dodano 0,1 M roztworu Tris o pH 9,5 do objętości 100 µl oraz 100 µl butanolu. Próbki wytrząsano i wirowano 2 minuty przy 14 000 obr./min. Usuwano fazę organiczną, a do fazy wodnej dodawano równą objętość butanolu powtarzając etap ekstrakcji. Biotynylowane DNA wytrącano przez dodanie 150 µl zimnego, stężonego etanolu oraz 20 µl 1,5 M roztworu NaCl. Próbki pozostawiano na noc w temperaturze –20°C, a następnie wirowano przez 20 minut przy 14 000 obr/min. Osad przemywano raz 70% etanolem, suszono w wirówce próżniowej i zawieszano w 17,5 µl jałowej wody MilliQ. Znakowane DNA fragmentowano z zastosowaniem enzymu restrykcyjnego AluI, uzupełniając przygotowany roztwór biotynylowanego DNA 2 µl buforu oraz 0,5 µl enzymu AluI (10U/µl). Reakcję cięcia enzymatycznego prowadzono przez 2 h w temperaturze 37°C. Wyznakowany fotobiotyną DNA denaturowano w 100°C przez 10 minut, następnie mieszano z buforem hybrydyzacyjnym. Do każdego dołka płytki nanoszono 100 µl buforu zawierającego biotynylowany DNA w ilości około 50 ng na dołek. Hybrydyzację prowadzono przez 18 – 20 h w 42°C. Po tym czasie dołki przepłukiwano 200 µl roztworu 2xSSC + 0,1% Tween, a następnie inkubowano w 37°C przez 15 minut powtarzając tę procedurę 3 krotnie.

4.2.4.11.3. Kolorymetryczne oznaczanie ilości zhybrydyzowanego DNA

Do każdego dołka dodawano 100 µl roztworu streptawidyna – peroksydaza, rozcieńczonego 4000 razy w roztworze zawierającym PBS, 1% BSA i 0,1% Triton X–100. Płytki inkubowano 30 minut w 37°C. Następnie czterokrotnie płukano 300 µl 0,1% roztworu Tween 20 w PBS. Trzymając płytkę w lodzie nanoszono do dołków po 100 µl roztworu zawierającego substrat reakcji barwnej (0,1% TMB w 0,1 M buforze cytrynianowym + 0,025% H₂O₂) i inkubowano 30 minut w 37°C. Po tym czasie płytkę przekładano ponownie do lodu i do każdego dołka dodawano po 50 µl 2N H₂SO₄. Absorbancję roztworów w dołkach mierzono przy długości fali 450 nm za pomocą czytnika Microplate Reader 550 (BioRad). Stopień reasocjacji DNA–DNA wyliczano według wzoru:

% podobieństwa = $(Ab - A0) / (Ar - A0) \times 100$

Ab – absorbancja próby badanej (DNA szczepu wzorcowego + biotynylowane DNA szczepu badanego) Ar – absorbancja próby referencyjnej (DNA szczepu wzorcowego + biotynylowane DNA szczepu wzorcowego) A0 – absorbancja próby ślepej (DNA szczepu wzorcowego + biotynylowane DNA spermy śledzia)

4.2.4.12. Analiza filogenetyczna genów symbiotycznych: nodC i nodZ

Geny *nodC* i *nodZ* 11 symbiontów mikrosymbiontów *L. nigricans* (LN1, LN2, LN4, LN10, LN11, LN20, LN23, LN24, LN26, LN30, LN32) poddano analizie filogenetycznej w oparciu o ich sekwencje nukleotydowe. Skład mieszaniny reakcyjnej opisany został w rozdziale 4.2.4.7.1, do amplifikacji poszczególnych genów stosowano startery zgodnie z rozdziałem 4.1.4.5. Reakcję amplifikacji genów *nod* przeprowadzano według poniższych cykli:

nodC			
Temperatura [°C]	Czas [s]	Ilość cykli	
94	60	1	
94	60		
55	60	35	
72	40		
72	420	1	
4	x		
nodZ			

Temperatura [°C]	Czas [s]	Ilość cykli	
94	150	1	
94	45		
55	60	30	
72	90		
72	420	1	
4	œ		

Produkty reakcji amplifikacji poszczególnych genów identyfikowano i oczyszczano tak jak opisano w rozdziałach 4.2.4.9.1 – 4.2.4.9.5.

4.2.5. Testy roślinne

Mikrosymbionty L. nigricans badano pod względem zdolności tworzenia symbiozy z następującymi roślinami motylkowatymi: Lupinus luteus (łubin żółty), Trifolium repens (koniczyna rozesłana), Medicago sativa (lucerna siewna), Lotus corniculatus (komonica zwyczajna), Phaseolus vulgaris (fasola zwyczajna), Glycine max (soja owłosiona), Vicia sativa (wyka siewna), Genista tinctoria (janowiec barwierski), Chamaecytisus ratisbonensis (szczodrzeniec rozesłany), Sarothamnus scoparius (żarnowiec miotlasty) i Lembotropis nigricans (szczodrzyk czerniejący).

Do hodowli roślin motylkowatych używano podłoża Hoaglanda [4.1.3].

4.2.5.1. Jałowienie nasion

Nasiona Trifolium repens, Medicago sativa, Lotus corniculatus, Lupinus luteus, Phaseolus vulgaris, Glycine max i Vicia sativa jałowiono według następującej procedury:

- płukanie pod wodą bieżącą
- trzykrotne płukanie jałową wodą destylowaną
- 5-cio minutowa inkubacja w 0,1% HgCl₂
- trzykrotne płukanie jałową wodą destylowaną
- 5-cio minutowa inkubacja w 75% alkoholu etylowym

trzykrotne płukanie jałową wodą destylowaną

Nasiona poniżej wymienionych roślin motylkowatych jałowiono stężonym kwasem siarkowym przez okres:

- Chamaecytisus ratisbonensis 30 minut
- *Cytisus scopariu* 60 minut
- Lembotropis nigricans 60 minut
- Lupinus luteus 60 minut
- Lupinus polyphyllus 45 minut
- Sarothamnus scoparius 120 minut

Następnie wielokrotnie płukano je jałową wodą destylowaną.

4.2.5.2. Kiełkowanie nasion i hodowla roślin

Wyjałowione nasiona wszystkich wyżej wymienionych roślin bobowatych umieszczano na płytkach Petriego z podłożem Hoaglanda [4.1.3]. Płytki inkubowano ciemności temperaturze 28°C W do czasu wykiełkowania. W Po 2-3 dniach inkubacji siewki przenoszono do probówek z bezazotowym podłożem Hoaglanda i naświetlano 12 godzin/12 godzin (dzień/noc) w szklarni. Po pojawieniu się pierwszych liścieni (po 2 – 3 dniach) zakażano zawiesinami bakterii o $OD_{600} = 0.2$ (+/- 0.02) i ponownie inkubowano w szklarni przez około 6 tygodni. Po tym czasie oceniano wygląd roślin, liczono brodawki korzeniowe i oznaczano suchą masę roślin. Kontrolę stanowiły rośliny nieszczepione ryzobiami.

4.2.5.3. Oznaczanie aktywności nitrogenazy za pomocą testu acetylenowego

Po 6 tygodniach od zakażenia, probówki z roślinami posiadającymi brodawki korzeniowe szczelnie zamykano gumowymi korkami. Następnie usuwano z nich strzykawką po 2 ml powietrza, a na to miejsce wprowadzano 2 ml acetylenu. Probówki pozostawiano na świetle przez 1 godzinę. Po tym czasie z każdej próbówki pobierano po 1ml mieszaniny gazów znad rośliny i wprowadzano na kolumnę wypełnioną poropakiem T chromatografu gazowego Hewlett Packard 5890 series II, w celu dokonania pomiaru aktywności nitrogenazy. Gazem nośnym był azot. Kontrolę negatywną stanowiły rośliny, które nie były zakażone ryzobiami. Aktywność nitrogenazy określano na podstawie ilości wytworzonego etylenu z acetylenu korzystając z następujących wzorów:

% konwersji =
$$\frac{Pe}{Pa + Pe} \times 100\%$$

ml etylenu = $\frac{1 \text{ ml} \times \% \text{ konwersji}}{100}$
nM etylenu = $\frac{\text{ml etylenu} \times 10^5}{2,25} \div t$

aktywność nitrogenazy (nM etylenu/godzinę/roślinę) = ilości nM etylenu/czas trwania reakcji t – czas (godzina)

Pe – pole powierzchni piku dla etylenu

Pa – pole powierzchni piku dla acetylenu

4.2.5.4. Oznaczanie suchej masy nadziemnej części roślin

Po 6 tygodniach inkubacji roślin w szklarni wyjmowano je z probówek i odcinano korzenie. Liście oraz łodygi pozostawiano na kilka dni do wysuszenia w temperaturze pokojowej. Po wyschnięciu ważono materiał roślinny aby ustalić jego suchą masę. Kontrolę negatywną stanowiły rośliny niezakażone ryzobiami.

5. Wyniki

Materiałem do badań były 33 szczepy bakteryjne wyizolowane z brodawek korzeniowych *Lembotropis nigricans* (L.) Griseb. (szczodrzyk czerniejący) pochodzące ze stanowiska zlokalizowanego we wschodniej części Polski (woj. lubelskie 51°08'47.2"N 23°24'43.3"E).

5.1. Analiza cech fenotypowych mikrosymbiontów *Lembotropis* nigricans

Stopień podobieństwa fenotypowego bakterii ustalany jest w oparciu o wiele cech morfologicznych, fizjologicznych i biochemicznych. Stanowi on istotny punkt wyjścia w klasyfikacji ryzobiów.

Mikrosymbionty szczodrzyka czerniejącego hodowano na stałym podłożu 79CA w temperaturze 28°C. Po 6 – 7 dniach bakterie te tworzyły okrągłe, nieprzeźroczyste, białe, śluzowe kolonie.

Analizę fenotypową badanych mikrosymbiontów rozpoczęto od określenia ich czasu generacji [4.2.3.1]. Czas generacji symbiontów *L. nigricans* oscylował w granicach 6 – 6,5 godzin, co pozwala wstępnie zaklasyfikować badane szczepy do ryzobiów wolno rosnących. Izolaty z brodawek korzeniowych szczodrzyka czerniejącego są Gram – ujemnymi pałeczkami podobnie jak inne mikrosymbionty roślin motylkowatych.

Wyniki 91 testów fenotypowych przeprowadzonych na badanych mikrosymbiontach *L. nigricans* i szczepach referencyjnych rodzaju *Bradyrhizobium* przedstawia Tab. 5.1.

W badaniach określono zdolność ryzobiów do wzrostu na podłożach zawierających 28 różnych związków, jako jedyne źródło węgla. Wszystkie badane mikrosymbionty *L. nigricans* wykorzystywały mannitol, inulinę, Tween 20, dekstrynę, fruktozę, galaktozę, glicerol, alaninę i argininę jako jedyne źródło węgla. Większość symbiontów asymilowała również glukozę, cytrynian sodu, salicynę, glutaminę, arabinozę, asparaginę, skrobię i winian sodu jako jedyne źródło węgla.

Pozostałe związki użyte w testach fenotypowych, jako źródło węgla, wykorzystywane były jedynie przez kilka badanych szczepów. Ponadto większość badanych izolatów nie wykazała zdolności do asymilowania disacharydów (poza sacharozą i laktozą) z podłoża co jest cechą przypisywaną wolno rosnącym ryzobiom

(Rys. 5.1). Na podłożu stałym z mannitolem badane izolaty powodowały alkalizację podłoża, podobnie jak referencyjne szczepy rodzaju *Bradyrhizobium*.

Rys. 5.1. Wykorzystanie 28 związków chemicznych jako źródła węgla. Na wykresie kolorem jasnozielonym zaznaczono disacharydy. Na osi y przedstawiono liczbę badanych szczepów n=33

Badania zdolności ryzobiów specyficznych dla *L. nigricans* do wykorzystywania 21 różnych związków chemicznych jako jedyne źródło azotu wykazały, że wszystkie lub większość badanych izolatów wykorzystują 18 z badanych substratów. Żaden z badanych mikorsymbiontów nie asymilował DL–ornityny, natomiast L–lizynę i hipuran sodu asymilowało tylko odpowiednio 6 i 7 z badanych szczepów (Rys. 5.2).

Rys. 5.2. Wykorzystanie 21 związków chemicznych, jako jedyne źródło azotu. Na osi y przedstawiono liczbę badanych szczepów n=33

Sprawdzono zdolność aktywnego ruchu izolatów z brodawek korzeniowych szczodrzyka czerniejącego stwierdzając, iż badane szczepy nie wykazują znacznącej zdolność do ruchu. Badania prowadzono w obecności kontroli pozytywnej, którą był szczep *Ensifer meliloti* L5 – 30 (Rys. 5.3).

Rys. 5.3. Zdolność do aktywnego ruchu przykładowych mikrosymbiontów *L. nigricans* na podłożu 79CA zawierającym 0,35% agar. **Oznaczenia: LN15, LN17, LN29** – przykładowe izolaty z brodawek korzeniowych *L. nigricans,* K – *Ensifer meliloti* L5 – 30

Zakres temperatur w jakich badane izolaty były zdolne do wzrostu był dość szeroki i wahał się od 15°C do 37°C z optimum przypadającym na 28 – 30°C. Zbadano wzrost bakterii w podłożu o różnych wartościach pH i stwierdzono, iż optimum pH dla badanych izolatów to 5 – 8, dolna wartość graniczna pH wynosi 4, a pojedyncze (LN7 i LN15) szczepy wykazały zdolność do wzrostu w podłożu o pH 9 i 10. Badane bakterie wykazały wysoką tolerancję na zasolenie podłoża. 19 szczepów tolerowało 2% zawartość chlorku sodu w podłożu hodowlanym.

Badano także aktywność enzymatyczną bakterii wyizolowanych z brodawek korzeniowych *L. nigricans*. Dowiedziono, iż testowane szczepy mają aktywność oksydazy cytochromowej, ureazy oraz reduktazy azotanowej oraz absorbują czerwień Kongo. Część szczepów produkowała aktywną katalazę i fosfatazę, natomiast żaden z analizowanych mikrosymbiontów nie wykazał aktywności β -galaktozydazowej ani zdolności do produkcji aktywnej glukohydrolazy–D– glukozydu (hydroliza eskuliny).

Szczepy specyficzne dla szczodrzyka czerniejącego charakteryzowały się wysoką tolerancją względem antybiotyków. Najwyższą oporność wykazały dla rifampicyny (200 μ g/ml – 12/33 szczepów) i ampicyliny (300 μ g/ml – 6/33 szczepów), najmniejszą dla tetracykliny (40 μ g/ml 3/33 szczepów).

Wyizolowanie ryzobia przebadano pod kątem tolerancji na obecność barwników w podłożach. Stwierdzono, że badane izolaty są najbardziej wrażliwe na zieleń metylenową i oranż akrydyny, natomiast największą tolerancję mają względem nigrozyny i safraniny.

Wszystkie wyniki dotyczące cech fenotypowych zostały zebrane i przedstawione w zbiorczej tabeli 5.1. Ze względu na bardzo dużą liczbę badanych bakterii, w tabeli zamieszczono tylko wyniki dotyczące izolatów *L. nigricans* oraz bakterii z rodzaju *Bradyrhizobium* (mimo iż badania cech fenotypowych prowadzone były również dla szczepów referencyjnych innych rodzajów bakterii ryzobiowych, które następnie ujęto w analizie numerycznej cech fenotypowych) (Tab. 5.1). Cechy fenotypowe badanych szczepów między sobą i szczepami referencyjnymi, reprezentującymi różne rodzaje ryzobiów, poddano analizie numerycznej i przedstawiono w formie dendrogramu (Rys. 5.4).

Tab. 5.1. Właściwości fenotypowe mikrosymbiontów *L. nigricans* oraz szczepów referencyjnych rodzaju *Bradyrhizobium*. Wyniki przedstawiono w formie +/- (+ występowanie danej cechy), (- brak występowanie danej cechy)

Badana cecha	Symbionty <i>Lembotropis</i> nigricans (n ^a =33)	Bradyrhizobium elkanii USDA 76 ^T (n=1)	Bradyrhizobium liaoningense USDA 3622 ^T (n=1)	Bradyrhizobium yuanmingense CCBAU 10071 ^T (n=1)	Bradyrhizobium diazoefficiens USDA 110 ^T (n=1)	Bradyrhizobium japonicum USDA 6 ^T (n=1)
Źródła węgla:						
D–glukoza	+ ^b (27) ^c	+	+	+	+	+
D–celobioza	+ (21)	+	+	+	+	+
L–lizyna	+ (14)	_b	-	-	-	-
Mannitol	+ (33)	+	+	+	+	+
Maltoza	+ (9)	-	+	-	+	+
L–ramnoza	+ (14)	+	+	+	+	+
Salicyna	+ (21)	+	-	+	+	+
Cytrynian sodu	+ (24)	+	-	-	+	+
L–arginina	+ (33)	+	-	-	+	+
D–arabinoza	+ (24)	+	+	+	+	+
Dekstryna	+ (33)	-	-	+	+	+
Glicerol	+ (33)	+	+	+	+	+
Laktoza	+ (27)	-	-	+	+	+
Skrobia	+ (24)	-	-	-	-	-
Sacharoza	+ (33)	+	+	+	+	+
Tween 20	+ (33)	+	+	+	+	+

L–alanina	+ (33)	+	+	-	+	+
D–fruktoza	+ (33)	+	+	+	+	+
D–galaktoza	+ (33)	+	+	+	+	+
L–asparagina	+ (24)	+	-	-	+	+
Inulina	+(33)	+	-	-	+	+
D–ksyloza	+ (33)	+	-	-	+	+
D–rafinoza	+ (9)	+	+	+	+	+
Winian sodu	+ (25)	+	+	+	+	+
D–trehaloza	+ (2)	-	+	+	-	-
L–tyrozyna	+ (29)	+	-	-	-	-
L–glutamina	+ (29)	+	+	+	+	+
Hipuran sodu	+ (4)	-	-	-	-	-
Źródła azotu:						
L–fenyloalanina	+(29)	+	-	-	+	+
L–treonina	+(33)	+	+	+	+	+
L–leucvna	+(33)	+	+	+	+	+
DL–walina	+(33)	+	+	+	+	+
L-tyrozyna	+(33)	+	+	+	+	+
L–metionina	+(33)	+	+	+	+	+
Kwas L–asparaginowy	+(33)	+	+	+	+	+
NaNO ₃	+(31)	+	+	+	+	+
DL–ornityna	-	-	-	-	-	-
L–histydyna	+(33)	+	+	+	+	+
L–hydroksyprolina	+(33)	+	+	+	+	+
L–cysteina	+(33)	+	+	+	+	+
Glicyna	+(33)	+	+	+	+	+
L–arginina	+(33)	+	+	+	+	+
L–prolina	+(33)	+	+	+	+	+
L–seryna	+(30)	+	-	-	+	+
Azotan sodu	+(31)	+	+	+	+	+
Kwas L–glutaminowy	+(33)	+	+	-	+	+
DL-izoleucyna	+(30)	+	-	+	-	+
L–lizyna	+ (6)	+	-	+	-	+
Hipuran sodu	+ (7)	+	-	-	-	-
Aktywność enzymatyczna:						
Katalaza	+(7)	_	_	_	_	_
Fosfataza	+(16)	+	+	+	+	+
Reduktaza azotanowa	+(33)	_	_	_	_	+
Peroksydaza	-	-	_	_	_	+
Ureeze	+(33)	+	+	+	+	+
Glukobydrolaza_D_glukozydu	-	-	-	_	_	-
B_galaktozydaza	_	-	_	_	_	_
Oksydaza cytochromowa	+(33)	+	+	+	+	+
Televencia net	1 (55)	,			,	
Tolerancja na:	(15)					
рн 9	+(15)	-	-	-	-	-
	+(/)	-	-	-	-	-
1% NaCI	+(32)	+	-	-	-	-
2% NaCl	+ (19)	-	-	-	-	-
5% NaCI	+(11)	-	-	-	-	-

Auramina 0,05 µg ml ⁻¹	+ (23)	+	-	+	+	+
Czerwień metylowa 0,05 µg ml ⁻¹	+ (27)	+	+	-	+	+
Czerwień metylowa 0,1 µg ml-1	+ (13)	-	+	-	-	-
Czerwień obojętna 0,2 µg ml-1	+ (24)	-	+	+	+	+
Fiolet krystaliczny 0,1 µg ml ⁻¹	+ (2)	-	-	-	+	+
Zieleń malachitowa 0,13 µg ml ⁻¹	+ (5)	-	-	-	-	-
Tetracyklina 10 μg ml ⁻¹	+(30)	+	+	+	+	+
Tetracyklina 20 μg ml ⁻¹	+(8)	+	-	+	+	+
Tetracyklina 40 μg ml ⁻¹	+ (3)	+	-	-	-	-
Streptomycyna 10 µg ml ⁻¹	+ (31)	+	+	+	+	+
Streptomycyna 20 µg ml ⁻¹	+ (27)	+	-	+	+	+
Streptomycyna 50 µg ml ⁻¹	+ (21)	+	-	+	-	-
Streptomycyna 100 µg ml ⁻¹	+ (16)	+	-	-	-	-
Streptomycyna 200 µg ml ⁻¹	+ (13)	+	-	-	-	-
Rifampicyna 20 μg ml ⁻¹	+ (28)	+	+	+	+	+
Rifampicyna 50 µg ml ⁻¹	+ (25)	+	+	+	+	+
Rifampicyna 100 µg ml ⁻¹	+ (23)	+	-	+	+	+
Rifampicyna 150 µg ml ⁻¹	+ (19)	-	-	-	+	+
Rifampicyna 200 µg ml ⁻¹	+ (12)	-	-	-	+	+
Ampicylina 100 μg ml ⁻¹	+ (22)	+	-	-	+	+
Ampicylina 200 μg ml ⁻¹	+ (13)	+	-	-	+	+
Ampicylina 300 μg ml ⁻¹	+ (6)	+	-	-	+	+
Pozostale testy:						
Synteza melanin	+ (7)	+	+	+	+	+
Asymilacja czerwieni Kongo	+ (33)	+	+	+	+	+
Rozkład trifosforanów (TCP)	+ (4)	-	-	-	-	-
Wytwarzanie indolu	+ (1)	-	-	-	-	-
Alkalizacja podłoża z mlekiem	+ (32)	+	+	+	+	+
lakmusowym						
Zakwaszenie podłoża z mlekiem	+(1)	-	-	-	-	-
Narost na podložu Hofford	+ (5)	Т	_	_	_	_
wzrosi na podiozu Hollera	$\pm (3)$	Ŧ	-	-	-	-

Oznaczenia: ^a n, liczba analizowanych izolatów, ^b +, –, występowanie lub brak występowania danej cechy, ^c w nawiasie podano liczbę szczepów, które wykazywały występowanie danej cechy

5.2. Numeryczna analiza wyników testów fenotypowych mikrosymbiontów *Lembotropis nigricans* oraz szczepów referencyjnych

Analizę numeryczną wszystkich 91 testów fenotypowych, którym poddano 33 izolaty z brodawek korzeniowych *L. nigricans* jak również szczepy referencyjne – reprezentujące różne rodzaje i gatunki bakterii brodawkowych, wykonano w programie Fenal, w którym obliczono prosty współczynnik podobieństwa fenotypowego każdego szczepu z każdym (SM – ang. *simple matching*). Za pomocą narzędzia NTSYS–pc 2.02g skonstruowano dendrogram przedstawiający stopień podobieństwa badanych bakterii w oparciu o metodę UPGMA.

Na skonstruowanym dendrogramie (Rys. 5.4) można wyróżnić 3 fenony. Pierwszy z nich obejmuje bakterie rodzaju *Rhizobium* i *Ensifer*, drugi fenon skupia gatunki z rodzaju *Mesorhizobium*, zaś w trzecim grupują się mikrosymbionty *Lembotropis nigricans* oraz bakterie z rodzaju *Bradyrhizobium*.

Wszystkie mikrosymbionty *L. nigricans* oraz bakterie rodzaju *Bradyrhizobium* tworzą wspólny fenon przy współczynniku podobieństwa 82%. Wysoki stopień podobieństwa fenotypowego mikrosymbiontów *L. nigricans* i bakterii rodzaju *Bradyrhizobium* pozwala wstępnie sklasyfikować badane bakterie do rodzaju *Bradyrhizobium*.

5.3. Charakterystyka stopnia zróżnicowania genomowego mikrosymbiontów *Lembotropis nigricans* metodami: ERIC-PCR, BOX-PCR i AFLP

W celu określenia stopnia zróżnicowania genomowego badanych mikrosymbiontów *L. nigricans* użyto technik: ERIC–PCR (ang. *Enterobacterial Repetitive Intragenetic Consensus*) opierającej się o analizę polimorfizmu enterobakteryjnych wewnątrzgenowych miejsc powtórzonych, BOX–PCR, w której amplifikacji ulegają sekwencje powtarzające się, położone między konserwatywnymi elementami BOX ulokowanymi w międzygenowych regionach DNA oraz AFLP (ang. *Amplified Fragment Length Polymorphism*), gdzie analizuje się polimorfizm długości amplifikowanych fragmentów restrykcyjnych.

5.3.1. Analiza polimorfizmu genomowego mikrosymbiontów *Lembotropis* nigricans metodą ERIC-PCR

ERIC–PCR jest szybkim i przydatnym narzędziem służącym do analizy polimorfizmu genomu prokariotycznego, umożliwiającym różnicowanie i identyfikację bakterii. Technika ta polega na zastosowaniu w reakcji amplifikacji starterów o sekwencjach nukleotydowych, komplementarnych do konserwatywnych sekwencji obecnych w genomie mikrosymbiontów, jednak w zależności od gatunku lub szczepu, różnie w nim rozmieszczonych. W wyniku reakcji PCR ze starterami Eric–1 i Eric–2 uzyskano 254 różne amplikony DNA, o wielkościach od 171 do 4830 pz (Rys. 5.6), średnio na jeden szczep przypadało 8 fragmentów DNA. Wśród 33 analizowanych szczepów 31 charakteryzowało się niepowtarzalnymi profilami DNA.

Rys. 5.5. Obraz elektroforetyczny profili genomowych DNA ryzobiów specyficznych dla *L. nigricans* uzyskanych metodą ERIC–PCR, A. ścieżka 1 i 16 – wzorzec mas molekularnych "Gene RulerTM SM0333 DNA Ladder Plus" (100-10000 bp); ścieżki 2 – 15 – szczepy LN1 – LN14; B. ścieżka 1 i 16 – wzorzec mas molekularnych "Gene RulerTM SM0333 DNA Ladder Plus" (100-10000 bp), ścieżki

2 – 15 – szczepy LN15 – LN28; C. ścieżka 1 i 7 – wzorzec mas molekularnych "Gene RulerTM SM0333 DNA Ladder Plus" (100-10000 bp), ścieżki 2 – 6 – szczepy LN29 – LN33

Rys. 5.6. Schemat profili genomowego DNA ryzobiów specyficznych dla *L. nigricans* uzyskanych metodą ERIC–PCR; 1 i 35 – wzorzec mas cząsteczkowych "Gene RulerTM SM0333 DNA Ladder Plus" (100 – 10000 bp); 2 – 34 – mikrosymbionty *Lembotropis nigricans* LN1 – LN33

Analiza uzyskanych profili genomowych (Rys. 5.5) posłużyła do skonstruowania dendrogramu przedstawiającego zróżnicowanie genomowe ryzobiów specyficznych dla L. nigricans, na którym przy współczynniku podobieństwa równym 75,8% wyróżniono 3 grona i jedną niezależną gałąź. W pierwszym gronie zgrupowane zostały 28 szczepy, które przy współczynnikach podobieństwa wynoszących odpowiednio, 77,6 i 83% podzielone zostały na 2 oddzielne podgrupy. W pierwszej podgrupie znalazło się 18 szczepów, natomiast w drugiej 10 mikrosymbiontów. Oddzielną gałąź utworzył szczep LN31. Szczepy LN13 i LN33 oraz LN15 i LN23 utworzyły odpowiednio grupę II i III (Rys. 5.7).

Rys. 5.7. Dendrogram przedstawiający stopień podobieństwa genomowego 33 mikrosymbiontów *Lembotropis nigricans*, skonstruowany w oparciu o profile genomowego DNA uzyskane metodą ERIC-PCR

5.3.2. Analiza zróżnicowania genowego symbiontów *Lembotropis nigricans* w oparciu o metodę BOX–PCR

W celu określania stopnia zróżnicowania genomowego izolatów z brodawek korzeniowych *L. nigricans* zastosowano również metodę BOX–PCR. Podobnie jak w poprzedniej analizie określono wzajemny stopień podobieństwa genomowego DNA badanych bakterii w oparciu o uzyskane profile DNA. Uzyskane wzory DNA zobrazowano w postaci zdjęć elektroforetycznych (Rys. 5.8) i schematu profili DNA (Rys. 5.9). Wielkość uzyskanych prążków względem wzorca mas cząsteczkowych określono wykorzystując program Bio–Gene 11.01 i na ich podstawie skonstruowano dendrogram (Rys. 5.10).

Rys. 5.8. Obraz elektroforetyczny profili genomowych DNA ryzobiów specyficznych dla *Lebotropis nigricans* uzyskanych metodą BOX–PCR, A. ścieżka 1 i 16 – wzorzec mas molekularnych "Gene Ruler[™] SM0333 DNA Ladder Plus" (100-10000 bp); ścieżki 2 – 15 – szczepy LN1 – LN14; B. ścieżka 1 i 16 – wzorzec mas molekularnych "Gene Ruler[™] SM0333 DNA Ladder Plus" (100-10000 bp), ścieżki 2 – 15 – szczepy LN15 – LN28; C. ścieżka 1 i 7 – wzorzec mas molekularnych "Gene Ruler[™] SM0333 DNA Ladder Plus" (100-10000 bp), ścieżki 2 – 6 – szczepy LN29 – LN33

Rys. 5.9. Schemat profili genomowego DNA ryzobiów specyficznych dla *Lembotropis nigricans* uzyskanych metodą BOX–PCR, ścieżka 1 i 35 – wzorzec mas molekularnych "Gene RulerTM SM0323 DNA Ladder Plus" (100-3000 bp), ścieżki 2 – 34 – szczepy LN1 – LN33

Stosując metodę BOX–PCR w analizie polimorfizmu genomowego 33 symbiontów *L. nigricans*, uzyskano 316 amplifikowanych fragmentów DNA, średnio na jeden szczep przypadało po 10 amplikonów, a ich wielkość mieściła się między 275 a 2446 pz. 28 spośród 33 badanych szczepów miało unikalne, charakterystyczne tylko dla siebie profile genomowe.

Uzyskane profile DNA posłużyły do skonstruowania drzewa obrazującego stopień genomowego zróżnicowania badanych bakterii, na którym badane szczepy utworzyły 2 odrębne grupy przy współczynniku podobieństwa wynoszącym 60%.

Pierwsza grupa (I) to 2 szczepy (LN1, LN14), druga grupa, (II) to pozostałe analizowane mikrosymbionty. Przy współczynniki podobieństwa profili DNA, wynoszącym 66% 31 szczepów bakteryjnych sklasyfikowanych do grupy II utworzyło na dendrogramie dwie wyraźne podgrupy. Pierwsza z nich grupuje 17 badanych izolatów (na dendrogramie zaznaczona, jako IIa), druga zaś skupia 14 badanych symbiontów (na dendrogramie zaznaczony jako IIb).

Rys. 5.10. Dendrogram przedstawiający stopień podobieństwa genomowego 33 mikrosymbiontów *Lembotropis nigricans*, skonstruowany w oparciu o profile genomowe uzyskane metodą BOX–PCR

5.3.3. Analiza stopnia genomowego zróżnicowania mikrosymbiontów *Lembotropis nigricans* metodą AFLP

Stopnień genomowego zróżnicowania testowanych szczepów określono również zmodyfikowaną metodą AFLP. Trawienie DNA prowadzono przy użyciu jednego enzymu restrykcyjnego – *Pst*I. W metodzie tej użyto adaptorów PstI–AR i PstI–AF oraz dwóch selektywnych starterów PstI–G i PstI–GC. Badanie prowadzono zgodnie z procedurą opisaną w rozdziale [4.2.4.4].

W analizie AFLP uzyskano profile genomowe DNA, charakterystyczne dla poszczególnych szczepów, powstałe w wyniku cięcia DNA za pomocą endonukleazy PstI, a następnie zamplifikowane w reakcji PCR ze starterami PstI – G lub PstI – GC. Startery te na końcach 3' posiadają selektywne nukleotydy; PstI – G – jeden nukleotyd – G, a PstI – GC dwa nukleotydy – GC. Uzyskane wzory DNA symbiontów *L. nigricans* zobrazowano w postaci zdjęć elektroforetycznych zamieszczonych poniżej, Rys. 5.11 i Rys. 5.14 i w formie schematów Rys. 5.12 i Pst–GC Rys. 5.15.

Rys. 5.11. Profile elektroforetyczne genomowego DNA ryzobiów specyficznych dla *L. nigricans* uzyskane metodą AFLP ze starterem PstI–G, A. ścieżka 1 i 16 – wzorzec mas molekularnych "Gene Ruler[™] SM0323 DNA Ladder Plus" (100-3000 bp); ścieżki 2 – 15 – szczepy LN1 – LN14; B. ścieżka 1 i 16 – wzorzec mas molekularnych "Gene Ruler[™] SM0323 DNA Ladder Plus" (100-3000 bp), ścieżki 2 – 15 – szczepy LN15 – LN28; C. ścieżka 1 i 7 – wzorzec mas molekularnych "Gene Ruler[™] SM0323 DNA Ladder Plus" (100-3000 bp), ścieżki 2 – 6 – szczepy LN29 – LN33

Rys. 5.12. Schemat profili genomowego DNA ryzobiów specyficznych dla *L. nigricans* uzyskanych metodą AFLP ze starterem PstI–G, ścieżka 1 i 35 – wzorzec mas molekularnych "Gene RulerTM SM0323 DNA Ladder Plus" (100–3000 bp), ścieżki 2 – 34 – szczepy LN1 – LN33

W wyniku analizy AFLP z użyciem startera PstI – G uzyskano łącznie dla wszystkich szczepów, 380 amplikonów średnio na szczep przypadało po 12 amplikonów, których wielkość wynosiła od 245 do 1590 pz. Na 33 badane mikrosymbionty *L. nigricans* 30 charakteryzowało się niepowtarzalnymi wzorami genomowymi.

Na podstawie uzyskanych profili DNA skonstruowano drzewo przedstawiające stopień zróżnicowania genomowego badanych bakterii (Rys. 5.13), na którym przy współczynniku podobieństwa wynoszącym 59% wyróżniono dwie grupy. Jedna z nich to 30 badanych mikrosymbiontów (grupa I) o współczynniku podobieństwa wzorów DNA od 61,5 – 100%, natomiast druga to trzy szczepy LN4, LN8, LN9 (grupa II) o współczynniku podobieństwa profili DNA od 64 do 74%.

Rys. 5.13. Dendrogram przedstawiający stopień podobieństwa genomowego 33 mikrosymbiontów *Lembotropis nigricans* utworzony na podstawie analizy profili DNA uzyskanych metodą AFLP ze starterem PstI–G

W analizie polimorfizmu genomowego DNA symbiontów szczodrzyka czerniejącego metodą AFLP wykorzystano również bardziej różnicujący starter tj.: PstI–GC. Wyniki zobrazowano w postaci zdjęć elektroforetycznych zamieszczonych poniżej (Rys. 5.14). Wykonano również schemat powyższych profili genomowego DNA symbiontów *L. nigricans* (Rys 5.15).

Rys. 5.14. Profile elektroforetyczne genomowego DNA ryzobiów specyficznych dla *Lembotropis* nigricans uzyskane metodą AFLP ze starterem PstI–GC, A. ścieżka 1 i 16 – wzorzec mas molekularnych "Gene RulerTM SM0323 DNA Ladder Plus" (100–3000 bp); ścieżki 2 – 15 – szczepy LN1 – LN14; B. ścieżka 1 i 16 – wzorzec mas molekularnych "Gene RulerTM SM0323 DNA Ladder Plus" (100–3000 bp), ścieżki 2 – 15 – szczepy LN15 – LN28; C. ścieżka 1 i 7 – wzorzec mas

3000-	- 3000
2500 —	- 2500
2000-	- 2000
1500 	- 1500
1200-	- 1200
1031 900 800 700 500 400	
300	
M 1 2	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 M

molekularnych "Gene RulerTM SM0323 DNA Ladder Plus" (100–3000 bp), ścieżki 2 – 6 – szczepy LN29 – LN33

Rys. 5.15. Schemat profili genomowego DNA ryzobiów specyficznych dla *Lembotropis nigricans* uzyskany metodą AFLP ze starterem PstI–GC, ścieżka 1 i 35 – wzorzec mas molekularnych "Gene RulerTM SM0323 DNA Ladder Plus" (100-3000 bp), ścieżki 2 – 34 – szczepy LN1 – LN33

W wyniku analizy AFLP z użyciem startera PstI–GC uzyskano 324 amplikony. Średnio na szczep przypadało 10 prążków, a ich wielkość wynosiła od 184 do 1486 pz. Wszystkie 33 badane izolaty charakteryzowały się niepowtarzalnymi wzorami profili DNA. Analiza uzyskanych profili genomowych posłużyła do skonstruowania drzewa przedstawiającego stopień zróżnicowania genomowego DNA symbiontów *L. nigricans* (Rys. 5.16), na którym wyróżnić możemy dwie główne grupy, pierwsza z nich łączy 10 szczepów, natomiast w drugiej zgrupowane zostały pozostałe 23 badane izolaty.

Rys. 5.16. Dendrogram przedstawiający stopień podobieństwa genomowego 33 mikrosymbiontów *Lembotropis nigricans* utworzony na podstawie analizy profili DNA uzyskanych metodą AFLP ze starterem PstI–GC

Porównanie wyników analiz stopnia zróznicowania genomowego DNA mikrosymbiontów *L. nigricans*, które zostały uzyskane metodami: ERIC–PCR, BOX–PCR oraz AFLP przedstawiono w Tabeli 5.2. Metodą najbardziej różnicującą izolaty szczodrzyka czerniejącego jest technika AFLP z zastosowaniem startera PstI–GC, w której każdy badany szczep wykazał charakterystyczny tylko dla siebie profil genomowego DNA.

Metoda		Liczba różnych genotypów wśród 33	Liczba amplikoi	nów	Wielkości amplikonów [pz]				
		badanych szczepów	Łącznie w 33 badanych szczepach	Średnio na jeden szczep	Najmniejszy	Największy			
ERIC		31	254	7	171	4830			
BOX-PCR		27	316	10	275	2134			
	PstI-G	30	380	12	245	1590			
AFLP	PstI-GC	33	324	10	184	1486			

Tab. 5.2. Stopień zróznicowania profili genomowych symbiontów *L. nigricans* uzyskanych metodami: ERIC–PCR, BOX–PCR i AFLP

5.4. Analiza polimorfizmu długości fragmentów restrykcyjnych (RFLP) 16S rDNA mikrosymbiontów *Lembotropis nigricans*

Ze względu na występowanie konserwatywnego genu 16S rRNA u wszystkich organizmach prokariotycznych cząsteczka ta jest najczęściej stosowanym markerem w badaniach taksonomicznych i filogenetycznych bakterii.

Stosując technikę RFLP–16S rDNA dokonano analizy polimorfizmu długości fragmentów restrykcyjnych genu kodującego 16S rRNA mikrosymbiontów *L. nigricans* i szczepów referencyjnych rodzaju *Bradyrhizobium*.

Gen kodujący 16S rRNA izolatów z brodawek korzeniowych *L. nigricans* i referencyjnych szczepów z rodzaju *Bradyrhizobium* został zamplifikowany w reakcji PCR ze starterami fD1 i rD1 [4.1.4.5]. Uzyskano produkt o wielkości około 1500 pz, który następnie poddano, oddzielnie, działaniu pięciu enzymów restrykcyjnych: *Hin*6I, *Hinf*I, *Msp*I, *Rsa*I, *Taq*I. Produkty trawienia endonukleazami rozdzielono drogą elektroforezy, a zdjęcia profili 16S rDNA badanych bakterii zamieszczono na Rys. 5.17, 5.19, 5.21, 5.23, 5.25. W celu bardziej przejrzystego zobrazowania wyników, sporządzono diagramy przedstawiające profile 16S rDNA uzyskane w wyniku trawienia użytymi w badaniu restryktazami (Rys. 5.18, 5.20, 5.22, 5.24, 5.26). Analiza produktów trawienia enzymatycznego wykazała, że każdy z zastosowanych enzymów posiadał od 2 do 5 miejsc cięcia w badanym produkcie amplifikacji. Fragmenty restrykcyjne mniejsze niż 100 pz, ze względu na słabą widoczność na żelu agarozowym nie były uwzględniane w analizie wzorów 16S rDNA.

Stosując trawienie 16S rDNA, badanych mikrosymbiontów, enzymami HinfI, Hin6I lub TaqI uzyskano dwa różne profile 16S rDNA wśród wszystkich badanych szczepów, dla każdego zastosowanego enzymu, natomiast analiza restrykcyjna z zastosowaniem MspI i RsaI wykazała 3 różne wzory 16S rDNA wśród 33 badanych symbiontów L. nigricans, dla restryktazy MspI i dla enzymu RsaI.

Łączna analiza wzorów 16S rDNA otrzymanych metodą RFLP z udziałem 5–ciu enzymów restrykcyjnych pozwoliła na przypisanie każdemu z badanych izolatów odpowiedniego genotypu, co zostało przedstawione w Tab. 5.3.

Rys. 5. 17. Profile elektroforetyczne RFLP 16S rDNA mikrosymbiontów *L. nigricans* oraz szczepów referencyjnych rodzaju *Bradyrhizobium*, uzyskane w wyniku trawienia 16S rDNA enzymem restrykcyjnym *Hin6*I

Objaśnienia: Ścieżki 1, 16 – Zdjęcie A i B; Ścieżki 1, 7 – Zdjęcie C; Ścieżka 1 – Zdjęcie D: marker mas molekularnych GeneRulerTM 100bp DNA Ladder Plus (100 – 1031bp) Zdjęcie A. Ścieżki 2 – 15 – mikrosymbionty *Lembotropis nigricans* (LN1 – LN14), Zdjęcie B. Ścieżki 2 – 15 mikrosymbionty *Lembotropis nigricans* (LN15 – LN28), Zdjęcie C. Ścieżki 2 – 6 mikrosymbionty *Lembotropis nigricans* (LN29 – LN33) Zdjęcie D. Ścieżka 2 – Bradyrhizobium elkanii USDA 76^T, Ścieżka 3 – Bradyrhizobium japonicum USDA 6^T, Ścieżka 4 – Bradyrhizobium yuanmingense</sup> CCBAU 10071^T, Ścieżka 5 – Bradyrhizobium diazoefficiens USDA 110^T, Ścieżka 6 – Bradyrhizobium liaoningense USDA 3622^T

Rys. 5.18. Schemat profili elektroforetycznych 16S rDNA mikrosymbiontów *L. nigricans* i referencyjnych bradyrhizobiów uzyskanych w wyniku trawienia enzymem *Hin6*I

Rys. 5.19. Profile elektroforetyczne RFLP 16S rDNA mikrosymbiontów *L. nigricans* oraz szczepów referencyjnych rodzaju *Bradyrhizobium*, uzyskane w wyniku trawienia 16S rDNA enzymem restrykcyjnym *Hinf*I

Objaśnienia: Ścieżki 1, 16 – Zdjęcie A i B; Ścieżki 1, 7 – Zdjęcie C; Ścieżka 1 – Zdjęcie D: marker mas molekularnych GeneRulerTM 100bp DNA Ladder Plus (100 – 1031bp) Zdjęcie A. Ścieżki 2 – 15 – mikrosymbionty *Lembotropis nigricans* (LN1 – LN14), Zdjęcie B. Ścieżki 2 – 15 mikrosymbionty *Lembotropis nigricans* (LN15 – LN28), Zdjęcie C. Ścieżki 2 – 6 mikrosymbionty *Lembotropis nigricans* (LN29 – LN33) Zdjęcie D. Ścieżka 2 – Bradyrhizobium elkanii USDA 76^T, Ścieżka 3 – Bradyrhizobium japonicum USDA 6^T, Ścieżka 4 – Bradyrhizobium yuanmingense</sup> CCBAU 10071^T, Ścieżka 5 – Bradyrhizobium diazoefficiens USDA 110^T, Ścieżka 6 – Bradyrhizobium liaoningense USDA 3622^T

Rys. 5.20. Schematy profili elektroforetycznych 16S rDNA mikrosymbiontów *L. nigricans* i referencyjnych bradyrhizobiów uzyskane w wyniku trawienia enzymem *Hinf*I

Rys. 5.21. Profile elektroforetyczne RFLP 16S rDNA mikrosymbiontów *L. nigricans* oraz szczepów referencyjnych rodzaju *Bradyrhizobium*, uzyskane w wyniku trawienia 16S rDNA enzymem restrykcyjnym *Msp*I

Objaśnienia: Ścieżki 1, 16 – Zdjęcie A i B; Ścieżki 1, 7 – Zdjęcie C; Ścieżka 1 – Zdjęcie D: marker mas molekularnych GeneRulerTM 100bp DNA Ladder Plus (100 – 1031bp) Zdjęcie A. Ścieżki 2 – 15 – mikrosymbionty *Lembotropis nigricans* (LN1 – LN14), Zdjęcie B. Ścieżki 2 – 15 mikrosymbionty *Lembotropis nigricans* (LN15 – LN28), Zdjęcie C. Ścieżki 2 – 6 mikrosymbionty *Lembotropis nigricans* (LN29 – LN33) Zdjęcie D. Ścieżka 2 – Bradyrhizobium elkanii USDA 76^T, Ścieżka 3 – Bradyrhizobium japonicum USDA 6^T, Ścieżka 4 – Bradyrhizobium yuanningense CCBAU 10071^T, Ścieżka 5 – Bradyrhizobium diazoefficiens USDA 110^T, Ścieżka 6 – Bradyrhizobium liaoningense USDA 3622^T

Rys. 5.22. Schemat profili elektroforetycznych 16S rDNA mikrosymbiontów *L. nigricans* i referencyjnych bradyrhizobiów uzyskane w wyniku trawienia enzymem *Msp*I

Rys. 5.23. Profile elektroforetyczne RFLP 16S rDNA mikrosymbiontów *L. nigricans* oraz szczepów referencyjnych rodzaju *Bradyrhizobium*, uzyskane w wyniku trawienia 16S rDNA enzymem restrykcyjnym *Rsa*I

Objaśnienia: Ścieżki 1, 16 – Zdjęcie A i B; Ścieżki 1, 7 – Zdjęcie C; Ścieżka 1 – Zdjęcie D: marker mas molekularnych GeneRulerTM 100bp DNA Ladder Plus (100 – 1031bp) Zdjęcie A. Ścieżki 2 – 15 – mikrosymbionty *Lembotropis nigricans* (LN1 – LN14), Zdjęcie B. Ścieżki 2 – 15 mikrosymbionty *Lembotropis nigricans* (LN15 – LN28), Zdjęcie C. Ścieżki 2 – 6 mikrosymbionty *Lembotropis nigricans* (LN29 – LN33) Zdjęcie D. Ścieżka 2 – Bradyrhizobium elkanii USDA 76^T, Ścieżka 3 – Bradyrhizobium japonicum USDA 6^T, Ścieżka 4 – Bradyrhizobium yuanmingense CCBAU 10071^T, Ścieżka 5 – Bradyrhizobium diazoefficiens USDA 110^T, Ścieżka 6 – Bradyrhizobium liaoningense USDA 3622^T

Rys. 5.24. Schematy profili elektroforetycznych 16S rDNA mikrosymbiontów *L. nigricans* i referencyjnych bradyrhizobiów uzyskane w wyniku trawieniu enzymem **RsaI**

Rys. 5.25. Profile elektroforetyczne RFLP 16S rDNA mikrosymbiontów *L. nigricans* oraz szczepów referencyjnych rodzaju *Bradyrhizobium*, uzyskane w wyniku trawienia 16S rDNA enzymem restrykcyjnym *Taq*I

Objaśnienia: Ścieżki 1, 16 – Zdjęcie A i B; Ścieżki 1, 7 – Zdjęcie C; Ścieżka 1 – Zdjęcie D: marker mas molekularnych GeneRulerTM 100bp DNA Ladder Plus (100 – 1031bp) Zdjęcie A. Ścieżki 2 – 15 – mikrosymbionty *Lembotropis nigricans* (LN1 – LN14), Zdjęcie B. Ścieżki 2 – 15 mikrosymbionty *Lembotropis nigricans* (LN15 – LN28), Zdjęcie C. Ścieżki 2 – 6 mikrosymbionty *Lembotropis nigricans* (LN29 – LN33) Zdjęcie D. Ścieżka 2 – Bradyrhizobium elkanii USDA 76^T, Ścieżka 3 – Bradyrhizobium japonicum USDA 6^T, Ścieżka 4 – Bradyrhizobium yuanmingense CCBAU 10071^T, Ścieżka 5 – Bradyrhizobium diazoefficiens USDA 110^T, Ścieżka 6 – Bradyrhizobium liaoningense USDA 3622^T

Rys. 5.26. Schematy profili elektroforetycznych 16S rDNA mikrosymbiontów *L. nigricans* i referencyjnych bradyrhizobiów uzyskane w wyniku trawieniu enzymem *Taq*I

Łączna analiza wzorów restrykcyjnych 16S rDNA symbiontów L. nigricans i referencyjnych bradyryzobiów pozwoliła na przypisanie tych bakterii do dwunastu różnych genotypów. Badania wykazały, iż mikrosymbionty szczodrzyka czerniejącego należą do siedmiu różnych genotypów, natomiast szczepy referencyjne ujęte w analizie wykazują pięć unikatowych genotypów (Tab. 5.3). Wśród 33 analizowanych izolatów z brodawek korzeniowych *L. nigricans* aż 24 wykazuje identyczny genotyp I – AAAAA. Pięć szczepów (LN1, LN11, LN23, LN24, LN26) charakteryzuje się unikatowymi genotypami, odpowiednio, II – AABAA, IV – BAAAA, VI – AAAC, V – AACAB, VII – ABAAA natomiast cztery pozostałe izolaty tj.: LN2, LN4, LN10 oraz LN32 wykazują wspólny genotyp (III – AAABA).

Tab. 5.3. Genotypy 16S rDNA mikrosymbiontów *L. nigricans* i bakterii referencyjnych rodzaju *Bradyrhizobium* ustalone w oparciu o łączną analizę wzorów DNA uzyskanych przy udziale 5 restryktaz (RFLP–16S rDNA)

	Wzo	ory re	stryk	cyjn	e ^a		upa nowa	
Szczep	Hin6I	HinfI	MspI	Rsal	TaqI	Genotyp ^b	urð [.]	
LN1	А	А	В	А	А	AABAA	II	
LN2	А	А	А	В	А	AAABA	III	
LN3	А	А	А	А	А	AAAAA	Ι	
LN4	А	А	А	В	А	AAABA	III	
LN5	А	А	А	А	А	AAAAA	Ι	
LN6	А	А	А	А	А	AAAAA	Ι	
LN7	А	А	А	А	А	AAAAA	Ι	
LN8	А	А	А	А	А	AAAAA	Ι	
LN9	А	А	А	А	А	AAAAA	Ι	
LN10	А	А	А	В	А	AAABA	III	
LN11	В	А	А	А	А	BAAAA	IV	
LN12	А	А	А	А	А	AAAAA	Ι	
LN13	А	А	А	А	А	AAAAA	Ι	
LN14	А	А	А	А	А	AAAAA	Ι	
LN15	А	А	А	А	А	AAAAA	Ι	
LN16	А	А	А	А	А	AAAAA	Ι	
LN17	А	А	А	А	А	AAAAA	Ι	
LN18	А	А	А	А	А	AAAAA	Ι	
LN19	А	А	А	А	А	AAAAA	Ι	
LN20	А	А	А	А	А	AAAAA	Ι	
LN21	А	А	A	А	А	AAAAA	Ι	
LN22	A	А	A	A	А	AAAAA	Ι	
LN23	А	А	А	А	С	AAAAC	VI	
LN24	А	А	С	А	В	AACAB	V	

LN25	А	А	А	С	А	AAACA	Ι
LN26	А	В	А	А	А	ABAAA	VII
LN27	А	А	А	А	А	AAAAA	Ι
LN28	А	Α	А	А	А	AAAAA	Ι
LN29	А	Α	А	А	А	AAAAA	Ι
LN30	А	А	А	А	А	AAAAA	Ι
LN31	А	Α	А	А	А	AAAAA	Ι
LN32	А	А	А	В	А	AAABA	III
LN33	А	А	А	А	А	AAAAA	Ι
Bradyrhizobium elkanii USDA 76 ^T	С	Α	D	С	А	CADCA	VIII
Bradyrhizobium japonicum USDA 6 ^T	А	А	Α	С	А	AAACA	IX
Bradyrhizobium yuanmingense CCBAU 10071 ^T	А	А	D	С	А	AADCA	x
Bradyrhizobium diazoefficiens USDA 110 ^T	С	А	E	D	А	CAEDA	XI
Bradyrhizobium liaoningense USDA 3622 ^T	А	С	А	С	А	ACACA	XII

Objaśnienia:

^aLitery oznaczają poszczególne profile restrykcyjne genu 16S rRNA otrzymane w wyniku trawienia poszczególnymi endonukleazami;

^bGrupa liter oznacza genotyp RFLP 16S rDNA, wynikający z łącznej analizy fragmentów restrykcyjnychh uzyskanych w wyniku trawienia pięcioma endonukleazami;

^cCyframi rzymskimi zaznaczono poszczególne grupy genomowe RFLP 16S rDNA badanych szczepów.

Uzyskane wyniki analizy (RFLP–16S rDNA) polimorfizmu długości fragmentów restrykcyjnych 16S rDNA z użyciem pięciu restryktaz, pozwoliły na skonstruowanie dendrogramu podsumowującego stopień podobieństwa profili 16S rDNA uzyskanych bakterii. Na podstawie obecności lub braku danego fragmentu restrykcyjnego przygotowano macierz binarną oraz obliczono stopień podobieństwa wzorów restrykcyjnych 16S rDNA. Następnie przy użyciu odpowiednich narzędzi komputerowych skonstruowano dendrogram obrazujący stopień podobieństwa profili fragmentów restrykcyjnych genu kodującego 16S rRNA mikrosymbiontów *L. nigricans* i szczepów referencyjnych rodzaju *Bradyrhizobium* w oparciu o metodę UPGMA (Rys. 5.27).

Rys. 5.27. Dendrogram przedstawiający stopień podobieństwa profili RFLP–16S rDNA mikrosymbiontów *L. nigricans* oraz szczepów referencyjnych rodzaju *Bradyrhizobium*

Przy współczynniku podobieństwa wzorów RFLP–16S rDNA ~97%, izolat LN1 oraz referencyjny szczep *Bradyrhizobium cytisi* CTAW 11^T grupują się razem, natomiast pozostałe badane symbionty szczodrzyka czerniejącego tworzą wspólną grupę z *Bradyrhizobium elkanii* UDSA 76^T, *Bradyrhizobium canariense* BTA–1^T, *Bradyrhizobium diazoeffieciens* USDA 110^T, *Bradyrhizobium japonicum* USDA6^T przy współczynniku podobieństwa wzorów restrykcyjnych 16S rDNA 91%.

Na podstawie zróżnicowania długości fragmentów restrykcyjnych 16S rDNA badanych izolatów *L. nigricans*, wybrano 11 szczepów reprezentujących siedem różnych genotypów (LN1, LN2, LN4, LN10, LN11, LN20, LN23, LN24, LN26, LN30, LN32) do analizy sekwencji 16S rDNA.

5.5. Określenie zawartości zasad G+C w genomowym DNA symbiontów Lembotropis nigricans

Jednym z kryteriów wymaganych przy opisie nowych rodzajów i gatunków bakterii jest określenie wartości zasad G+C w genomowym DNA. U organizmów prokariotycznych zawartość ta mieści się w przedziale 24 – 76 mol%. Przyjmuje się, że w obrębie jednego gatunku różnica zawartości zasad G+C nie może przekroczyć 5 mol%, natomiast w obrębie rodzaju nie może być większa niż 10 – 12 mol%.

Zawartość zasad G+C w DNA izolatów szczodrzyka czerniejącego określano metodą wysokosprawnej chromatografii cieczowej – HPLC (ang. *High*

Pressure Liquid Chromatography). Obliczeń dokonano względem próby referencyjnej, którą stanowił DNA faga λ . Wyniki zawartości zasad G+C wyrażone w mol% prezentuje Tab. 5.4.

Szczep	Zawartość G+C [mol%]
LN1	64,58
LN2	63,69
LN4	62,11
LN10	64,06
LN11	64,56
LN20	63,38
LN23	64,09
LN24	61,24
LN26	63,24
LN30	64,03
LN32	62,45
Bradyrhizobium japonicum USDA6 ^T	61,05
Bradyrhizobium elkanii 76 ^T	63,70
Bradyrhizobium liaoningense 3622 ^T	61,20

Tab. 5.4. Zawartość zasad G+C w genomowym DNA mikrosymbiontów *Lembotropis nigricans* i wybranych szczepów referencyjnych

Zawartość zasad G+C w genomowym DNA badanych mikrosymbiontów L. nigricans mieści się w przedziale 61,24 – 64,58 mol%, które jest typowe dla bakterii brodawkowych rodzaju *Bradyrhizobium* wynoszącym 61 – 65 mol%, co może świadczyć o przynależności badanych mikrosymbiontów do rodzaju *Bradyrhizobium*.

5.6. Analiza filogenetyczna genu kodującego 16S rRNA mikrosymbiontów *Lembotropis nigricans*

Określenie przynależności rodzajowej bakterii poprzez badanie sekwencji 16S rDNA jest podstawą taksonomii organizmów prokariotycznych.

Pokrewieństwo filogenetyczne ryzobiów specyficznych dla szczodrzyka czerniejącego z innymi bakteriami brodawkowymi ustalono w oparciu o analizę porównawczą sekwencji genu 16S rRNA. W analizie filogenetycznej wykorzystano 11 szczepów reprezentujących różne fenogrupy i grupy genomowe wybrane na podstawie wcześniejszych badań (LN1, LN2, LN4, LN10, LN11, LN20, LN23, LN24, LN26, LN30, LN32).

Pierwszy etap analizy obejmował amplifikację genu 16S rRNA w oparciu o reakcję PCR ze starterami fD1 i rD1 [4.1.4.5]. Uzyskany produkt miał wielkość ok. 1500 pz. Zgodnie z procedurą opisaną w rozdziale 4.2.4.9 otrzymane sekwencje porównano z sekwencjami 16S rDNA szczepów referencyjnych reprezentujących różne gatunki bakterii rodzajów Bradyrhizobium, Mesorhizobium i Rhizobium pochodzącymi z bazy danych GenBank. Na podstawie analizy porównawczej sekwencji genu 16S rRNA mikrosymbiontów L. nigricans (Tab. 5.5 i Tab. 5.6) stwierdzono, że stopień wzajemnego podobieństwa ich sekwencji 16S rDNA wynosił od 99,6% do 100%. Jednocześnie badane izolaty wykazały mieszczący się zakresie od 84,1 – 89,9% stopień podobieństwa sekwencji 16S rDNA W do sekwencji genu 16S rRNA referencyjnych szczepów rodzaju Mesorhizobium i Rhizobium oraz Bradyrhizobium (Tab. 5.5 i Tab. 5.6) stopień podobieństwa wynoszący od 94,8 do 100%, co potwierdza, że symbionty szczodrzyka czerniejącego należą do rodzaju Bradyrhizobium. W oparciu o metodę największej wiarygodności skonstruowano dwa drzewa filogenetyczne. Pierwsze, na którym przedstawiono pokrewieństwo badanych izolatów szczodrzyka czerniejącego i referencyjnych bakterii rodzaju Bradyrhizobium, Rhizobium i Mesorhizobium (Rys. 5.28) oraz drugie, na którym ujęto badane izolaty i bakterie rodzaju Bradyhizobium, do których mikrosymbionty szczodrzyka czerniejacego wykazuja najwyższy stopień podobieństwa (Rys. 5.29).

16S rDNA	LN1	LN2	LN4	LN10	LN11	LN20	LN23	LN24	LN26	LN30	LN32
LN1	-	100	100	100	99,8	100	100	100	99,7	99,8	99,7
LN2	100	-	100	100	99,8	100	100	100	99,7	99,8	99,7
LN4	100	100	-	100	99,8	100	100	100	99,7	99,8	99,7
LN10	100	100	100	-	99,8	100	100	100	99,7	99,8	99,7
LN11	99,8	99,8	99,8	99,8	-	99,8	99,8	99,8	99,7	99,8	99,7
LN20	100	100	100	100	99,8	-	100	100	99,7	99,8	99,7
LN23	100	100	100	100	99,8	100	-	100	99,7	99,8	99,7
LN24	100	100	100	100	99,8	100	100	-	99,7	99,8	99,7
LN26	99,7	99,7	99,7	99,7	99,7	99,7	99,7	99,7	-	99,7	99,6
LN30	99,8	99,8	99,8	99,8	99,8	99,8	99,8	99,8	99,2	-	99,9
LN32	99,7	99,7	99,7	99,7	99,7	99,7	99,7	99,7	99,6	99,9	-
Bradyrhizobium canariense BTA-1	99,6	99,6	99,4	99,6	99,6	99,6	99,5	99,5	99,4	99,6	99,6
Bradyrhizobium cytisi CTAW11	99,1	99,1	98,8	99,1	99,1	99,1	98,9	98,9	98,8	99,1	99,1
Bradyrhizobium diazoefficiens USDA 110	99,5	99,5	99,3	99,5	99,5	99,5	99,4	99,4	99,3	99,5	99,5
Bradyrhizobium elkanii USDA 76	96,8	96,8	96,5	96,8	96,8	96,8	96,6	96,6	96,5	96,8	96,8
Bradyrhizobium japonicum BGA-1	100	100	99,7	100	100	100	99,8	99,8	99,7	100	100
Bradyrhizobium japonicum USDA 6	99,8	99,8	99,5	99,8	99,8	99,8	99,6	99,6	99,5	99,8	99,8
Bradyrhizobium liaoningense LMG 18230	99,5	99,5	99,5	99,5	99,4	99,5	99,5	99,5	99,3	99,4	99,3
Mesorhizobium ciceri UPM-Ca7	87,2	85,3	87,3	86,6	87,1	87,3	86,1	87,7	87,8	87,8	87,1
Mesorhizobium loti LMG6125	88,1	85,7	87,2	87,7	88,2	88,2	86,8	87,7	88,9	88,3	88,3

Tab. 5.5. Stopień podobieństwa sekwencji 16S rDNA (%) badanych symbiontów *L. nigricans* i szczepów referencyjnych rodzaju *Bradyrhizobium, Mesorhizobium* i *Rhizobium*

Mesorhizobium mediterraneum LMG17148	88,5	85,6	88,7	87,5	88,1	88,7	87,3	88,1	88,4	88,2	88,4
Rhizobium etli CFN42	89,4	86,2	88,9	88,5	89,3	89,2	87,2	88,5	89,5	89,1	89,1
Rhizobium fabae CCBAU33202	89,5	86,8	89,8	88,4	89,8	89,2	87,5	88,6	89,4	89,6	89,7
Rhizobium grahamii CCGE502	89,9	85,7	88,2	88,9	89,6	89,2	87,8	88,5	88,7	88,1	89,7
<i>Rhizobium leguminosarum</i> bv. <i>viviae</i> USDA2370	88,2	85,1	88,7	87,1	88,3	88,4	87,4	88,4	88,2	88,1	88,7
<i>Rhizobium leguminosarum</i> bv. <i>trifolii</i> ATCC14480	88,3	85,4	88,5	87,2	88,1	88,5	87,2	88,4	88,1	88,2	88,8
Rhizobium pisi DSM30132	89,4	86,2	89,3	88,7	89,2	89,7	87,4	88,4	89,4	89,2	89,7
Rhizobium tropici CIAT899	87,1	84,1	87,2	86,2	87,6	87,9	86,9	87,4	87,3	87,5	87,4

Rys. 5.28. Drzewo filogenetyczne skonstruowane w oparciu o sekwencję genu 16S rRNA symbiontów *Lembotropis nigricans* oraz bakterii referencyjnych rodzaju *Bradyrhizobium*, *Mesorhiozobium* i *Rhizobium* pochodzące z bazy danych GenBank

Tab. 5.6. Stopień podobieństwa sekwencji 16S rDNA (%) badanych symbiontów *L. nigricans* i szczepów referencyjnych rodzaju *Bradyrhizobium*.

W tabeli zaznaczono (kolor zielony) referencyjny szczep *Bradyrhizobium japonicum* BGA-1, który wykazywał największy stopień podobieństwa sekwencji do badanych izolatów oraz szczep *Bradyrhizobium tropiciagri* SEMIA 6148, którego stopień podobieństwa sekwencji w stosunku do badanych szczepów był najniższy. Wytłuszczonym drukiem zaznaczono również szczep **Bosea thiooxidans** DSM 9653, przedstawiciel rodzaju *Bosea*, należącego do rodziny *Bradyrhizobiaceae* i posłużył do ukorzenienia drzewa

16S rDNA	LN1	LN2	LN4	LN10	LN11	LN20	LN23	LN24	LN26	LN30	LN32
LN1	-	100	100	100	99,8	100	100	100	99,7	99,8	99,7
LN2	100	-	100	100	99,8	100	100	100	99,7	99,8	99,7
LN4	100	100	-	100	99,8	100	100	100	99,7	99,8	99,7
LN10	100	100	100	-	99,8	100	100	100	99,7	99,8	99,7
LN11	99,8	99,8	99,8	99,8	-	99,8	99,8	99,8	99,7	99,8	99,7
LN20	100	100	100	100	99,8	-	100	100	99,7	99,8	99,7
LN23	100	100	100	100	99,8	100	-	100	99,7	99,8	99,7
LN24	100	100	100	100	99,8	100	100	-	99,7	99,8	99,7
LN26	99,7	99,7	99,7	99,7	99,7	99,7	99,7	99,7	-	99,7	99,6
LN30	99,8	99,8	99,8	99,8	99,8	99,8	99,8	99,8	99,2	-	99,9
LN32	99,7	99,7	99,7	99,7	99,7	99,7	99,7	99,7	99,6	99,9	-
Bradyrhizobium americanum CMVU 44	99,8	99,8	99,5	99,8	99,8	99,8	99,6	99,6	99,5	99,8	99,8
Bradyrhizobium arachidis LMG 26795	99,1	99,1	98,8	99,1	99,1	99,1	98,9	98,9	98,8	99,1	99,1
Bradyrhizobium betae LMG 21987	99,5	99,5	99,3	99,5	99,5	99,5	99,4	99,4	99,3	99,5	99,5
Bradyrhizobium caiani LMG 29967	99,5	99.5	99,2	99,5	99,5	99,5	99,3	99,3	99,2	99,5	99,5
Bradyrhizobium canariense BTA–1	99,6	99,6	99,4	99,6	99,6	99,6	99,5	99,5	99,4	99,6	99,6
Bradyrhizobium centrolobii BR 10245	96,4	96,4	96,2	96,2	96,2	96,2	96,1	96,1	96,2	96,2	96,2
Bradyrhizobium centrosemae A9	99,5	99,5	99,3	99,5	99,5	99,5	99,4	99,4	99,3	99,5	99,5
Bradyrhizobium cytisi CTAW11	99,1	99,1	98,8	99.1	99,1	99,1	98,9	98,9	98,8	99,1	99,1
Bradyrhizobium dagingense CCBAU 15774	99,8	99,8	99,5	99,8	99,8	99,8	99,6	99,6	99,5	99,8	99,8
Bradyrhizobium denitrificans LMG 8443	98,6	98,6	98,3	98,6	98,6	98,6	98,4	98,4	98,3	98,6	98,6
Bradyrhizobium diazoefficiens USDA 110	99,5	99,5	99,3	99,5	99,5	99,5	99,4	99,4	99,3	99,5	99,5
Bradyrhizobium elkanii USDA 76	96,8	96,8	96,5	96,8	96,8	96,8	96,6	96,6	96,5	96,8	96,8
Bradyrhizobium embranense SEMIA 6208	97,4	97,4	97,2	97,4	97,4	97,4	97,3	97,3	97,2	97,4	97,4
Bradyrhizobium erythrophlei CCBAU 53325	97,4	97,4	97,2	97,4	97,4	97,4	97,3	97,3	97,2	97,4	97,4
Bradyrhizobium ferriligni CCBAU 51502	95,1	95,1	94,8	95,1	95,1	95,1	94,9	94,9	94,8	95,1	95,1
Bradyrhizobium ganzhouense RITF806	99,4	99,4	99,1	99,4	99,4	99,4	99,2	99,2	99,1	99,4	99,4
Bradyrhizobium guangdongense CCBAU	00.2	00.2	00.1	00.2	00.2	00.2	00.1	00.1	00.1	00.2	00.2
51649	99,5	99,5	99,1	99,5	99,5	99,5	99,1	99,1	99,1	99,5	99,5
Bradyrhizobium guangxiense CCBAU 53363	99,5	99,5	99,3	99,5	99,5	99,5	99,4	99,4	99,3	99,5	99,5
Bradyrhizobium huanghuaihaiense CCBAU	99,2	99,2	99,0	99,2	99,2	99,2	99,1	99,1	99,0	99,2	99,2
Bradyrhizobium icense LMTR 13	97,3	97,3	97,1	97,3	97,3	97,3	97,2	97,2	97,1	97,3	97,3
Bradyrhizobium ingae BR10250	98,9	98,9	98,6	98,9	98,9	98,9	98,7	98,7	98,6	98,9	98,9
Bradyrhizobium iriomotense EK – 05	98,8	98,8	98,6	98,8	98,8	98,8	98,6	98,6	98,6	98,8	98,8
Bradyrhizobium japonicum BGA-1	100	100	99,7	100	100	100	99,8	99,8	99,7	100	100
Bradyrhizobium japonicum USDA 6	99,8	99,8	99,5	99,8	99,8	99,8	99,6	99,6	99,5	99,8	99,8
Bradyrhizobium jicamae PAC68	97,1	97,1	97,0	97,1	97,1	97,1	96,9	96,9	96,9	97,1	97,1
Bradyrhizobium kavangense 14 – 3	99,0	99,0	98,7	99,0	99,0	99,0	98,8	98,8	98,7	99,0	99,0
Bradyrhizobium lablabi CCBAU 23086	97,3	97,3	97,0	97,3	97,3	97,3	97,1	97,1	97,0	97,3	97,3
Bradyrhizobium liaoningense LMG 18230	99,5	99,5	99,5	99,5	99,4	99,5	99,5	99,5	99,3	99,4	99,3
Bradyrhizobium lupini USDA 3051	99,5	99,5	99,2	99,5	99,5	99,5	99,3	99,3	99,2	99,5	99,5
Bradyrhizobium macuxiense BR 10303	96,8	96,8	96,5	96,8	96,8	96,8	96,6	96,6	96,5	96,8	96,8
Bradyrhizobium manausense BR 3351	99,2	99,2	99,0	99,2	99,2	99,2	99,1	99,1	99,0	99,2	99,2
Bradyrhizobium namibiense 5-10	97,3	97,3	97,1	97,3	97,3	97,3	97,2	97,2	97,1	97,3	97,3
Bradyrhizobium neotropicale BR10247	96,6	96,6	96,4	96,6	96,6	96,6	96,5	96,5	96,4	96,6	96,6
Bradyrhizobium oligotrophicum S58	99,0	99,0	98,7	99,0	99,0	99,0	98,8	98,8	98,7	99,0	99,0
Bradyrhizobium ottawaense OO99	99,9	99,9	99,6	99,9	99,9	99,9	99,7	99,7	99,6	99,9	99,9
Bradyrhizobium pachyrhizi PAC48	96,9	96,9	96,6	96,9	96,9	96,9	96,7	96,7	96,6	96,9	96,9

Bradyrhizobium paxllaeri LMTR 21	97,3	97,3	97,1	97,3	97,3	97,3	97,2	97,2	97,1	97,3	97,3
Bradyrhizobium retamae Ro19	97,7	97,7	97,4	97,7	97,7	97,7	97,5	97,5	97,4	97,7	97,7
Bradyrhizobium rifense CTAW71	99,3	99,3	99,1	99,3	99,3	99,3	99,1	99,1	99,1	99,3	99,3
Bradyrhizobium subterraneum 58 2-1	99,7	99,7	99,5	99,7	99,7	99,7	99,5	99,5	99,5	99,7	99,7
Bradyrhizobium stylosanthis BR 446	99,2	99,2	99,0	99,2	99,2	99,2	99,1	99,1	99,0	99,2	99,2
Bradyrhizobium tropiciagri SEMIA 6148	96,2	96,2	96,0	96,2	96,2	96,2	96,1	96,1	96,0	96,2	96,2
Bradyrhizobium valentinum LmjM3	97,3	97,3	97,0	97,3	97,3	97,3	97,1	97,1	97,0	97,3	97,3
Bradyrhizobium vignae 7-2	98,8	98,8	98,6	98,8	98,8	98,8	98,6	98,6	98,6	98,8	98,8
Bradyrhizobium viridifuturi SEMIA 690	97,4	97,4	97,2	97,4	97,4	97,4	97,3	97,3	97,2	97,4	97,4
Bradyrhizobium yuanmingense CCBAU 10071	99,4	99,4	99,1	99,4	99,4	99,4	99,2	99,2	99,1	99,4	99,4
Bosea thiooxidans DSM 9653	92,0	92,0	91,7	92,0	92,0	92,0	91,8	91,8	91,7	92,0	92,0

Rys. 5.29. Drzewo filogenetyczne skonstruowane w oparciu o sekwencję genu 16S rRNA symbiontów *Lembotropis nigricans* oraz bakterii referencyjnych rodzaju *Bradyrhizobium* pochodzących z bazy danych GenBank

Otrzymany filogram wskazuje, że analizowane szczepy grupują się razem z gatunkami B. japonicum BGA-1^T, B. liaoningense LMG18230^T, B. daqingense 15774^T, *B. americanum* CMVU44^T, *B. japonicum* USDA6^T, CCBAU B. yuanmingense CCBAU 10071^T, B. subterraneum 58 2–1^T, B. canariense BTA–1^T i B. lupini USDA 3051^T przy stopniu podobieństwa sewencji 16S rDNA od 99,1 do 100%. Najwyższy stopień podobieństwa sekwencji 16S rDNA badane szczepy wykazały względem 16S rDNA *Bradyrhizobium japonicum* BGA-1^T (99,7 – 100%), co może sugerować o przynależności symbiontów L. nigricans do gatunku Bradyrhizobium japonicum. Stopień podobieństwa sekwencji 16S rDNA szczodrzyka czerniejącego i pozostałych symbiontów gatunków rodzaju Bradyrhizobium włączonych do analizy (z wyjątkiem Bosea thiooxidans DSM 9653) wynosi 94,8 - 100%. Wskazuje to na bardzo niski poziom heterogenności sekwencji genu 16S rRNA rodzaju Bradyrhizobium oraz sugeruje, że ten marker molekularny ma poważne

Wyniki porównawczej analizy sekwencji 16S rDNA symbiontów *L. nigricans* i innych bakterii brodawkowych potwierdziły wcześniejsze wyniki analizy numerycznej cech fenotypowych (Rys. 5.4) i wykazały, że ryzobia specyficzne dla szczodrzyka czerniejącego należą do rodzaju *Bradyrhizobium* oraz zasugerowały ich przynależność do gatunku *B. japonicum*. Potwierdzenie przynależności gatunkowej i rodzajowej badanych mikrosymbiontów wymaga przeanalizowania sekwencji innych genów, tj. tzw. genów metabolizmu podstawowego.

ograniczenia przy wyznaczaniu przynależności gatunkowej.

5.7. Analiza filogenetyczna genów metabolizmu podstawowego *atpD*, *dnaK*, *gyrB*, *recA* mikrosymbiontów *Lembotropis nigricans*

Możliwość horyzontalnego transferu genu 16S rRNA (HGT) oraz konserwatywność jego sekwencji ogranicza wykorzystanie 16S rDNA w badaniach taksonomicznych. Z tych powodów, w celu określenia przynależności gatunkowej bakterii wykorzystuje się obecnie dodatkowo inne sekwencje, tj. sekwencje genów metabolizmu podstawowego (ang. *housekeeping genes*), np. *atpD*, *dnaK*, *gyrB*, czy też *recA*. Dopiero poparcie wniosków z analizy filogenetycznej sekwencji genu 16S rRNA analizą sekwencji genów rdzeniowych pozwala z pełnym przekonaniem formułować rzetelne wnioski o genealogii mikroorganizmów. Dalsze badania taksonomiczne symbiontów *L. nigricans* przeprowadzono analizując sekwencje czterech genów rdzeniowych tj.: atpD – kodujący β -podjednostkę syntazy ATP, dnaK – kodujący białko opiekuńcze dnaK, gyrB – kodujący gyrazę B oraz rpoB – kodujący podjednostkę β polimerazy RNA.

Analizowane geny, jedenastu izolatów z brodawek korzeniowych *L. nigricans* amplifikowano w reakcji PCR stosując odpowiednie dla danego genu startery opisane w rozdziale 4.2.4.5. Produkty reakcji amplifikacji zsekwencjonowano zgodnie z opisem zamieszczonym w rozdziałach 4.2.4.9.1 – 4.2.4.9.5.

Do ustalenia pokrewieństwa filogenetycznego mikrosymbiontów L. nigricans z bakteriami rodzaju Bradyrhizobium i konstrukcji filogramu w oparciu o sekwencje genow metabolizmu podstawowego wykorzystano metodę największej wiarygodności (ML) przy maksymalnym współczynniku poparcia 'bootstrap' wynoszącym 1000 oraz stosując model substytucji GTR (ang. General Time Reversible), który ustalono wykorzystując narzędzie jMoldelTest. Szczegółowe informacje dotyczące modelu substytucji podano w rozdziale 4.2.4.9.5.

Podstawowe cechy analizowanych sekwencji zestawiono w Tabeli 5.6.

Analizowana sekwencja	Długość sekwencji [nt]	Liczba miejsc monomorficznych	Liczba miejsc polimorficznych
atpD	429	294	135
dnaK	204	143	61
gyrB	563	355	208
rpoB	452	312	140

Tab. 5.6. Charakterystyka analizowanych sekwencji czterech genów metabolizmu podstawowego użytych w badaniach pokrewieństwa filogenetycznego mikrosymbiontów *Lembotropis nigricans*

Sekwencja genu *atpD* analizowanych mikrosymbiontów szczodrzyka czerniejącego, a także znanych gatunków rodzaju *Bradyrhizobium* pochodzących z bazy danych GenBank miała długość 429 nukleotydów z czego 135 miejsc stanowiły miejsca polimorficzne (Tab. 5.6). Analizowane sekwencje genu *atpD* badanych izolatów wykazały stopień identyczności od 97,2 do 100% (Tab. 5.7), natomiast stopień podobieństwa sekwencji genu *atpD* mikrosymbiontów *L. nigricans* do sekwencji tego genu bakterii rodzaju *Bradyrhizobium* zawierał się w przedziale 90,2% dla *B. retamae* Ro19^T do 97,6% dla *B. japonicum* USDA 6^T. Analiza sekwencji genu *atpD* była podstawą do skonstruowania drzewa filogenetycznego przedstawiającego pokrewieństwo filogenetyczne sekwencji genu *atpD* symbiontów

L. nigricans i bakterii rodzaju Rhizobium, Mesorhizobium, Ensifer oraz Bradyrhizobium (Rys.5.30A i Rys. 5.30B).

Na filogramie genu *atpD* badane izolaty LN utworzyły wspólną grupę z bakteriami rodzaju *Bradyrhizobium* przy współczynniku poparcia "bootstrap" wynoszącym 89% (wyłączając *B. vignae* $7-2^{T}$) (Rys. 5.30B). Najbliższym sąsiadem badanych izolatów, pochodzących z brodawek *L. nigricans* jest *B. japonicum* USDA 6^T, stopień podobieństwa sekwencji genu *atpD* tego referencyjnego szczepu i izolatów LN wynosił 95,8 – 97,6% (Tab. 5.7).

Tab. 5.7. Stopień podobieństwa sekwencji genu *atpD* mikrosymbiontów szczodrzyka czerniejącego oraz referencyjnych bakterii brodawkowych rodzaju *Bradyrhizobium*. Wartości wyrażone w %

atpD	LN1	LN2	LN4	LN10	LN11	LN20	LN23	LN24	LN26	LN30	LN32
LN1	-	98,1	97,2	98,8	97,9	97,9	97,9	97,6	97,7	97,4	98,1
LN2	98,1	-	98,8	98,8	99,7	99,7	99,3	99,5	99,7	99,3	99,5
LN4	97,2	98,8	-	98,3	99,0	99,0	98,8	98,3	99,0	98,6	98,8
LN10	98,8	98,8	98,3	-	99,0	99,0	99,0	98,3	98,6	98,6	98,8
LN11	97,9	99,7	99,0	99,0	-	100	99,5	99,3	99,5	99,5	99,3
LN20	97,9	99,7	99,0	99,0	100	-	99,5	99,3	99,5	99,5	99,3
LN23	97,9	99,3	98,8	99,0	99,5	99,5	-	98,8	99,0	99,0	99,3
LN24	97,6	99,5	98,3	98,3	99,3	99,3	98,8	-	99,3	98,8	99,0
LN26	97,9	99,7	99,0	98,6	99,5	99,5	99,0	99,3	-	99,0	99,5
LN30	97,4	99,3	98,6	98,6	99,5	99,5	99,0	98,8	99,0	-	98,8
LN32	98,1	99,5	98,8	98,8	99,3	99,3	99,3	99,0	99,5	98,8	-
Bradyrhizobium arachidis CCBAU 051107	91,8	93,4	93,0	92,7	93,7	93,7	93,2	93,0	93,2	93,2	93,0
Bradyrhizobium betae LMG 21987	93,4	94,8	93,9	93,7	94,6	94,6	94,1	94,4	94,6	94,1	94,4
Bradyrhizobium canariense BTA–1	93,9	95,8	95,1	95,1	96,0	96,0	95,5	95,3	95,5	95,5	95,3
Bradyrhizobium cytisi CTAW 11	94,1	96,0	94,8	94,8	95,8	95,8	95,3	95,5	95,8	95,3	95,5
Bradyrhizobium daqingense CCBAU 15774	91,3	92,7	91,6	91,8	92,5	92,5	92,0	92,3	92,5	92,0	92,3
Bradyrhizobium denitrificans LMG 8443	91,8	93,4	92,3	92,3	93,2	93,2	92,7	93,0	93,2	92,7	93,0
Bradyrhizobium diazoefficiens USDA110	94,4	96,2	95,1	95,1	96,0	96,0	95,5	95,8	96,0	95,5	95,8
Bradyrhizobium elkanii USDA 76	93,9	95,5	94,4	94,4	95,3	95,3	94,8	95,1	95,3	94,8	95,1
Bradyrhizobium huanghuaihaiense CCBAU 23303	93,0	94,8	93,7	93,7	94,6	94,6	94,1	94,4	94,6	94,1	94,4
Bradyrhizobium icense LMTR 13	91,3	93,0	92,3	92,3	93,2	93,2	92,7	92,5	92,7	92,7	92,5
Bradyrhizobium iriomotense LMG 24129	94,4	96,0	94,8	94,8	95,8	95,8	95,3	95,5	95,8	95,3	95,5
Bradyrhizobium japonicum USDA6	95,8	97,6	96,5	96,5	97,4	97,4	96,9	97,2	97,4	96,9	97,2
Bradyrhizobium jicamae PAC 68	93,2	94,8	93,9	93,9	94,6	94,6	94,1	94,4	94,6	94,1	94,4
Bradyrhizobium kavangense 14 – 3	94,1	95,8	94,6	94,6	95,5	95,5	95,1	95,3	95,5	95,1	95,3
Bradyrhizobium lablabi CCBAU 23086	92,0	93,7	92,7	92,5	93,4	93,4	93,0	93,2	93,4	93,4	93,2
Bradyrhizobium liaoningense LMG 18230	92,0	93,4	92,5	92,3	93,2	93,2	92,7	93,0	93,2	92,7	93,0
Bradyrhizobium namibiense 5 – 10	92,0	93,9	92,7	92,7	93,7	93,7	93,2	93,4	93,7	93,2	93,4
Bradyrhizobium oligotrophicum LMG 10732	91,1	92,3	91,8	91,1	92,0	92,0	91,6	91,8	92,5	91,6	92,0
Bradyrhizobium ottawaense OO99	93,0	94,4	93,4	93,2	94,1	94,1	93,7	93,9	94,1	93,7	93,9
Bradyrhizobium pachyrhizi PAC 48	93,0	94,4	93,2	93,4	94,1	94,1	93,7	93,9	94,1	93,7	93,9
Bradyrhizobium paxllaeri LMTR 21	91,3	93,2	92,0	92,0	93,0	93,0	92,5	92,7	93,0	92,5	92,7
Bradyrhizobium retamae Ro19	90,2	91,8	90,6	90,6	91,6	91,6	91,1	91,3	91,6	91,1	91,3
Bradyrhizobium rifense CTAW 71	92,7	94,6	93,4	93,4	94,4	94,4	93,9	94,1	94,4	93,9	94,1
Bradyrhizobium subterreneum 58	93,7	95,3	94,6	94,6	95,5	95,5	95,1	94,8	95,1	95,1	94,8
Bradyrhizobium vignae 7 – 2	93,2	94,8	93,9	93,7	94,6	94,6	94,1	94,4	94,6	94,1	94,4
Bradyrhizobium yuanmingense CCBAU 10071	94,8	96,5	95,3	95,3	96,2	96,2	95,8	96,0	96,2	95,8	96,0
Rhodopseudomonas palustris CGA009	84,8	86,7	85,7	85,5	86,4	86,4	86,0	86,2	86,4	86,0	86,2

Objaśnienia: Szarym kolorem zaznaczona szczepy o największym i najmniejszym stopniu podobieństwa sekwencji

Rys. 5.30A. Drzewo filogenetyczne skonstruowane w oparciu o analizę sekwencji genu *atpD* badanych mikrosymbiontów *Lembotropis nigricans* oraz referencyjnych gatunków bakterii rodzaju *Rhizobium, Mesorhizobium, Ensifer* i *Bradyrhizobium*

Rys. 5.30B. Drzewo filogenetyczne skonstruowane w oparciu o analizę sekwencji genu *atpD* badanych mikrosymbiontów *Lembotropis nigricans* oraz referencyjnych gatunków bakterii rodzaju Bradyrhizobium pobranych z bazy danych GeneBank

Drugim markerem molekularnym, który użyto w celu zobrazowania filogenezy izolatów pochodzących z brodawek korzeniowych *L. nigricans* był gen *dnaK*. Analizowana sekwencja miała wielkość 204 nukleotydów i zawierała 61 miejsc polimorficznych. Wzajemne podobieństwo sekwencji badanego genu symbiontów *L. nigricans* mieściło się w granicach 99,5 – 100%, natomiast do sekwencji genu *dnaK* bakterii rodzaju *Bradyrhizobium* zawierało się w przedziale 85,7% (*B. retamae* Ro19^T) do 98,5% (*B. japonicum* USDA 6^T) (Tab. 5.8). Analiza porównawcza sekwencji genu *dnaK* była podstawą do skonstruowania drzewa filogenetycznego przedstawionego na Rys. 5.31. Na filogramie genu *dnaK* badane izolaty LN utworzyły wspólną grupę z bakteriami rodzaju *Bradyrhizobium* przy współczynniku poparcia "bootstrap" wynoszącym 97%. Najbliższym sąsiadem badanych izolatów pochodzących z brodawek *L. nigricans*, na filogramie genu *dnaK* jest referencyjny szczep *Bradyrhizobium japonicum* USDA 6^T (Rys. 5.31A, 5.31B), podobnie jak w przypadku filogramu genu *atpD*, co potwierdza, że symbionty specyficzne dla szczodrzyka czerniejącego mogą należeć do gatunku *B. japonicum*.

dnaK	LN1	LN2	LN4	LN10	LN11	LN20	LN23	LN24	LN26	LN30	LN32
LN1	-	100	100	99,5	100	99,0	99,5	99,5	100	99,5	100
LN2	100	-	100	99,5	100	99,0	99,5	99,5	100	99,5	100
LN4	100	100	-	99,5	100	99,0	99,5	99,5	100	99,5	100
LN10	99,5	99,5	99,5	-	99,5	99,5	100	100	99,5	100	99,5
LN11	100	100	100	99,5	-	99,0	99,5	99,5	100	99,5	100
LN20	99,0	99,0	99,0	99,5	99,0	-	99,5	99,5	99,0	99,5	99,0
LN23	99,5	99,5	99,5	100	99,5	99,5	-	100	99,5	100	99,5
LN24	99,5	99,5	99,5	100	99,5	99,5	100	-	99,5	100	99,5
LN26	100	100	100	99,5	100	99,0	99,5	99,5	-	99,5	100
LN30	99,5	99,5	99,5	100	99,5	99,5	100	100	99,5	-	99,5
LN32	100	100	100	99,5	100	99,0	99,5	99,5	100	99,5	-
Bradyrhizobium arachidis CCBAU 051107	96,0	96,0	96,0	95,5	96,0	95,0	95,5	95,5	96,0	95,5	96,0
Bradyrhizobium betae LMG 21987	92,1	92,1	92,1	91,6	92,1	92,1	91,6	91,6	92,1	91,6	92,1
Bradyrhizobium canariense BTA-1	94,6	94,6	94,6	94,1	94,6	94,1	94,1	94,1	94,6	94,1	94,6
Bradyrhizobium cytisi CTAW 11	89,2	89,2	89,2	88,7	89,2	88,7	88,7	88,7	89,2	88,7	89,2
Bradyrhizobium daqingense CCBAU 15774	96,0	96,0	96,0	95,5	96,0	95,0	95,5	95,5	96,0	95,5	96,0
Bradyrhizobium denitrificans LMG 8443	88,2	88,2	88,2	87,7	88,2	88,2	87,7	87,7	88,2	87,7	88,2
Bradyrhizobium diazoefficiens USDA110	95,0	95,0	95,0	94,6	95,0	94,1	94,6	94,6	95,0	94,6	95,0
Bradyrhizobium elkanii USDA 76	87,7	87,7	87,7	87,2	87,7	87,7	87,2	87,2	87,7	87,2	87,7
Bradyrhizobium huanghuaihaiense CCBAU 23303	97,0	97,0	97,0	96,5	97,0	96,0	96,5	96,5	97,0	96,5	97,0
Bradyrhizobium icense LMTR 13	87,7	87,7	87,7	87,2	87,7	87,7	87,2	87,2	87,7	87,2	87,7
Bradyrhizobium iriomotense LMG 24129	89,7	89,7	89,7	89,2	89,7	89,7	89,2	89,2	89,7	89,2	89,7
Bradyrhizobium japonicum USDA6	98,5	98,5	98,5	98,0	98,5	97,5	98,0	98,0	98,5	98,0	98,5
Bradyrhizobium jicamae PAC 68	87,7	87,7	87,7	87,2	87,7	87,7	87,2	87,2	87,7	87,2	87,7
Bradyrhizobium kavangense 14 – 3	96,0	96,0	96,0	95,5	96,0	95,0	95,5	95,5	96,0	95,5	96,0
Bradyrhizobium lablabi CCBAU 23086	88,2	88,2	88,2	87,7	88,2	88,2	87,7	87,7	88,2	87,7	88,2

Tab. 5.8. Stopień podobieństwa sekwencji, przedstawiony w procentach, genu *dnaK* mikrosymbiontów szczodrzyka czerniejącego oraz referencyjnych bakterii brodawkowych rodzaju *Bradyrhizobium* [%]

Bradyrhizobium liaoningense LMG 18230	96,0	96,2	96,0	95,5	96,0	95,0	95,5	95,5	96,0	95,5	96,0
Bradyrhizobium namibiense 5 – 10	88,7	88,7	88,7	88,2	88,7	88,7	88,2	88,2	88,7	88,2	88,7
Bradyrhizobium oligotrophicum LMG 10732	90,1	90,1	90,1	89,7	90,1	89,7	89,7	89,7	90,1	89,7	90,1
Bradyrhizobium ottawaense OO99	97,0	97,0	97,0	96,5	97,0	96,0	96,5	96,5	97,0	96,5	97,0
Bradyrhizobium pachyrhizi PAC 48	87,7	87,7	87,7	87,2	87,7	87,7	87,2	87,2	87,7	87,2	87,7
Bradyrhizobium paxllaeri LMTR 21	88,2	88,2	88,2	87,7	88,2	88,2	87,7	87,7	88,2	87,7	88,2
Bradyrhizobium retamae Ro19	86,2	86,2	86,2	85,7	86,2	86,2	85,7	85,7	86,2	85,7	86,2
Bradyrhizobium rifense CTAW 71	89,2	89,2	89,2	88,7	89,2	88,7	88,7	88,7	89,2	88,7	89,2
Bradyrhizobium subterreneum 58	91,1	91,1	91,1	90,6	91,1	91,1	90,6	90,6	91,1	90,6	91,1
Bradyrhizobium vignae 7 – 2	91,6	91,6	91,6	91,1	91,6	91,6	91,1	91,1	91,6	91,1	91,6
Bradyrhizobium yuanmingense CCBAU 10071	98,5	98,5	98,5	98,0	98,5	97,5	98,0	98,0	98,5	98,0	98,5
Rhodopseudomonas palustris CGA009	85,7	85,7	85,7	85,2	85,7	85,2	85,2	85,2	85,7	85,2	85,7

Objaśnienia: Szarym kolorem zaznaczona szczepy o największym i najmniejszym stopniu podobieństwa sekwencji

Rys. 5.31A. Drzewo filogenetyczne powstałe w oparciu o analizę sekwencji genu *dnaK* badanych mikrosymbiontów *Lembotropis nigricans* oraz referencyjnych gatunków bakterii rodzaju *Rhizobium*, *Mesorhizobium*, *Ensifer* i *Bradyrhizobium* pobranych z bazy danych GeneBank

Rys. 5.31B. Drzewo filogenetyczne powstałe w oparciu o analizę sekwencji genu *dnaK* badanych mikrosymbiontów *Lembotropis nigricans* oraz referencyjnych gatunków bakterii rodzaju Bradyrhizobium pobranych z bazy danych GeneBank

Do ustalenia filogenezy mikrosymbiontów pochodzących z brodawek korzeniowych szczodrzyka czerniejącego posłużono się również genem *gyrB*. Wielkość porównywanej sekwencji wynosiła 563 nukleotydy, a ilość miejsc polimorficznych 208. Podobieństwo sekwencji tego genetycznego markera badanych mikrosymbiontów wynosiło od 99,2 do 100%. Podobnie jak w przypadku wcześniej omawianych genów *atpD* i *dnaK*, najmniejszy stopień podobieństwa sekwencje genu *gyrB* wykazały w stosunku do sekwencji tego genu *Bradyrhizobium retamae* Ro19^T – 87,2%. Największy stopień podobieństwa sekwencji genu *gyrB* izolatów *L. nigricans* stwierdzono do referencyjnej sekwencji *gyrB Bradyrhizobium betae* LMG 21987^T (96,4%) (Tab. 5.9) (Rys. 5.32B).

gyrB	LN1	LN2	LN4	LN10	LN11	LN20	LN23	LN24	LN26	LN30	LN32
LN1	-	100	100	99,2	99,2	99,2	99,2	100	100	99,2	100
LN2	100	-	100	99,2	99,2	99,2	99,2	100	100	99,2	100
LN4	100	100	-	99,2	99,2	99,2	99,2	100	100	99,2	100
LN10	99,2	99,2	99,2	-	100	100	100	99,2	99,2	100	99,2
LN11	99,2	99,2	99,2	100	-	100	100	99,2	99,2	100	99,2
LN20	99,2	99,2	99,2	100	100	-	100	99,2	99,2	100	99,2
LN23	99,2	99,2	99,2	100	100	100	-	99,2	99,2	100	99,2
LN24	100	100	100	99,2	99,2	99,2	99,2	-	100	99,2	100
LN26	100	100	100	99,2	99,2	99,2	99,2	100	1	99,2	100
LN30	99,2	99,2	99,2	100	100	100	100	99,2	99,2	-	99,2
LN32	100	100	100	99,2	99,2	99,2	99,2	100	100	99,2	-
Bradyrhizobium arachidis CCBAU 051107	92,8	92,8	92,8	92,8	92,8	92,8	92,8	92,8	92,8	92,8	92,8
Bradyrhizobium betae LMG 21987	96,2	96,2	96,2	96,4	96,4	96,4	96,4	96,2	96,2	96,4	96,2
Bradyrhizobium canariense BTA-1	95,5	95,5	95,5	95,5	95,5	95,5	95,5	95,5	95,5	95,5	95,5
Bradyrhizobium cytisi CTAW 11	93,7	93,7	93,7	93,9	93,9	93,9	93,9	93,7	93,7	93,9	93,7
Bradyrhizobium daqingense CCBAU 15774	93,6	93,6	93,6	93,4	93,4	93,4	93,4	93,6	93,6	93,4	93,6
Bradyrhizobium denitrificans LMG 8443	88,4	88,4	88,4	88,6	88,6	88,6	88,6	88,4	88,4	88,6	88,4
Bradyrhizobium diazoefficiens USDA110	95,3	95,3	95,3	95,3	95,3	95,3	95,3	95,3	95,3	95,3	95,3
Bradyrhizobium elkanii USDA 76	92,1	92,1	92,1	91,6	91,6	91,6	91,6	92,1	92,1	91,6	92,1
Bradyrhizobium huanghuaihaiense CCBAU 23303	94,4	94,4	94,4	94,6	94,6	94,6	94,6	94,4	94,4	94,6	94,4
Bradyrhizobium icense LMTR 13	88,2	88,2	88,2	88,2	88,2	88,2	88,2	88,2	88,2	88,2	88,2
Bradyrhizobium iriomotense LMG 24129	92,5	92,5	92,5	92,7	92,7	92,7	92,7	92,5	92,5	92,7	92,5
Bradyrhizobium japonicum USDA6	95,2	95,2	95,2	94,8	94,8	94,8	94,8	95,2	95,2	94,8	95,2
Bradyrhizobium jicamae PAC 68	88,9	88,9	88,9	88,9	88,9	88,9	88,9	88,9	88,9	88,9	88,9
Bradyrhizobium kavangense 14 – 3	93,4	93,4	93,4	93,4	93,4	93,4	93,4	93,4	93,4	93,4	93,4
Bradyrhizobium lablabi CCBAU 23086	88,4	88,4	88,4	88,4	88,4	88,4	88,4	88,4	88,4	88,4	88,4
Bradyrhizobium liaoningense LMG 18230	94,6	94,6	94,6	94,8	94,8	94,8	94,8	94,6	94,6	94,8	94,6
Bradyrhizobium namibiense 5 – 10	89,5	89,5	89,5	89,5	89,5	89,5	89,5	89,5	89,5	89,5	89,5
Bradyrhizobium oligotrophicum LMG 10732	89,6	89,6	89,6	89,8	89,8	89,8	89,8	89,6	89,6	89,8	89,6
Bradyrhizobium ottawaense OO99	93,9	93,9	93,9	94,1	94,1	94,1	94,1	93,9	93,9	94,1	93,9
Bradyrhizobium pachyrhizi PAC 48	92,5	92,5	92,5	92,0	92,0	92,0	92,0	92,5	92,5	92,0	92,5
Bradyrhizobium paxllaeri LMTR 21	88,4	88,4	88,4	88,4	88,4	88,4	88,4	88,4	88,4	88,4	88,4
Bradyrhizobium retamae Ro19	87,2	87,2	87,2	87,2	87,2	87,2	87,2	87,2	87,2	87,2	87,2
Bradyrhizobium rifense CTAW 71	94,8	94,8	94,8	94,8	94,8	94,8	94,8	94,8	94,8	94,8	94,8
Bradyrhizobium subterreneum 58	91,2	91,2	91,2	91,4	91,4	91,4	91,4	91,2	91,2	91,4	91,2
Bradyrhizobium vignae 7 – 2	88,4	88,4	88,4	88,6	88,6	88,6	88,6	88,4	88,4	88,6	88,4
Bradyrhizobium yuanmingense CCBAU 10071	92,3	92,3	92,3	92,5	92,5	92,5	92,5	92,3	92,3	92,5	92,3
Rhodopseudomonas palustris CGA009	83,4	83,4	83,4	83,4	83,4	83,4	83,4	83,4	83,4	83,4	83,4
Obiośniania, Czanum Italanam zaznacz	~						:			an at	

Tab. 5.9. Stopień podobieństwa sekwencji genu *gyrB* mikrosymbiontów szczodrzyka czerniejącego oraz referencyjnych bakterii brodawkowych rodzaju *Bradyrhizobium*. Wartości wyrażone w %

Objaśnienia: Szarym kolorem zaznaczona szczepy o największym i najmniejszym stopniu podobieństwa sekwencji

Rys. 5.32A. Drzewo filogenetyczne powstałe w oparciu o analizę sekwencji genu *gyrB* badanych mikrosymbiontów *Lembotropis nigricans* oraz referencyjnych gatunków bakterii rodzaju *Rhizobium, Mesorhizobium, Ensifer* i *Bradyrhizobium* pobranych z bazy danych GeneBank

Rys. 5.32B. Drzewo filogenetyczne powstałe w oparciu o analizę sekwencji genu *gyrB* badanych mikrosymbiontów *Lembotropis nigricans* oraz referencyjnych gatunków bakterii rodzaju Bradyrhizobium pobranych z bazy danych GeneBank

Pokrewieństwo filogenetyczne symbiontów specyficznych dla szczodrzyka czerniejącego z innymi ryzobiami ustalono także w oparciu o analizę porównawczą sekwencji genu *rpoB*. Gen *rpoB* podobnie jak poprzednie geny metabolizmu podstawowego amplifikowano przy użyciu odpowiednich starterów, a następnie sekwencjonowano. Uzyskaną 563 – nukleotydową sekwencję, w której 208 miejsc stanowiły miejsca polimorficzne, poddano analizie porównawczej. Podobieństwo sekwencji genu *rpoB* mikrosymbiontów *L. nigricans* wynosiło od 98,2 do 100%, natomiast do sekwencji genu *rpoB* szczepów referencyjnych rodzaju *Bradyrhizobium* od 86,2% (*B. icense* LMTR 13) do 98,6% (*B. japonicum* USDA 6^T) (Tab. 5.10). Na podstawie sekwencji genu *rpoB* skonstruowano drzewo filogenetyczne (Rys. 5.33A, 5.33B), na którym mikrosymbionty szczodrzyka czerniejącego utworzyły wspólną grupę z referencyjnym szczepem *B. japonicum* USDA 6^T, co wraz z wysokim (97,7 – 98,6%) wzajemnym stopniem podobieństwa sekwencji genu *rpoB* tych bakterii, może wskazywać, że badane izolaty z brodawek korzeniowych *L. nigricans* należą do gatunku *B. japonicum*.

rpoB	LN1	LN2	LN4	LN10	LN11	LN20	LN23	LN24	LN26	LN30	LN32
LN1	-	99,5	99,1	99,1	99,5	99,3	99,3	98,8	99,1	98,2	99,5
LN2	99,5	-	99,1	99,1	99,5	99,3	99,3	98,8	99,1	98,2	100
LN4	99,1	99,1	-	100	99,1	98,8	98,8	99,7	100	99,1	99,1
LN10	99,1	99,1	100	-	99,1	98,8	98,8	99,7	100	99,1	99,1
LN11	99,5	99,5	99,1	99,1	-	99,7	99,7	98,8	99,1	98,2	99,5
LN20	99,3	99,3	98,8	98,8	99,7	-	100	99,1	98,8	98,0	99,3
LN23	99,3	99,3	98,8	98,8	99,7	100	-	99,1	98,8	98,0	99,3
LN24	98,8	98,8	99,7	99,7	98,8	99,1	99,1	-	99,7	98,8	98,8
LN26	99,1	99,1	100	100	99,1	98,8	98,8	99,7	-	99,1	99,1
LN30	98,2	98,2	99,1	99,1	98,2	98,0	98,0	98,8	99,1	-	98,2
LN32	99,5	100	99,1	99,1	99,5	99,3	99,3	98,8	99,1	98,2	-
Bradyrhizobium arachidis CCBAU 051107	93,1	93,5	93,1	93,1	93,1	92,9	92,9	92,9	93,1	92,2	93,5
Bradyrhizobium betae LMG 21987	95,7	95,7	95,3	95,3	95,7	95,5	95,5	95,1	95,3	94,4	95,7
Bradyrhizobium canariense BTA-1	94,9	95,1	94,4	94,4	94,9	94,6	94,6	94,2	94,4	93,5	95,1
Bradyrhizobium cytisi CTAW 11	96,4	96,6	96,4	96,4	96,4	96,2	96,2	96,2	96,4	95,5	96,6
Bradyrhizobium daqingense CCBAU 15774	92,6	93,1	92,2	92,2	92,6	92,4	92,4	92,0	92,2	91,3	93,1
Bradyrhizobium denitrificans LMG 8443	88,2	88,7	87,8	87,8	88,2	88,0	88,0	87,6	87,8	86,9	88,7
Bradyrhizobium diazoefficiens USDA110	94,4	94,9	94,0	94,0	94,4	94,2	94,2	93,8	94,0	93,1	94,9
Bradyrhizobium elkanii USDA 76	89,1	89,1	88,7	88,7	89,1	88,9	88,9	88,4	88,7	87,8	89,1
Bradyrhizobium huanghuaihaiense CCBAU 23303	93,8	94,2	93,3	93,3	93,8	93,5	93,5	93,1	93,3	92,4	94,2
Bradyrhizobium icense LMTR 13	87,1	87,1	87,1	87,1	87,1	87,1	87,1	87,1	87,1	86,2	87,1
Bradyrhizobium iriomotense LMG 24129	91,1	91,5	90,7	90,7	91,1	90,9	90,9	90,4	90,7	89,8	91,5
Bradyrhizobium japonicum USDA6	98,6	98,6	98,6	98,6	98,6	98,4	98,4	98,4	98,6	97,7	98,6
Bradyrhizobium jicamae PAC 68	88,9	88,9	88,4	88,4	88,9	88,9	88,9	88,4	88,4	87,6	88,9
Bradyrhizobium kavangense 14 – 3	93,1	93,5	92,6	92,6	93,1	92,9	92,9	92,4	92,6	91,8	93,5
Bradyrhizobium lablabi CCBAU 23086	88,9	88,9	88,4	88,4	88,9	88,9	88,9	88,4	88,4	87,6	88,9

Tab. 5.10. Stopień podobieństwa sekwencji genu *rpoB* mikrosymbiontów szczodrzyka czerniejącego oraz referencyjnych bakterii brodawkowych rodzaju *Bradyrhizobium*. Wartości wyrażone w %

Bradyrhizobium liaoningense LMG 18230	93,5	94,0	93,1	93,1	93,5	93,3	93,3	92,9	93,1	92,2	94,0
Bradyrhizobium namibiense 5 – 10	87,6	88,0	87,1	87,1	87,6	87,3	87,3	86,9	87,1	86,2	88,0
Bradyrhizobium oligotrophicum LMG 10732	89,1	89,6	88,7	88,7	89,1	88,9	88,9	88,4	88,7	87,8	89,6
Bradyrhizobium ottawaense OO99	93,3	93,8	92,9	92,9	93,3	93,1	93,1	92,6	92,9	92,0	93,8
Bradyrhizobium pachyrhizi PAC 48	88,7	88,7	88,2	88,2	88,7	88,4	88,4	88,0	88,2	87,3	88,7
Bradyrhizobium paxllaeri LMTR 21	88,9	88,9	88,7	88,7	88,9	88,9	88,9	88,7	88,7	87,8	88,9
Bradyrhizobium retamae Ro19	87,3	87,3	86,9	86,9	87,3	87,3	87,3	86,9	86,9	86,0	87,3
Bradyrhizobium rifense CTAW 71	96,2	96,6	96,2	96,2	96,2	96,0	96,0	96,0	96,2	95,3	96,6
Bradyrhizobium subterreneum 58	92,9	93,3	92,9	92,9	92,9	92,6	92,6	92,6	92,9	92,0	93,3
Bradyrhizobium vignae 7 – 2	88,2	88,7	87,8	87,8	88,2	88,0	88,0	87,6	87,8	86,9	88,7
Bradyrhizobium yuanmingense CCBAU 10071	92,6	93,1	92,2	92,2	92,6	92,4	92,4	92,0	92,2	91,3	93,1
Rhodopseudomonas palustris CGA009	85,7	85,7	85,9	85,9	85,7	85,4	85,4	85,7	85,9	85,0	85,7

Objaśnienia: Szarym kolorem zaznaczona szczepy o największym i najmniejszym stopniu podobieństwa sekwencji

Rys. 5.33A. Drzewo filogenetyczne powstałe w oparciu o analizę sekwencji genu *rpoB* badanych mikrosymbiontów *Lembotropis nigricans* oraz referencyjnych gatunków bakterii rodzaju *Rhizobium*, *Mesorhizobium*, *Ensifer* i *Bradyrhizobium* pobranych z bazy danych GeneBank

Rys. 5.33B. Drzewo filogenetyczne powstałe w oparciu o analizę sekwencji genu *rpoB* badanych mikrosymbiontów *Lembotropis nigricans* oraz referencyjnych gatunków bakterii rodzaju B*radyrhizobium* (B) pobranych z bazy danych GeneBank

5.7.1. Wielolokusowa analiza sekwencji genów: *atpD – dnaK – gyrB – rpoB* mikrosymbiontów *Lembotropis nigricans* (MLSA)

W celu określenie przynależności gatunkowej badanych mikrosymbiontów *L. nigricans* przeprowadzono wielolokusową analizę połączonych sekwencji nukleotydowych czterech genów metabolizmu podstawowego: *atpD*, *dnaK*, *gyrB* i *rpoB*, powszechnie stosowanych w badaniach filogenetycznych bakterii. W porównaniu do sekwencji genu 16S rRNA wykazują one znacznie wyższy poziom zróżnicowania, co pozwala na klasyfikację gatunkową badanych mikrosymbiontów.

Bradyryzobia szczodrzyka czerniejącego wykazały między sobą, stopień podobieństwa połączonych sekwencji genów rdzeniowych na poziomie 98,9 do 99,8%, co zostało szczegółowo przedstawione w Tabeli 5.11. Badane izolaty LN są najbliżej spokrewnione z referencyjnym szczepem *B. japonicum* USDA 6^T, a stopień podobieństwa połączonych sekwencji czterech analizowanych genów metabolizmu podstawowego symbiontów szczodrzyka czerniejącego i *B. japonicum* USDA 6^T wynosił od 96,6% (LN30) do 97,2% (LN2). Identyczność analizowanych sekwencji mikrosymbiontów *L. nigricans* z sekwencjami innych gatunków rodzaju *Bradyrhizobium* wahała się od 87,7% w przypadku *B. retamae* Ro19^T do 95,3% w przypadku *B. canariense* BTA–1^T.

Topologia drzewa filogenetycznego uzyskanego w oparciu o analizę MLSA czterech genów metabolizmu podstawowego przedstawiona została na Rys. 5.34. Na filogramie mikrosymbionty *L. nigricans* tworzą wspólną grupę z *B. japonicum* USDA 6^T przy współczynniku poparcia 93%. Wyniki te wskazują, że symbionty szczodrzyka czerniejącego mogą należeć do taksonu *B. japonicum*. Ponieważ w bazie danych GeneBank nie ma dostępnych informacji na temat sekwencji genu gyr*B* – *B. japonicum* BGA – 1^T, który to szczep był wykorzystywany w analizie filogenetycznej genu 16S rRNA, to skonstruowano również Filogram oparty o połączoną analizę sekwencji trzech genów tj. *atpD* – *dnaK* – *rpoB* uwzględniający zarówno B. japonicum BGA – 1^T jak i B. japonicum USDA 6^T (Rys. 5.35). Na tym filogramie, podobnie jak w analizie genu 16S rRNA, badane symbionty *L. nigricans* tworzą wspólną grupę z *B. japonicum* BGA–1^T.

	LN1	LN2	LN4	LN10	LN11	LN20	LN23	LN24	LN26	LN30	LN32
LN1	-	99,3	99,0	99,1	99,0	98,9	98,9	99,0	99,2	98,5	99,3
LN2	99,3	-	99,4	99,1	99,5	99,3	99,3	99,5	99,6	99,0	99,8
LN4	99,0	99,4	-	99,2	99,2	99,0	99,0	99,4	99,7	99,0	99,4
LN10	99,1	99,1	99,2	-	99,4	99,3	99,4	99,2	99,3	99,3	99,1
LN11	99,0	99,5	99,2	99,4	-	99,8	99,7	99,2	99,3	99,3	99,4
LN20	98,9	99,3	99,0	99,3	99,8	-	99,8	99,2	99,2	99,2	99,2
LN23	98,9	99,3	99,0	99,4	99,7	99,8	-	99,2	99,1	99,2	99,3
LN24	99,0	99,5	99,4	99,2	99,2	99,2	99,2	-	99,6	99,1	99,3
LN26	99,2	99,6	99,7	99,3	99,3	99,2	99,1	99,6	-	99,2	99,6
LN30	98,5	99,0	99,0	99,3	99,3	99,2	99,2	99,1	99,2	-	98,9
LN32	99,3	99,8	99,4	99,1	99,4	99,2	99,3	99,3	99,6	98,9	-
Bradyrhizobium arachidis CCBAU 051107	93,0	93,6	93,3	93,2	93,5	93,3	93,3	93,2	93,4	93,1	93,5
Bradyrhizobium betae LMG 21987	94,5	94,9	94,5	94,4	94,9	94,8	94,6	94,5	94,7	94,3	94,8
Bradyrhizobium canariense BTA–1	94,8	95,3	95,0	94,9	95,3	95,2	95,1	94,9	95,1	94,8	95,2
Bradyrhizobium cytisi CTAW11	94,0	94,5	94,2	94,2	94,5	94,4	94,2	94,2	94,4	94,1	94,4
Bradyrhizobium daqingense CCBAU 15774	93,0	93,5	93,0	92,9	93,3	93,1	93,0	93,0	93,2	92,7	93,4
Bradyrhizobium denitrificans LMG 8443	89,2	89,8	89,2	89,2	89,6	89,6	89,4	89,3	89,5	89,1	89,6
Bradyrhizobium diazoefficiens USDA 110	95,1	95,7	95,2	95,2	95,6	95,4	95,3	95,2	95,4	95,0	95,6
Bradyrhizobium elkanii USDA 76	91,2	91,6	91,2	91,0	91,4	91,3	91,2	91,3	91,5	90,8	91,5
Bradyrhizobium huanghuaihaiense CCBAU 23303	94,2	94,8	94,2	94,2	94,7	94,5	94,4	94,3	94,5	94,1	94,7
Bradyrhizobium icense LMTR 13	88,7	89,1	88,9	88,8	89,1	89,1	89,0	88,9	89,0	88,7	89,0
Bradyrhizobium iriomotense LMG 24129	92,2	92,8	92,2	92,2	92,7	92,6	92,4	92,3	92,5	92,1	92,7
Bradyrhizobium japonicum USDA 6	96,7	97,2	96,9	96,7	97,0	96,8	96,7	96,9	97,1	96,6	97,0
Bradyrhizobium jicamae PAC68	89,9	90,3	89,9	89,9	90,2	90,2	90,1	90,0	90,1	89,7	90,2
Bradyrhizobium kavangense 14-3	93,8	94,4	93,8	93,8	94,2	94,0	93,9	93,9	94,1	93,6	94,2
Bradyrhizobium lablabi CCBAU 23086	89,5	89,9	89,5	89,4	89,8	89,8	89,6	89,6	89,7	89,4	89,8
Bradyrhizobium liaoningense LMG 18230	93,8	94,3	93,8	93,8	94,2	94,0	93,9	93,8	94,0	93,6	94,2
Bradyrhizobium namibiense 5-10	89,5	90,1	89,6	89,5	89,9	89,9	89,7	89,6	89,8	89,4	90,0
Bradyrhizobium oligotrophicum LMG 10732	89,9	90,4	90,0	89,8	90,2	90,1	90,0	89,9	90,2	89,7	90,3
Bradyrhizobium ottawaense OO99	93,9	94,4	93,9	93,8	94,2	94,1	94,0	93,9	94,1	93,7	94,2
Bradyrhizobium pachyrhizi PAC48	91,0	91,3	90,9	90,7	91,1	91,0	90,8	91,0	91,2	90,5	91,2
Bradyrhizobium paxllaeri LMTR 21	89,3	89,8	89,4	89,3	89,7	89,7	89,5	89,5	89,6	89,2	89,6
Bradyrhizobium retamae Ro19	87,9	88,3	87,9	87,8	88,2	88,2	88,1	88,0	88,1	87,7	88,2
Bradyrhizobium rifense CTAW71	93,9	94,5	94,1	94,1	94,4	94,2	94,1	94,2	94,4	93,9	94,4
Bradyrhizobium subterraneum 58 2-1	92,3	92,9	92,5	92,5	92,9	92,8	92,6	92,5	92,7	92,4	92,7
Bradyrhizobium vignae 7-2	92,9	93,5	93,0	92,9	93,3	93,3	93,1	93,0	93,2	92,8	93,3
Bradyrhizobium yuanmingense CCBAU 10071	93,8	94,4	93,8	93,8	94,2	94,1	94,0	93,9	94,1	93,7	94,2
Rhodopseudomonas palustris CGA009	86,5	86,1	86,4	86,2	86,5	86,2	86,5	86,4	86,1	86,4	86,4

Tab. 5.11. Stopień podobieństwa czterech połączonych sekwencji genów atpD – dnaK - gyrB - rpoB mikrosymbiontów szczodrzyka czerniejącego (LN) i referencyjnych bakterii brodawkowych rodzaju *Bradyrhizobium* (MLSA) Wartości wyrażone w %

Objaśnienia: Szarym kolorem zaznaczona szczepy o największym i najmniejszym stopniu podobieństwa sekwencji

Rys. 5.34. Drzewo filogenetyczne powstałe w oparciu o analizę sekwencji czterech genów atpD - dnaK - gyrB - rpoB badanych mikrosymbiontów *Lembotropis nigricans* oraz referencyjnych bakterii rodzaju *Bradyrhizobium* pobranych z bazy danych GeneBank

Rys. 5.35. Drzewo filogenetyczne powstałe w oparciu o analizę sekwencji trzech genów atpD - dnaK– rpoB badanych mikrosymbiontów *Lembotropis nigricans* oraz referencyjnych bakterii rodzaju *Bradyrhizobium* pobranych z bazy danych GeneBank

5.8. Oznaczenie stopnia podobieństwa genomowego DNA–DNA mikrosymbiontów *Lembotropis nigricans* metodą hybrydyzacji

Do oznaczenia stopnia podobieństwa DNA – DNA ryzobiów specyficznych dla *L. nigricans* i wybranych szczepów referencyjnych rodzaju *Bradyrhizobium* zastosowano metodę hybrydyzacji na płytkach CovaLink [4.2.4.11]. DNA jedenastu izolatów *L. nigricans*, trawiono enzymem *Alu*I i wiązano do powierzchni płytki CovaLink. Sondę stanowił DNA wyizolowany ze szczepów referencyjnych, znakowany fotobiotyną i trawiony enzymem *Alu*I. Wartości procentowego stopnia hybrydyzacji DNA–DNA bakterii brodawkowych przedstawia Tab. 5.12.

DNA	DNA szczepów związanych z płytką CovaLink												
jako sonda	LN1	LN2	LN4	LN10	LN11	LN20	LN23	LN24	LN26	LN32			
LN1	-	91,4	89,5	86,6	92,7	93,7	89,2	93,8	89,7	98,6			
LN2	91,4	-	95,9	93,8	91,4	90,3	93,6	89,4	91,7	86,8			
LN4	89,5	95,9	-	87,7	93,3	88,8	95,8	97,3	86,9	91,4			
LN10	86,6	93,8	87,7	-	95,1	89,4	97,4	98,2	87,7	95,0			
LN11	92,7	91,4	93,3	95,1	-	92,6	91,4	98,6	91,2	94,5			
LN20	93,7	90,3	88,8	89,4	92,6	-	93,3	88,7	90,4	87,8			
LN23	89,2	93,6	95,8	97,4	91,4	93,3	-	92,5	92,7	90,5			
LN24	93,8	89,4	97,3	98,2	98,6	88,7	92,5	-	88,8	93,7			
LN26	89,7	91,7	86,9	87,7	91,2	90,4	92,7	88,8	-	87,2			
LN32	98,6	86,8	91,4	95,0	94,5	87,8	90,5	93,7	87,2	-			
Bradyrhizobium japonicum USDA6T	78,2	77,8	79,5	83,1	83,3	79,7	78,2	79,6	77,5	80,4			
Bradyrhizobium elkanii 76T	62,3	61,8	64,5	62,4	60,1	61,6	62,3	63,9	61,8	62,3			
Bradyrhizobium lioaningense 3522T	55,3	59,8	60,2	56,8	61,2	54,3	59,7	55,5	53,2	60,8			
Bradyrhizobium yuanmingense CCBAU 1007T	60,4	57,7	60,2	55,4	59,8	59,7	54,5	54,7	60,0	61,4			
Bradyrhizobium diazoefficiens USDA 110T	50,1	53,3	57,2	53,4	58,3	53,5	50,8	55,1	59,1	54,6			
Mesorhizobium albiziae CCBAU61158T	10,3	9,2	9,5	8,3	6,2	10,3	9,8	9,6	7,3	8,6			
Ensifer meliloti MVIIT	9,0	5,3	4,7	10,8	6,5	9,2	10,4	6,6	7,8	7,3			

Tab. 5.12. Stopień podobieństwa DNA symbiontów *L. nigricans* z DNA szczepów referencyjnych reprezentujących różne gatunki bakterii brodawkowych oznaczony metodą hybrydyzacji (wyniki przedstawione w %)

Uzyskane wyniki wskazują na wysoki stopień reasocjacji między DNA badanych mikrosymbiontów *L. nigricans*, co świadczy o ich przynależności do tego samego genomogatunku. Stopień hybrydyzacji DNA–DNA tych szczepów zawierał się w przedziale 86,6 – 98,6%.

Izolaty z brodawek korzeniowych *L. nigricans* wykazały również wysoki, mieszczący się w zakresie 77,5 – 83,3%, stopień reasocjacji DNA z DNA *Bradyrhizobium japonicum* USDA 6^{T} . Na tej podstawie można stwierdzić, że symbionty specyficzne dla szczodrzyka czerniejącego należą do gatunku *Bradyrhizobium japonicum*.

Niższy stopień hybrydyzacji DNA–DNA zanotowano między badanymi izolatami a innymi bakteriami rodzaju *Bradyrhizobium*, tj. *Bradyrhizobium elkanii* 76^T, *Bradyrhizobium lioaningense* 3522^T, *Bradyrhizobium yuanmingense* CCBAU 1007^T, *Bradyrhizobium diazoefficiens* USDA 110^T tj. w granicach 50,1 – 61,2% (Tab. 5.12).

Z pozostałymi szczepami referencyjnymi, tj. rodzaju *Meosrhizobium* oraz *Ensifer* badane symbionty *L. nigricans* wykazały niski stopień hybrydyzacji DNA–DNA, wynoszący poniżej 11% (Tab. 5.12).

5.9. Określenie roślinnego zakresu gospodarza mikrosymbiontów *Lembotropis nigricans*

Pełna analiza taksonomiczna bakterii brodawkowych obejmuje także określenie zakresu ich roślinnego gospodarza. W tym celu przeprowadzono labortoryjne testy roślinne, w których badano zdolność izolatów z brodawek korzeniowych L. nigricans do nawiązywania symbiozy z różnymi gatunkami roślin bobowatych. W testach tych wykorzystano jedenastu przedstawicieli rodziny Fabaceae tj.: *Chamaecytisus* ratisbonensis (szczodrzeniec rozesłany), Cytisus scoparius (żarnowiec miotlasty), Glycine max (soja zwyczajna), Lembotropis nigricans (szczodrzyk czerniejący), Lotus corniculatus (komonica zwyczajna), Lupinus luteus (hubin żółty), Lupinus polyphyllus (hublin trwały), Medicago sativa (lucerna siewna), Phaseolus vulgaris (fasola zwyczajna), Trifolium repens (koniczyna rozesłana), Vicia sativa (wyka siewna).

Efektywność symbiozy ryzobiów specyficznych dla *L. nigricans* z powyższymi roślinami oznaczono na podstawie występowania i koloru brodawek korzeniowych oraz suchej masy nadziemnej części roślin. Wyniki dotyczące roślin, z którymi mikrosymbionty szczodrzyka czerniejącego wchodzą w efektywną symbiozę zebrano w Tab. 5.12. Badane mikrosymbionty *L. nigricans* wchodziły w interakcję symbiotyczną nie tylko z naturalnym gospodarzem, ale również z innymi badanymi roślinami należącymi do plemienia Genisteae tj.: *Chamaecytisus ratisbonensis, Cytisus scoparius, Lupinus luteus, Lupinus polyphyllus* i indukowały na korzeniach tych roślin efektywne (różowe) brodawki. Pozostałe rośliny użyte w badaniach nie tworzyły układów symbiotycznych z bakteriami wyizolowanymi z

brodawek korzeniowych szczodrzyka czerniejącego. Uzyskane wyniki wskazują, iż symbionty *L. nigricans* należą do bakterii o szerokim zakresie gospodarza, zdolnych do efektywnej symbiozy z roślinami bobowatymi należącymi do różnych gatunków.

Sucha masa nadziemnej części roślin zaszczepionych bakteriami, zdolnych do indukcji brodawek korzeniowych była średnio trzy–, czterokrotnie wyższa w porównaniu do roślin kontrolnych, czyli takich, które nie były zaszczepione ryzobiami specyficznymi dla *L. nigricans* (Tab. 5.13).

Tab. 5.13. Efektywność brodawkowania oraz wiązania azotu przez ryzobia specyficzne dla *Lembotropis nigricans* w symbiozie z roślinami plemienia Genisteae

	Efektywność symbiozy mikrosymbiontów <i>Lembotropis</i> nigricans									
Gospodarz roślinny	Sucha masa na	dziemnej	Ilość brodawel	ς.						
	CZĘSCI IOSIIII [II	lg/roshnę	ána dini a							
	Sredilla	2	sreama	5						
Chamaecytisus ratisbonensis	11,7	2,3	13	2,7						
	KN ^c 4,3	KN 1,5	-							
Cytisus scoparius	12,4	1,4	9	1,8						
	KN 3,7	KN 1,2	-							
Lembotropis nigricans	14,8	0,8	11	3,1						
	KN 2,6	KN 0,4	-							
Lupinus luteus	107	12,7	15	4,8						
	KN 34	KN 6,7	-							
Lupinus polyphyllus	138	12,7	18	3,9						
	KN 45	KN 6,4	-							

Objaśnienia:

^a średnia arytmetyczna, infekowano każdą roślinę w trzykrotnych powtórzeniach każdym z 33 izolatów *Lembotropis nigricans*

^b *s*, odchylenie standardowe

^c KN, kontrola negatywna (rośliny nieinfekowane bakteriami)

5.10. Oznaczenie efektywności wiązania azotu atmosferycznego przez mikrosymbionty *Lembotropis nigricans*

Bardzo ważną cechą układów symbiotycznych ryzobium – roślina bobowata jest zdolność wiązania N₂ przez mikrosymbionta. Efektywność wiązania azotu atmosferycznego przez mikrosymbionty *L. nigricans* oznaczono poprzez chromatograficzny pomiar ilości etylenu wytworzonego z acetylenu przy udziale bakteryjnego enzymu zwanego nitrogenazą.

Zdolność mikrosymbiontów *L. nigricans* do wiązania N₂ w układzie symbiotycznym ze szczodrzykiem czerniejącym i pozostałymi roślinami plemienia Genisteae potwierdził test acetylenowy.

Porównując wyniki testu acetylenowego układów symbiotycznych L. nigricans – badane mikrosymbionty LN (Tab. 5.14) do układu mikrosymbionty *L. nigricans* – i inne rośliny plemienia Geniasteae (Tab. 5.15), stwierdzono, iż średnia wartośc aktywności nitrogenazy wszystkich 33 badanych prób jest znacznie wyższa od aktywność nitrogenazy w układzie izolaty LN – inne rośliny niż *L. nigricans*.

Szczep wykorzystany do zainfekowania rośliny	Aktywność nitrogenazy (µmol etylenu/h/roślina)
LN1	144,58
LN2	87,63
LN3	78,43
LN4	129,5
LN5	44,03
LN6	58,53
LN7	92,29
LN8	83,40
LN9	109,43
LN10	63,86
LN11	166,72
LN12	95,04
LN13	107,65
LN14	66,76
LN15	120,23
LN16	158,63
LN17	99,07
LN18	45,85
LN19	148,32
LN20	164,12
LN21	123,54
LN22	51,23
LN23	56,54
LN24	72,77
LN25	45,95
LN26	63,85
LN27	17,33
LN28	10,29
LN29	44,31
LN30	101,66
LN31	22,40
LN32	106,55
LN33	42
średnia	85,53 μmol etylenu/h/roślina

Tab. 5.14. Aktywność nitrogenazy w układzie symbiotycznym badane izolaty (LN) – ich naturalny gospodarz – *Lembotropis nigricans*

Tab. 5.15. Aktywność nitrogenazy w układzie symbiotycznym między mikrosymbiontami *Lembotropis nigricans* a roślinami z plemienia Genisteae inne niż szczodrzyk czerniejący (wartości średnie z pomiarów dla badanych mikrosymbiontów szczodrzyka czerniejącego)

Roślinny gospodarz	Aktywność nitrogenazy (µmol etylenu/h/roślina)
Chamaecytisus ratisbonensis	64,97
Cytisus scoparius	55,72
Lupinus luteus	69,87
Lupinus polyphyllus	73,54

5.11. Analiza filogenetyczna genów symbiotycznych nodC i nodZ

Filogeneza symbiotycznych genów *nod* mikrosymbiontów *L. nigricans* została zrekonstruowana na podstawie analizy sekwencji genu *nodC* i *nodZ* jedenastu szczepów tych bakterii.

Tab. 5.16. Charakterystyka analizowanych sekwencji genów *nodC* i *nodZ* mikrosymbiontów *Lembotropis nigricans*

Analizowana sekwencja	Długość sekwencji [nt]	Liczba miejsc monomorficznych	Liczba miejsc polimorficznych
nodC	412	186	226
nodZ	387	190	197

Podobieństwo sekwencji genu *nodC* między izolatami z brodawek korzeniowych *L. nigricans* wyniosło 96,1 – 100%. Najwyższy stopień podobieństwa sekwencji genu *nodC* symbionty szczodrzyka czerniejącego wykazały do sekwencji genu *nodC B. rifense* CTAW71^T (97,0 – 98,7%), tj. symbionta *Cytisus villosus*. Nieco niższe, ale również wysokie podobieństwo analizowane sekwencje genu *nodC* wykazały względem sekwencji tego genu symbiontów takich roślin plemienia Genisteae jak: *Lupinus* sp. i *Adenocarpus foliolosus* (90,0 – 97,3%). Do sekwencji genu *nodC* innych referencyjnych bradyryzobiów włączonych do analizy, badane symbionty *L. nigricans* wykazały podobieństwo na poziomie 71,3 – 80,5% (Tab. 5.17).

nodC	LN1	LN2	LN4	LN10	LN11	LN20	LN23	LN24	LN26	LN30	LN32
LN1	-	97,5	97,5	100	97,8	97,8	99,0	97,3	100	97,0	97,0
LN2	97,5	-	100	97,5	99,7	99,7	98,0	96,6	97,5	99,5	99,5
LN4	97,5	100	-	97,5	99,7	99,7	98,0	96,6	97,0	99,5	99,5
LN10	100	97,5	97,5	-	97,8	97,8	99,0	97,3	100	97,0	97,0
LN11	97,8	99,7	99,7	97,8	-	100	98,3	96,8	97,8	99,2	99,2
LN20	97,8	99,7	99,7	97,8	100	-	98,3	96,8	97,8	99,2	99,2
LN23	99,0	98,0	98,0	99,0	98,3	98,3	-	97,5	99,0	97,5	97,5
LN24	97,3	96,6	96,6	97,3	96,8	96,8	97,5	-	97,3	96,1	96,1
LN26	100	97,5	97,5	100	97,8	97,8	99,0	97,3	-	97,0	97,0
LN30	97,0	99,5	99,5	97,0	99,2	99,2	97,5	96,1	97,0	-	100
LN32	97,0	99,5	99,5	97,0	99,2	99,2	97,5	96,1	97,0	100	-
Bradyrhizobium arachidis CCBAU 051107	74,7	75,4	75,4	74,7	75,2	75,2	75,2	74,5	74,7	75,4	75,4
Bradyrhizobium canariense BLUT1	91,7	91,2	91,2	91,7	91,5	91,5	91,7	90,2	91,7	90,7	90,7
Bradyrhizobium cytisi CTAW11	95,6	95,6	95,6	95,6	95,8	95,8	95,6	94,1	95,6	95,1	95,1
Bradyrhizobium daqingense CCBAU 15774	75,0	75,4	75,4	75,0	75,2	75,2	75,0	73,7	75,0	75,4	75,4
Bradyrhizobium diazoefficiens USDA 110	75,0	75,4	75,4	75,0	75,2	75,2	75,0	73,7	75,0	75,4	75,4
Bradyrhizobium elkanii SEMIA 5019	74,7	74,3	74,2	74,8	74,0	74,0	73,8	73,7	74,7	74,2	74,2
Bradyrhizobium ganzhouense RITF806	72,8	73,5	73,5	72,8	73,7	73,7	72,8	73,3	72,8	74,0	74,0
Bradyrhizobium ingae BR 10250	75,0	75,2	75,2	75,0	75,4	75,4	75,2	75,4	75,0	75,2	75,2
Bradyrhizobium iriomotense	74,0	75,4	75,4	74,0	75,2	75,2	74,2	73,7	74,0	75,9	75,9

Tab. 5.17. Stopień podobieństwa sekwencji genu *nodC* mikrosymbiontów szczodrzyka czerniejącego oraz referencyjnych bakterii brodawkowych rodzaju *Bradyrhizobium*. (wartości wyrażone w %)

Bradyrhizobium japonicum BGA – 1	94,9	94,9	94,9	94,9	95,1	95,1	94,9	93,4	94,9	94,9	94,9
Bradyrhizobium japonicum USDA 6	75,0	75,4	75,4	75,0	75,2	75,2	75,0	73,7	75,0	75,4	75,4
Bradyrhizobium jicamae PAC68	78,8	78,8	78,8	78,8	79,1	79,1	78,8	78,6	78,8	78,8	78,8
Bradyrhizobium lablabi CCBAU 23086	79,3	79,1	79,1	79,3	79,3	79,3	79,3	78,6	79,3	79,6	79,6
Bradyrhizobium liaoningense CCBAU 21332	71,6	71,8	71,8	71,6	71,6	71,6	71,8	71,3	71,6	72,0	72,0
Bradyrhizobium manausense BR 3351	73,5	74,5	74,5	73,5	74,2	74,2	73,3	73,0	73,5	74,5	74,5
Bradyrhizobium neotropicale BR 10247	76,4	76,2	76,2	76,4	76,4	76,4	76,2	76,4	76,4	76,6	76,6
Bradyrhizobium ottawaense OO99	75,0	75,4	75,4	75,0	75,2	75,2	75,0	73,7	75,0	75,4	75,4
Bradyrhizobium pachyrhizi PAC48	74,7	74,2	74,2	74,7	74,0	74,0	73,7	73,7	74,7	74,2	74,2
Bradyrhizobium retamae Ro19	80,5	80,0	80,0	80,5	80,3	80,3	80,3	79,3	80,5	80,5	80,5
Bradyrhizobium rifense CTAW71	98,0	98,5	98,5	98,0	98,7	98,7	98,5	97,0	98,0	98,0	98,0
Bradyrhizobium sp. BCO1	91,5	91,0	91,0	91,5	91,2	91,2	91,5	90,0	91,5	90,5	90,5
Bradyrhizobium sp. BLUH1	96,8	96,8	96,8	96,8	97,0	97,0	97,3	95,3	96,8	96,3	96,3
Bradyrhizobium sp. BRT3	95,3	94,9	94,9	95,3	95,1	95,1	95,3	93,9	95,3	94,4	94,4
Bradyrhizobium sp. BTA-1	91,2	91,0	91,0	91,2	91,2	91,2	91,2	89,8	91,2	90,5	90,5
Bradyrhizobium sp. CCBAU 23332	75,0	75,4	75,4	75,0	75,2	75,2	75,0	73,7	75,0	75,4	75,4
Bradyrhizobium sp. WM9	93,6	93,6	93,6	93,6	93,9	93,9	93,6	92,2	93,6	93,6	93,6
Bradyrhizobium valentinum LmjM3	80,5	80,0	80,0	80,5	80,3	80,3	80,3	79,3	80,5	80,5	80,5
Bradyrhizobium yuanmingense NBRC 100594	74,0	74,2	74,2	74,0	74,0	74,0	73,5	73,3	74,0	74,2	74,2

Na drzewie filogenetycznym genu *nodC*, skonstruowanym metodą "ML", mikrosymbionty *L. nigricans* przy współczynniku poparcia wynoszącym 90%, ulokowane są na wspólnej gałęzi ze szczepem *Bradyrhizobium rifense* CTAW71^T, tj. symbiontem *Cytisus villosus*.

Badane izolaty z brodawek korzeniowych szczodrzyka czerniejącego utworzyły dużą grupę z referencyjnymi symbiontami innych roślin plemienia Genisteae, tj.: z *Bradyrhizobium* sp. BRT3, *Bradyrhizobium* sp. BLUH1, *Bradyrhizobium japonicum* BGA–1^T, *Bradyrhizobium* sp. WM9^T, *Bradyrhizobium canariense* BLUT1^T, *Bradyrhizobium* sp. BCO1^T, *Bradyrhizobium* sp. BTA–1^T i B. *cytisi* CTAW11 przy współczynniku poparcia 100%.

Pozostałe bakterie referencyjne rodzaju *Bradyrhizobium* włączone do analizy filogenetycznej genu *nodC* zgrupowały się w trzech oddzielnych gronach i utworzyły trzy niezależne gałęzie przy wysokim stopniu podobieństwa z symbiontami *L. nigricans* wynoszącym 91 – 100%. (Rys. 5.36).

Rys. 5.36. Drzewo filogenetyczne powstałe w oparciu o analizę sekwencji genu *nodC* badanych mikrosymbiontów *Lembotropis nigricans* oraz referencyjnych bakterii rodzaju *Bradyrhizobium* pobranych z bazy danych GeneBank

Analizę filogenetyczną genów *nod* przeprowadzono badając również sekwencje genu *nodZ* determinującego fukozylację czynnika Nod. Fragment analizowanego genu miał wielkość 387 par zasad z czego 197 to miejsca zmienne (Tab. 5.16).

Sekwencje genu nodZ mikrosymbiontów szczodrzyka czerniejącego były identyczne względem siebie w 93,7 – 100%. Największy stopień podobieństwa

sekwencje te wykazały względem genu *nodZ Bradyrhizobium canariense* SEMIA 928^T 90,1 – 92,5 %. Stopień podobieństwa sekwencji genu *nodZ* ryzobiów specyficznych dla szczodrzyka czerniejącego i pozostałych bradyryzobiów włączonych do analizy był niższy i wyniósł od 72,3 – 81,9% (Tab. 5.18).

Na drzewie filogenetycznym genu *nodZ*, skonstruowanym metodą "ML", mikrosymbionty *L. nigricans* ulokowane są na jednej gałęzi przy współczynniku poparcia wynoszącym 81%. Utworzyły one wspólną grupę z symbiontem łubinu – *Bradyrhizobium canariense* SEMIA 928^T o współczynniku poparcia 100%.

Pozostałe bakterie z rodzaju *Bradyrhizobium* zgrupowały się na filogramie genu *nodZ* w dwóch oddzielnych gronach. W pierwszym, przy współczynniku podobieństwa 95% zgrupowane zostały: *Bradyrhizobium jicamae* PAC68^T, *Bradyrhizobium icense* LMTR 13^T, *Bradyrhizobium valentinum* LmjM3^T, *Bradyrhizobium lablabi* CCBAU 23086^T, *Bradyrhizobium paxllaeri* LMTR 21^T. Natomiast, w drugim zaś przy współczynniku poparcia "bootstrap" wynoszącym 100%: *Bradyrhizobium elkanii* SEMIA 5019^T, *Bradyrhizobium* genosp. TUXTLAS– 17 Pop321, *Bradyrhizobium tropiciagri* SEMIA 6148^T, *Bradyrhizobium arachidis* CzR2^T, *Bradyrhizobium diazoefficiens* SEMIA 6059^T, *Bradyrhizobium sp.* SA1 GC1d, *Bradyrhizobium japonicum* SEMIA 5079^T (Rys. 5.37).

Identyfikacja w genomach symbiontów *L. nigricans* genu *nodZ* determinującego u ryzobiów specyficzność interakcji z roślinnym gospodarzem sugeruje, że u badanych izolatów grupa fukozylowa może być jednym z czynników regulujących symbiozę.

nodZ	LN1	LN2	LN4	LN10	LN11	LN20	LN23	LN24	LN26	LN30	LN32
LN1	-	96,6	94,0	96,3	94,3	94,3	95,8	96,3	96,6	93,7	96,6
LN2	96,6	-	95,3	99,7	96,6	96,6	99,2	99,7	100	96,1	99,4
LN4	94,0	95,3	-	95,0	94,5	94,5	94,5	95,1	95,3	94,0	95,8
LN10	96,3	99,7	95,0	-	96,3	96,3	99,4	99,4	99,7	95,8	99,2
LN11	94,3	96,6	94,5	96,3	-	100	95,8	96,3	96,6	98,9	97,1
LN20	94,3	96,6	94,5	96,3	100	-	95,8	96,3	96,6	98,9	97,1
LN23	95,8	99,2	94,5	99,4	95,8	95,8	-	98,9	99,2	95,3	98,7
LN24	96,3	99,7	95,1	99,4	96,3	96,3	98,9	-	99,7	95,8	99,2
LN26	96,6	100	95,3	99,7	96,6	96,6	99,2	99,7	1	96,1	99,4
LN30	93,7	96,1	94,0	95,8	98,9	98,9	95,3	95,8	96,1	-	96,6
LN32	96,6	99,4	95,8	99,2	97,1	97,1	98,7	99,2	99,4	96,6	-
Bradyrhizobium arachidis CzR2	73,9	73,1	73,6	72,8	73,3	73,3	72,8	72,9	73,1	73,6	73,6
Bradyrhizobium canariense SEMIA 928	90,1	91,9	91,9	91,7	91,7	91,7	91,2	91,7	91,9	91,4	92,5
Bradyrhizobium diazoefficiens SEMIA 6059	74,9	74,4	74,4	74,1	74,1	74,1	73,9	74,2	74,4	74,4	74,9
Bradyrhizobium elkanii SEMIA 5019	77,7	76,4	76,4	76,2	76,4	76,4	75,7	76,2	76,4	77,2	77,0

Tab. 5.18. Stopień podobieństwa sekwencji genu *nodZ* mikrosymbiontów szczodrzyka czerniejącego oraz referencyjnych bakterii brodawkowych rodzaju *Bradyrhizobium* (wartości wyrażone w %)

Bradyrhizobium icense LMTR 13	80,6	80,3	80,3	80,1	79,5	79,5	79,8	80,1	80,3	79,3	80,8
Bradyrhizobium japonicum SEMIA 5079	73,1	72,6	72,3	72,3	72,3	72,3	72,6	72,4	72,6	72,6	73,1
Bradyrhizobium jicamae PAC68	75,1	75,7	75,1	75,4	74,9	74,9	75,9	75,5	75,7	74,4	76,2
Bradyrhizobium lablabi CCBAU 23086	81,3	81,1	81,1	80,8	80,3	80,3	80,6	80,9	81,1	80,1	81,6
Bradyrhizobium paxllaeri LMTR 21	81,6	81,3	81,3	81,1	80,8	80,8	80,8	81,1	81,3	80,6	81,9
Bradyrhizobium sp. SA1 GC1d	73,1	72,6	72,3	72,3	72,6	72,6	72,3	72,4	72,6	72,8	73,1
Bradyrhizobium tropiciagri SEMIA 6148	78,0	77,7	77,2	77,5	77,2	77,2	77,0	77,5	77,7	76,7	78,2
Bradyrhizobium valentinum LmjM3	79,3	79,0	79,0	78,8	78,0	78,0	78,8	78,8	79,0	77,7	79,5
Bradyrhizobium genosp. TUXTLAS-17 Pop321	75,9	74,9	74,6	74,6	74,4	74,4	74,1	74,7	74,9	74,6	75,4

Rys. 5.37. Drzewo filogenetyczne powstałe w oparciu o analizę sekwencji genu *nodZ* badanych mikrosymbiontów *Lembotropis nigricans* oraz referencyjnych gatunków bakterii rodzaju *Bradyrhizobium* pobranych z bazy danych GeneBank

6. Dyskusja

W ciągu kilku ostatnich dekad klasyfikacja bakterii brodawkowych, zdolnych do wiązania azotu atmosferycznego w mutualistycznej interakcji z roślinami bobowatymi, uległa znaczącym zmianom. Związane jest to z wprowadzeniem do badań taksonomicznych bakterii metod molekularnych, jak również z rosnącym zainteresowaniem nowymi, dotychczas niescharakteryzowanymi mikrosymbiontami roślin bobowatych. Konsekwencją tych faktów jest stale notowany przyrost nowo opisywanych rodzajów i gatunków tych mikroorganizmów [Rivas i in., 2017; Willems, 2006].

Liczne publikacje, dotyczące taksonomii ryzobiów, pojawiające się od początku lat 90-tych XX wieku, ujawniają ogromne zróżnicowanie tej grupy bakterii. W celu uzyskania pełnej charakterystyki oraz obrazu pokrewieństwa między mikrosymbiontami a roślinami bobowatymi i w konsekwencji klasyfikacji nowych izolatów z brodawek tych roślin do gatunków i rodzajów, wykorzystuje się najczęściej tzw. taksonomię wielokierunkową, łączącą informację genomową, fenotypową i filogenetyczną [Sahgal i Johri, 2003; Rivas i in., 2017; Vandamme i in., 1996; Willems, 2006]. Podejście takie zastosowano między innymi do opisu i wyodrębnienia rodzaju *Sinorhizobium* [de Lajudie i in., 1998], charakterystyki licznych gatunków jak np.: *Bradyrhizobium canariense* [Vinuesa i in., 2005a], *B. yuanmingense* [Yao i in., 2002], *Mesorhizobium albiziae* [Wang i in., 2007] oraz do przydzielenia do odpowiednich taksonów innych symbiontów różnych gatunków roślin bobowatych, np. *Medicago laciniata* [Villegas i in., 2006], *Phaesolus vulgaris* [Han i in., 2005], *Wisteria sinensis* [Liu i in., 2005], *Arachis hypogaea* [Yang i in., 2005].

Bakterie brodawkowe wchodzące w symbiozę ze szczodrzykiem czerniejącym (*Lembotropis nigricans*) nie były dotychczas opisane w piśmiennictwie naukowym. Niniejsza praca przedstawia wyniki badań nad bakteriami wyizolowanymi z brodawek korzeniowych *L. nigricans* pochodzącego z południowo–wschodniej części Polski.

Szereg cech fenotypowych symbiontów *L. nigricans* wskazuje na ich przynależność do rodzaju *Bradyrhizobium*. Po raz pierwszy bakterie tego rodzaju zostały opisane w 1982 roku. Mikroorganizmy te charakteryzują się długim czasem generacji, tworzeniem kolonii po 5 – 7 dniach wzrostu, alkalizacją podłoża z mannitolem, dużą wrażliwością na obecność NaCl w podłożu oraz wysoką opornością na antybiotyki [Jordan, 1982; Elkan, 1992].

Przeanalizowano 48 szczepów bakterii brodawkowych, w tym 33 symbionty specyficzne dla *L. nigricans* i 15 szczepów referencyjnych, reprezentujących różne gatunki rodzajów: *Bradyrhizobium, Ensifer, Mesorhizobium* i *Rhizobium,* pod kątem 91 właściwości fenotypowych. Symbionty *L. nigricans* były wolno rosnącymi bakteriami, z czasem generacji mieszczącym się w przedziale 6 – 6,5 godzin. Pod tym względem badane izolaty wykazują podobieństwo do opisanych dotychczas gatunków rodzaju *Bradyrhizobium* [van Berkum i Eardly, 1998], a jednocześnie różnią się od pozostałych ryzobiów z rodzaju *Rhizobium, Ensifer* i *Mesorhizobium,* których czas generacji zwykle nie przekracza 6 godzin [Graham i in., 1991; Yao i in., 2002].

W tabeli 5.1. przedstawiono właściwości fizjologiczne i metaboliczne badanych bakterii. Wszystkie symbionty *L. nigricans*, podobnie jak referencyjne gatunki rodzaju *Bradyrhizobium*, rosły przy pH 5 – 8, natomiast żaden z badanych mikrosymbiontów nie rósł przy pH 4. 45% szczepów było w stanie rosnąć przy pH 9, a 21% rosło nawet przy pH 10. Mikrosymbionty specyficzne dla *L. nigricans* rosły na podłożu 79CA w obecności 0,5 i 1% NaCl. Większość z nich tolerowała 2% chlorek sodu, a 32% badanych izolatów tolerowało nawet 3% zawartość NaCl, w przeciwieństwie do szczepów rodzaju *Bradyrhizobium*, które ogólnie wykazują wysoką wrażliwość na zasolenie [Garrity i in., 2005].

W badaniach taksonomicznych ryzobiów powszechnie analizowana jest ich zdolność asymilacji różnych związków jako jedyne źródło węgla i azotu. W niniejszej pracy określono profil wykorzystywania przez symbionty *L. nigricans* 25 różnych związków, jako jedyne źródło węgla. Większość z nich nie wykazywała zdolności do asymilacji disacharydów, takich jak maltoza i trehaloza, podobnie, jak znane wolno rosnące bradyryzobia, które na ogół nie posiadają tej właściwości [Elkan, 1992; Glenn i Dilworth, 1981], jakkolwiek większość z badanych mikrosymbiontów wykazywała dobry wzrost na podłożu z laktozą i sacharozą jako jedyne źródło węgla, podobnie jak referencyjne bakterie rodzaju *Bradyrhizobium*. Wykazano, że laktozę przyswaja część szczepów zaliczanych do *B. japonicum* [Xu i in., 1995] i *B. elkanii* [Yao i in., 2002], natomiast cukier ten nie jest

wykorzystywany przez szczepy należące do *B. canariense* [Vinuesa i in., 2005a], *B. liaoningense* [Xu i in., 1995] i *B. yuanmingense* [Yao i in., 2002], natomiast maltoza nie jest przyswajana przez szczepy z gatunku *B. liaoningense* i *B. canariense* [Vinuesa i in., 2005a; Xu i in., 1995].

Cechą charakterystyczną bakterii należących do dotychczas opisanych gatunków rodzaju *Bradyrhizobium* jest alkalizacja podłoża z mannitolem, podczas gdy symbionty szczodrzyka czerniejącego na podłożu z mannitolem, jako jedynym źródłem węgla, powodowały jego zakwaszenie, podobne jak referencyjne szczepy rodzaju *Rhizobium*, *Ensifer* i *Mesorhizobium* [Gaunt i in., 2001; Gnat i in., 2014]. Istnieją jednak doniesienia o szczepach zaklasyfikowanych do rodzaju *Bradyrhizobium* na podstawie sekwencji 16S rDNA, które nie alkalizują podłoża z mannitolem. Bakterie takie wyizolowano np. z brodawek korzeniowych soi (*Glycine max*) w Brazylii [Hungria i in., 2001], czy tropikalnego drzewa *Inga edulis* [Leblanc i in., 2005]. W świetle przytoczonych doniesień, zakwaszanie podłoża z mannitolem przez mikrosymbionty *L. nigricans* nie wydaje się zbyt zaskakujące, a tylko potwierdza duże zróżnicowanie fenotypowe ryzobiów wolno rosnących. Z drugiej strony takie odstępstwa od ogólnie przyjętych kryteriów diagnostycznych dla bradyryzobiów są dodatkowym argumentem za stosowaniem podejścia wielokierunkowego w taksonomii bakterii brodawkowych.

Ważnym kryterium taksonomicznym stosowanym do różnicowania ryzobiów szybko od wolno rosnących jest ich tolerancja na antybiotyki [Elkan, 1992]. Izolaty z brodawek korzeniowych szczodrzyka czerniejącego wykazywały dość wysoką tolerancję na badane antybiotyki, podobnie jak bakterie różnych gatunków rodzaju *Bradyrhizobium* [Kalita i Małek, 2004]. Większość z nich była oporna na ampicylinę (100 μ g/ml), rifampicynę (20 μ g/ml), streptomycynę (10 μ g/ml) i tetracyklinę (10 μ g/ml). Takie wyniki potwierdzają generalnie występującą, wśród bradyryzobiów, wyższą oporność na działanie antybiotyków niż w przypadku ryzobiów szybko rosnących [Jordan, 1982; Xu i in., 1995].

Właściwości fenotypowe ryzobiów *L. nigricans* i szczepów referencyjnych reprezentujących rodzaje: *Bradyrhizobium, Ensifer, Mesorhizobium* i *Rhizobium* poddano analizie numerycznej za pomocą oprogramowania NTSYSpc. Analiza cech fenotypowych ryzobiów specyficznych dla *L. nigricans* wykazała zróżnicowanie między analizowanymi szczepami. Przedstawienie wyników ponad 90 testów

biochemicznych i fizjologicznych w formie macierzy binarnej, obliczenie współczynników podobieństwa wszystkich wziętych do analizy szczepów (każdego szczepu z każdym) i konstrukcja na tej podstawie dendrogramu wskazuje na pokrewieństwo mikrosymbiontów L. nigricans z bakteriami rodzaju Bradyrhizobium. Badane symbionty szczodrzyka czerniejącego utworzyły z referencyjnymi bradyryzobiami jeden wspólny fenon przy współczynniku podobieństwa 0,82 (Rys. 5.4), odrębny względem pozostałych badanych bakterii tj.: rodzaju Rhizobium, Ensifer i Mesorhizobium, które utworzyły wspólny fenon przy współczynniku podobieństwa wynoszącym 0,71. Wyniki przedstawione na dendrogramie sugerują wstępnie, że wolno rosnące symbionty L. nigricans należą do rodzaju Bradyrhizobium. Wysoki poziom różnorodności fenotypowej symbiontów L. nigricans określony na podstawie analizy numerycznej może wskazywać na ich możliwość wysokiej adaptacji do zmiennych warunków środowiskowych, w których te bakterie naturalnie żyją.

W ostatnich latach opracowano wiele metod typowania molekularnego i oceny zróznicowania genomowego bakterii głównie w obrębie blisko spokrewnionych gatunków lub szczepów. Na uwagę zasługuje szczególnie fakt, że techniki te pozwalają na wykrywanie polimorfizmu w całym genomie i to bez informacji o jego pełnej sekwencji nukleotydowej [Janssen i in., 1996; Blears i in., 1998; Savelkoul i in., 1999; Mierzwa i in., 2010]. Przedstawione badania potwierdziły dużą użyteczność w identyfikacji i różnicowaniu bakterii brodawkowych, metod takich jak ERIC–PCR, BOX–PCR i najwyższą siłę różnicowania genomowego DNA z zastosowaniem metody AFLP.

Jedna Z najbardziej znanych technik "odcisków genomu" (ang. fingerprinting), w oparciu o reakcję łańcuchową polimerazy (PCR) jest BOX-PCR. W metodzie tej wykorzystuje się wysoce konserwatywne powtarzające się sekwencje DNA tzw. elementy "BOX", ulokowane w międzygenowych regionach DNA [Lupski i Weinstock, 1992; Versalovic i in., 1994]. W omawianej pracy zastosowano 22-nukleotydowy starter (BOXA1R) zawierający 68% GC. Zastosowanie w technice BOX-PCR startera bogatego w GC wiąże się z wysoką zawartością nukleotydów GC w genomach ryzobiów [Garrity i in., 2005], co niewątpliwie zwiększyło liczbę uzyskanych amplikonów. W reakcji PCR ze starterem BOXA1R uzyskano fragmenty DNA o rozmiarze od 275 do 2134 nukleotydów, ze średnią liczbą dziewięciu amplikonów na szczep. Na podstawie uzyskanych profili DNA wygenerowano dendrogram, na którym 33 symbionty *L. nigricans* zostały podzielone na trzy główne grupy. W pierwszej z nich zgrupowały się dwa badane szczepy (LN1 i LN14). Drugi klaster składał się z 17 izolatów, których poziom podobieństwa profili DNA wynosił od 71 do 100%, podczas gdy trzeci obejmował 14 szczepów ze stopniem podobieństwa wzorów DNA w zakresie od 82 do 100%. Metoda BOX–PCR umożliwiła identyfikację 27 genomotypów wśród 33 mikrosymbiontów specyficznych dla *L. nigricans*.

W metodzie ERIC–PCR powieleniu ulegają fragmenty DNA znajdujące się między sekwencjami repetytywnymi ERIC, tj. wewnątrzgenowymi sekwencjami konsensusowymi, które po raz pierwszy zidentyfikowano u enterobakterii, a występują także u wielu innych bakterii i składają się z 124–127 pz. Do reakcji ERIC–PCR z genomowym DNA symbiontów *L. nigricans* wykorzystano dwa startery wiążące się z sekwencjami ERIC, Eric–1 i Eric–2 i uzyskano 254 różne amplikony genomowego DNA, o wielkościach od 171 do 4830 pz, średnio na jeden szczep przypadało 8 fragmentów DNA. Wśród 33 analizowanych szczepów 31 charakteryzowało się niepowtarzalnymi profilami DNA.

Aby dokładniej zbadać różnorodność genomową symbiontów L. nigricans, zastosowano powszechnie stosowana w ocenie różnorodności genomowej zarówno jak i różnych populacji bakteryjnych, W obrębie gatunków metode AFLP [Aserse i in., 2012, Li i in., 2012, Yarza i in., 2014]. W metodzie AFLP, użyto tylko jedną endonukleazę PstI, rozpoznającą, sześcionukleotydową sekwencję 5'-CTGCAG-3', bogata w zasady azotowe G i C, aby tym samym zapewnić uzyskanie dużej liczby produktów trawienia DNA, które w dalszym etapie analizy posłużyły jako matryce w reakcji PCR. W reakcji amplifikacji wykorzystano dwie pary starterów, tj. PstI-G i PstI-GC. Pierwszy z nich zawiera na końcu 3' jeden selektywny nukleotyd G, zaś drugi dwa selektywne nukleotydy G i C [Roselló-Móra i Amann, 2000]. Metoda AFLP ze starterem Pst-GC okazała się szczególnie użyteczna w różnicowaniu symbiontów szczodrzyka czerniejacego i pozwoliła zróżnicować wszystkie badane szczepy, co potwierdza opisywaną w literaturze użyteczność tej metody z zastosowaniem startera z dwoma selektywnymi nukleotydami w identyfikacji i różnicowaniu bakterii. Zróżnicowanie genomowe symbiontów L. nigricans oparte na danych uzyskanych metodą AFLP przedstawiono na dendrogramie wygenerowanym przez analizę skupień UPGMA (Rys. 5.16). Bradyryzobia specyficzne dla szczodrzyka czerniejącego na dendrogramie podzieliły się na dwie główne grupy przy współczynniku podobieństwa DNA 0,55. Jeden klaster obejmował dziesięć ryzobiów, druga grupa składała się z 23 szczepów rozdzielonych na dwie genomowo różne podgrupy przy współczynniku podobieństwa 0,62. Zróżnicowanie genomowe ryzobiów jest kształtowane przez czynniki środowiskowe ale też ograniczone przez symbiotyczną interakcję z roślinnym gospodarzem [Wernegreen i Riley, 1999].

Badania prezentowane w niniejszej pracy wykazały, że technika AFLP zwłaszcza ze starterem Pst–GC była lepsza niż metoda BOX–PCR oraz ERIC–PCR w różnicowaniu symbiontów *L. nigricans* i pozwala rozróżnić wszystkie szczepy bakteryjne. Wykazano również, że wszystkie trzy zastosowane techniki pozwalają w prosty sposób dokonać wyboru reprezentatywnych szczepów z każdej podgrupy genomowej do dalszych badań taksonomicznych, mających na celu klasyfikację bakterii do rodzaju i gatunku w oparciu o analizę sekwencji 16S rDNA i wielolokusową analizę sekwencji genów metabolizmu podstawowego (MLSA) [Blears, 1998; Savelkoul, 1999].

W latach 50-tych XX wieku do systematyki organizmów prokariotycznych wprowadzono pierwszą technikę opartą na badaniu kwasów nukleinowych, tzn. oznaczanie zawartości zasad G+C w DNA. Zawartość zasad G+C w DNA ryzobiów specyficznych dla szczodrzyka czerniejącego mieściła się w przedziale od 60,63 mol% do 62,83 mol%, a więc w granicach typowych dla bakterii z rodzaju Bradyrhizobium, tj. 60-65 mol% [Yao i in., 2002]. Otrzymane wyniki nie przesądzają o przynależności mikrosymbiontów L. nigricans do rodzaju Bradyrhizobium, ponieważ zbliżone wartości otrzymywane są dla innych bakterii brodawkowych np. z rodzaju Mesorhizobium, które charakteryzuja się zawartościa zasad G+C w zakresie od 59 do 64 mol%, ale niewatpliwie potwierdzają afiliację do rodzaju Bradyrhizobium ustaloną innymi technikami, np. analizą sekwencji 16S rDNA [Jarvis i in., 1997]. Doświadczalnie wykazano bowiem, że dwa szczepy różniące się zawartością zasad G+C w genomowym DNA o więcej niż 10 mol% nie należą do jednego rodzaju, a różnice w granicach do 5 mol% świadczą o przynależności bakterii do jednego gatunku [Rosselló-Móra i Amann, 2001]. Wyniki oznaczeń zawartości G+C w genomowym DNA dla szczepów wyizolowanych z brodawek korzeniowych szczodrzyka czerniejącego odpowiadają przytoczonym kryteriom przynależności rodzajowej i sugerują, że badane bakterie należą do rodzaju *Bradyrhizobium*.

Pokrewieństwo filogenetyczne szczepów specyficznych dla szczodrzyka czerniejącego i referencyjnych bakterii brodawkowych z rodzaju Bradyrhizobium, Rhizobium, Sinorhizobium i Mesorhizobium, określono w oparciu o analizę porównawczą sekwencji pięciu genów metabolizmu podstawowego. Od czasu publikacji, w której Carl Woese wykazał użyteczność genu 16S rRNA jako markera w badaniach filogenetycznych [Woese i Fox, 1977], sekwencja kodująca 16S rRNA małej podjednostki rybosomu stała się genem z wyboru w badaniach taksonomicznych bakterii. Molekularna systematyka ryzobiów w dużej mierze bazuje na filogenezie genu 16S rRNA [Young i in., 2001; Sawada i in., 2003; Young i in., 2004] i ciągle odgrywa kluczową rolę w taksonomii tych bakterii. Istnieją jednak pewne zastrzeżenia co do taksonomii opartej tylko na filogenezie genu 16S rRNA, szczególnie jeśli weźmie się pod uwagę blisko spokrewnione gatunki i rodzaje [Vinuesa i in., 2005a, b]. Ponadto wiele bakterii ma więcej niż jedną kopię genu 16S rRNA (np. *M. loti* – dwie, *S. meliloti* – trzy), które mogą różnić się między sobą sekwencją nukleotydową. Z drugiej strony w obrębie wielu rodzajów bakterii poziom polimorfizmu sekwencji 16S rDNA jest zbyt niski aby zapewnić ich odpowiednią identyfikację i wyraźną odrębność na drzewie filogenetycznym [Vinuesa i in., 2005b]. Dodatkowe zakłócenia w filogenezie bakterii opartej na analizie sekwencji jednego genu może wprowadzać horyzontalny transfer genów [Gevers i Coenye, 2005]. W celu uniknięcia wspomnianych problemów w badaniach taksonomicznych bakterii opartych jedynie na sekwencji 16S rDNA, obecnie wnioskowanie filogenetyczne i klasyfikacji do rodzaju i gatunku prowadzi się w dużej mierze w oparciu o sekwencje kilku genów kodujących białka. Strategię taką wykorzystano także w badaniach dotyczących bakterii brodawkowych [Martens i in., 2007; Stepkowski i in., 2007; Vinuesa i in. 2005a, b; Young i in., 2001]. W prezentowanej pracy do analiz filogenetycznych i badania pozycji rodzajowej i gatunkowej symbiontów L. nigricans użyto oprócz genu 16S rRNA, również częściowe sekwencje genów atpD, dnaK, gyrB i recA. Wybór ten podyktowany był ich sprawdzoną użytecznością w badaniach filogenetycznych i taksonomicznych ryzobiów [Gaunt i in., 2001; Stępkowski i in., 2003].

Należy stwierdzić, że analiza porównawcza sekwencji 16S rDNA jest stale szeroko stosowana do badań filogenetycznych na poziomie rodzaju i gatunku. Wykazano, że podobieństwo sekwencji genu 16S rRNA niższe niż 98,7% sugeruje, że szczepy bakteryjne należą do różnych gatunków [Yarza i in., 2014]. Analiza sekwencji genu 16S rRNA przy określaniu pozycji gatunkowej ma jednak pewne ograniczenia w przypadku bakterii rodzaju Bradyrhizobium, ponieważ wiele nowo opisanych gatunków bradyrhizobiów wykazuje 99,4% lub wyższą identyczność sekwencji 16S rDNA z wcześniej zdefiniowanymi gatunkami z tego rodzaju [Chahboune i in., 2012; Costa i in., 2018; Guerrouj i in., 2013].

W celu określenia pozycji rodzajowej symbiontów L. nigricans i zbadania ich filogenetycznego pokrewieństwa z innymi bakteriami, użyto prawie pełnej sekwencji genu kodującego 16S rRNA 11 mikrosymbiontów szczodrzyka czerniejącego, reprezentujących różne ich grupy fenomowe i genomowe. Sekwencje 16S rDNA badanych bakterii zostały porównane z sekwencjami innych bakterii brodawkowych dstępnymi w bazie danych GenBank. Filogenetyczne pokrewieństwo symbiontów L. nigricans z bakteriami referencyjnymi reprezentującymi rodzaj Bradyrhizobium zostało przedstawione na filogramie zrekonstruowanym przy użyciu metody największej wiarygodności (ML). Poziom podobieństwa sekwencji 16S rDNA ryzobiów szczodrzyka czerniejącego a referencyjnymi bradyryzobiami wahał się od 94,8% do 100%. Najwyższe podobieństwo sekwencji 16S rDNA (≥ 99,5%), mikrosymbionty specyficzne dla L. nigricans wykazały w stosunku do sekwencji 16S rDNA B. japonicum USDA 6^T, B. canariense BTA-1^T, B. liaoningense USDA 3622^T, B. daqingense CCBAU 15774^T i B. americanum CMVU44^T. Sekwencje 16S rDNA izolatów pochodzących z brodawek korzeniowych szczodrzyka czerniejącego wykazały między sobą 99,6-100% identyczność sekwencji, a sekwencje nukleotydowe 16S rDNA szczepów LN1, LN2, LN10, LN11, LN20, LN30 i LN32 były identyczne ze sobą i z sekwencją 16S rDNA B. japonicum BGA-1. Co ciekawe, sekwencja 16S rDNA B. japonicum BGA-1 różniła się od sekwencji 16S rDNA *B. japonicum* USDA 6^T jedynie w dwóch pozycjach nukleotydowych (99,8% podobieństwa), a była identyczna z sekwencją 16S rDNA B. liaoningense USDA 3622^T 99,9%. Powyższe wyniki wyraźnie wskazują na bardzo niski poziom heterogenności sekwencji genu 16S rRNA wśród gatunków rodzaju Bradyrhizobium. Potwierdza to również, że 16S rDNA jako marker molekularny ma poważne ograniczenia przy wyznaczaniu przynależności gatunkowej bakterii brodawkowych. Wyniki analizy porównawczej sekwencji 16S rDNA potwierdziły wyniki analizy numerycznej cech fenotypowych, wskazując, że mikrosymbionty L. nigricans należą do rodzaju Bradyrhizobium. Pokrewieństwo filogenetyczne symbiontów specyficznych dla szczodrzyka czerniejącego z innymi znanymi bakteriami brodawkowymi reprezentującymi różne gatunki rodzaju Bradyrhizobium przedstawiono w postaci drzewa filogenetycznego, na którym symbionty L. nigricans i referencyjne szczepy Bradyrhizobium podzieliły się na dwa odrębne klastry o współczynnikach poparcia 100% i 98%. Pierwszy klaster obejmuje wszystkie badane izolaty i 28 różnych bakterii rodzaju Bradyrhizobium, natomiast 17 gatunków rodzaju Bradyrhizobium utworzyło na drzewie filogenetycznym 16S rDNA odrębny klaster. Podobne pokrewieństwo filogenetyczne, bakterii rodzaju Bradyrhizobium określone na podstawie sekwencji genu 16S rRNA były już opisywane w literaturze naukowej [Delamuta i in., 2012; Kalita i Małek, 2017; Menna i in., 2009]. Uzyskane w tej pracy wyniki sugerują bliskie pokrewieństwo symbiontów szczodrzyka czerniejacego z B. japonicum BGA-1. Jednak ze względu na wysoki poziom konserwatywności sekwencji genu 16S rRNA, do określenia pozycji gatunkowej mikrosymbiontów specyficznych dla L. nigricans, zastosowano dodatkowo wielolokusowa analize genów kodujących białka metabolizmu podstawowego bakterii.

Wilelolokusową analizę sekwencji (MLSA) przeprowadzono wykorzystując połączone sekwencje nukleotydowe czterech genów rdzeniowych: *atpD*, *dnaK*, *gyrB* i *rpoB*. W wielu badaniach taksonomicznych bakterii rodzaju *Bradyrhizobium*, do wytyczania przynależności gatunkowej blisko spokrewnionych bakterii szeroko stosowane są właśnie te (powyższe) geny metabolizmu podstawowego [Chidebe i in., 2018; Grönemeyer i in., 2017; Kalita i Małek, 2017; Rivas i in., 2009; Vinuesa i in., 2005b]. Mimo iż, geny powszechnie stosowane w analizie filogenetycznej i taksonomicznej bakterii wykazują znacznie wyższy poziom różnorodności sekwencji w porównaniu z genem 16S rRNA, dotychczas nie zaproponowano żadnej wartości progowej, która mogłaby zostać użyta do wyznaczenia granicy gatunku, jak to ma miejsce np. w przypadku analizy ANI (ang. *Average Nucleotide Identity*) [Chun i in., 2018; Jain i in., 2018].

Ryzobia specyficzne dla szczodrzyka czerniejącego (LN) wykazały stopień podobieństwa połączonych sekwencji czterech badanych genów na poziomie od 98,9 do 99,8%. Sekwencje tych szczepów były najbardziej podobne do połączonych sekwencji szczepu *B. japonicum* USDA 6^T (96,7 do 97,2%) a stopień identyczności analizowanych sekwencji symbiontów *L. nigricans* i sekwencji innych gatunków rodzaju *Bradyrhizobium* wahała się od 87,7% w przypadku *B. retamae* Ro19^T do 95,3% w przypadku *B. canariense* BTA–1^T. Należy zauważyć, że najwyższa wartość podobieństwa sekwencji czterech genów metabolizmu podstawowego szczepów LN i *B. japonicum* USDA 6^T (97,2%) jest niższa niż podobieństwo tych sekwencji między *B. elkanii* USDA 76^T i *B. pachyrhizi* PAC48^T (98,4%). Ponadto najniższe podobieństwo wspomnianych sekwencji określone między *B. japonicum* USDA 6^T a izolatami szczodrzyka czerniejącego (96,7%) pokrywa się z podobieństwem sekwencji genów *atpD–dnaK–gyrB–rpoB B. paxllaeri* LMTR21^T i *B. lablabi* CCBAU23086^T (96,7%).

Uzyskane i przedstawione w niniejszej pracy wyniki potwierdzają przedstawiane już w literaturze naukowej wyniki, w których mikrosymbionty roślin plemienia Genisteae należą głównie do bakterii rodzaju *Bradyrhizobium*, z *B. japonicum* jako dominującym gatunkiem zakażającym tę grupę makrosymbiontów [Kalita i Małek, 2012; Kalita i Małek, 2017; Stępkowski i in., 2011; Stępkowski i in., 2018;].

Analiza RFLP genu kodującego 16S rRNA jest powszechnie stosowana w badaniach taksonomicznych bakterii brodawkowych i pozwala na identyfikację genetycznego zróżnicowania populacji, zarówno na poziomie gatunku jak i międzygatunkowym [Jarabo-Lorenzo i in., 2003; Laguerre i in., 1996; Silva i in., 2007; Vinuesa i in., 2008]. Stosując technikę RFLP–16S rDNA dokonano analizy polimorfizmu długości fragmentów restrykcyjnych genu kodującego 16S rRNA mikrosymbiontów L. nigricans i szczepów referencyjnych rodzaju Bradyrhizobium. Uzyskane wyniki wykazały niewielką zmienność małej podjednostki 16S rRNA w badanej populacji bradyryzobiów specyficznych dla L. nigricans. Genotypy określone metodą RFLP-16S rDNA reprezentowane przez szczepy referencyjne oraz ich grupowanie dendrogramie na potwierdzają częściową zgodność z wcześniejszymi doniesieniami o zróżnicowaniu genomowym bakterii rodzaju Bradyrhizobium, gdzie szczepy sklasyfikowane do gatunku B. japonicum wykazują większą od pozostałych gatunków heterogenność a ich profil restrykcyjny ujawnia podobieństwo *B. japonicum* i *B. liaoningense* oraz wyraźną odrębność szczepów z gatunków: *B. elkanii, B. canariense* i *B. yuanmingense* [Doignon–Bourcier i in., 1999; Jarabo–Lorenzo i in., 2003; Yao i in., 2002].

Oznaczanie stopnia podobieństwa DNA-DNA metodą hybrydyzacji jest jednym ze standardów stosowanych w afiliacji bakterii do gatunku [Stackebrandt i in., 2002]. Przyjmuje się, że szczepy, których stopień hybrydyzacji DNA-DNA wynosi przynajmniej 70% i więcej można zaliczyć do jednego gatunku, podczas gdy stopień podobieństwa DNA-DNA poniżej 50% wskazuje na odrębną przynależność badanych bakterii [Gevers i in., 2005]. Genomowy DNA gatunkowa mikrosymbiontów L. nigricans, których użyto w analizie filogenetycznej tych bakterii, poddano oznaczaniu stopnia podobieństwa ich DNA do DNA znanych gatunków rodzaju Bradyrhizobium metodą hybrydyzacji na mikropłytkach. Technika ta opracowana przez Ezaki i in. (1989) stosowana była m.in. w klasyfikacji do gatunku m.in. szczepów rodzaju Aeromonas [Kaznowski, 1995], szczepów z rodziny Pasteurellaceae, czy też szczepów rodzaju Bradyrhizobium [Willems i in., 2001]. Uzyskane w tej pracy wyniki hybrydyzacji DNA-DNA wskazują na przynależność mikrosymbiontów szczodrzyka czerniejacego do genomogatunku B. japonicum. W oparciu o wysoki, wynoszacy $\geq 77,5\%$ stopień hybrydyzacji ich DNA z DNA B. japonicum USDA 6^T [Laguerre i in., 1994; Willems i in., 2001b].

Pierwsza klasyfikacja bakterii ryzobiowych opierała się głównie na ich symbiotycznej interakcji z roślinnym gospodarzem, czyli zakresie ich roślinnych gospodarzy. Jednak wraz z rozwojem analiz cech fenotypowych i technik biologii molekularnej, pojawiały się doniesienia, które podważały słuszność klasyfikacji ryzobiów tylko w oparciu o zakres roślinnego gospodarza. Stwierdzono bowiem, iż geny symbiotyczne zlokalizowane są na mobilnych elementach genetycznych takich jak: plazmidy czy wyspy symbiotyczne w chromosomie, przez co na drodze horyzontalnego transferu, mogą być przenoszone między bakteriami. Ostatecznie systematyka mikrosymbiontów w oparciu jedynie o zakres gospodarza straciła rację bytu [Sahgal i Johri, 2003; Suominen i in., 2001; Wernegreen i Riley, 1999], ale określenie zakresu gospodarza i efektywności wiązania azotu atmosferycznego w interakcji z rośliną wciąż jest standardem przy charakterystyce bakterii brodawkowych i niezbędne przy opisywaniu nowych gatunków tych bakterii.

W testach roślinnych badane symbionty *L. nigricans* wykazały stosunkowo wąski zakres gospodarza. Efektywną symbiozę bakterie te nawiązywały, oprócz naturalnego partnera symbiotycznego z *Chamaecytisus ratibonensis*, *Cytisus scoparius, Lupinus polyphyllus* i *Lupinus luteus*, czyli z roślinami należącymi do plemienia Genisteae, spokrewnionymi ze sobą. Na podstawie testu redukcji acetylenu do etylenu i oznaczania suchej masy części nadziemnej roślin stwierdzono, że najbardziej efektywne wiązanie azotu zachodzi w symbiozie między mikrosymbiontami *L. nigricans* a ich naturalnym gospodarzem. Warty podkreślenia jest fakt, że uzyskane wyniki potwierdzają wcześniejsze doniesienia o tym, że zakres gospodarza roślinnego bakterii brodawkowych często obejmuje blisko spokrewnione gatunki roślin bobowatych [Suominen i in., 2001]. Może to być związane ze specyficznością receptorów roślinnych, które rozpoznają odpowiednią strukturę bakteryjnych czynników Nod, co pozwala na transdukcję sygnału w głąb tkanek korzenia i indukcję prymodium brodawki [Cullimore i Dénarié, 2003; Oldroyd i Downie, 2006].

Historię ewolucyjną genów związanych z procesem tworzenia brodawek ryzobiów specyficznych dla *L. nigricans* ustalono na podstawie analizy porównawczej sekwencji dwóch genów symbiotycznych tj. *nodC* i *nodZ* tych bakterii i bakterii rodzaju *Bradyrhizobium*.

Do wnioskowania o filogenezie wspomnianych genów wykorzystano podobną strategię jak w analizie genów rdzeniowych bakterii. W badaniach zastosowano metodę największej wiarygodności (ML) z wykorzystaniem odpowiednio dobranego dla badanych sekwencji modelu ewolucji. Mikorsymbionty specyficzne dla *L. nigricans* tworzą razem z włączonymi do analizy, mikrosymbiontami roślin plemienia Genisteae, monofiletyczną grupę przy maksymalnym (100%) współczynniku poparcia. Sekwencje genu *nodC* ryzobiów specyficznych dla szczodrzyka czerniejącego były podobne względem siebie w 96,1% – 100%, a do sekwencji genu *nodC* referencyjnych bradyryzobiów infekujących rośliny plemienia Genisteae stopień ich podobieństwa wyniósł od 94,1% do 98,7%. Natomiast w przypadku genu *nodZ* badane mikrosymbionty przy współczynniki poparcia wynoszącym 100%, zgrupowane zostały razem z *Bradyrhizobium canariense* SEMIA 928^T, z którym utworzyły monofiletyczną grupę, a stopień podobieństwa tych sekwencji wyniósł 90,1 – 92,5%. Pozostałe bakterie rodzaju *Bradyrhizobium* zgrupowane zostały w dwóch oddzielnych gronach, a stopień podobieństwa sekwencji nodZ tych bakterii i symbiontów szczodrzyka czerniejącego wyniósł 72,3 – 81,9%.

Prezentowane wyniki filogenezy genów symbiotycznych nod są wysoce zgodne z wcześniej opublikowanymi danymi. Moulin i in. [2004] badali dużą grupę szczepów bradyryzobiowych tworzących układy symbiotyczne z różnymi gatunkami roślin bobowatych. Na uzyskanych filogramach genów *nodC* i *nodZ* mikrosymbionty roślin plemienia Genisteae tworzyły monofiletyczną grupę, podobnie jak w prezentowanej pracy doktorskiej. Stępkowski i in. [2007, 2018] w badaniach uwzględniających analize izolatów łubinu, sekwencji pochodzacych z mikrosymbiontów innych roślin bobowatych, w tym roślin plemienia Genisteae, uzyskali podobne grupowanie na filogramie genu nodC. Z kolei Vinuesa i in. [2005b] na podstawie analizy sekwencji genu nodC wykazali na filogramie tego genu tworzenie monofiletycznej grupy przez szczepy infekujące rośliny plemienia Genisteae i zaproponowali wyodrębnienie nowego biowaru genistearum dla tych bakterii. Na filogramie genu nodC istnieje wyraźny podział między bradyryzobiami wchodzącymi w symbiozę z roślinami plemienia Genisteae, a bradyryzobiami będącymi mikrosymbiontami soi, tj. rośliny z plemienia Phaseoleae – podplemię Glycinianae. Te różnice między wspomnianymi bradyryzobiami są zgodne z tymi istniejącymi między plemionami roślinnych gospodarzy [Doyle i Luckow, 2003] i wskazuje na korelację między filogenezą genów *nod* mikrosymbionta a filogenezą gospodarza roślinnego [Vinuesa i in., 2005b]. Taką zależność wykazano we wcześniejszych badaniach, co stało się podstawą przypuszczenia o wzajemnej adaptacji partnerów w trakcie ewolucji układu symbiotycznego roślina - bakteria [Ueda i in., 1995; Wernegreen i Riley, 1999].

Filogramy uzyskane na podstawie sekwencji genów *nod* wskazują na monofiletyczność symbiotyczną rodzaju *Bradyrhizobium*, mimo dużego zróżnicowania tych bakterii, wynikającego z ich przystosowania się do różnych gospodarzy roślinnych. Podobne wyniki uzyskano we wcześniejszych badaniach filogenetycznych genu *nodC* i *nodZ*, gdzie ryzobia szybko rosnące, należące do różnych rodzajów nie tworzą oddzielnych grup, zgodnie z przynależnością rodzajową, a są wymieszane ze sobą i grupują się zgodnie z zakresem infekowanego partnera roślinnego. Sytuację taką można tłumaczyć transferem horyzontalnym genów symbiotycznych [Laguerre i in., 2001; Ormeño–Orrillo i in., 2013; Suominen i in., 2001], który w przypadku bakterii rodzaju *Bradyrhizobium* może być ograniczony do szczepów blisko spokrewnionych.

Omówione powyżej wyniki wskazują na to, że symbioza ryzobiów z roślinami plemienia Genisteae wymaga pewnych adaptacji ze strony bakteryjnego partnera poprzez zmiany w sekwencjach genów determinujących strukturę czynnika Nod. Filogeneza genów symbiotycznych ryzobiów specyficznych dla *L. nigricans* w dużym stopniu koreluje z filogenezą innych bradyryzobiów tworzących symbiozę z roślinami plemienia Genisteae. Wyniki uzyskane w tej pracy opartej na analizie MLSA czterech genów metabolizmu podstawowego wskazują, iż mikrosymbionty specyficzne dla *L. nigricans* przynależą do gatunku *Bradyrhizobium japonicum*.

7. Wnioski

Wyniki badań omówionych w niniejszej pracy pozwalają na sformuowanie następujących wniosków:

- mikrosymbionty szczodrzyka czerniejącego wykazują wysoki stopień podobieństwa fenotypowego do bakterii brodawkowych rodzaju *Bradyrhizobium*, na dendrogramie UPGMA wszystkie bakterie tworzą razem jeden fenon przy współczynniku podobieństwa fenotypowego 0,69;
- ryzobia specyficzne dla *Lembotropis nigricans* należą do rodzaju *Bradyrhizobium*; co zostało udokumentowane analizą porównawczą sekwencji 16S rDNA oraz techniką MLSA opartą na porównaniu połączonych sekwencji czterech genów metabolizmu podstawowego: *atpD-dnaK-gyrB-rpoB*;
- mikrosymbionty L. nigricana należą do gatunku Bradyrhizobium japonicum, co wykazano w oparciu o stopnień podobieństwa DNA–DNA metodą hybrydyzacji;
- ryzobia specyficzne dla szczodrzyka czerniejącego charakteryzują się dużym zróżnicowaniem genomowego DNA; w analizie AFLP z uzyciem startera PstI– GC wszystkie badane izolaty wykazały charakterystyczne tylko dla siebie, złożone profile DNA;
- mikrosymbionty L. nigricans wykazują szeroki zakres gospodarza i wchodzą w układy symbiotyczne, nie tylko ze szczodrzykiem czerniejącym, ale także z innymi roślinami należącymi do plemienia Genisteae takich jak: Chamaecytisus ratisbonensis, Cytisus scoparius, Lupinus luteus, Lupinus polyphyllus;
- geny nod izolatów z brodawek korzeniowych L. nigricans są blisko spokrewnione z genami nod mikrosymbiontów roślin plemienia Genisteae. Na dendrogramach skonstruowanych w oparciu o sekwencje genów determinujących proces tworzenia brodawek korzeniowych, bakterie te tworzą monofiletyczne grupy, co sugeruje, że geny nod bakterii ujętych w analizie wywodzą się od wspólnego przodka, ponadto Identyfikacja w genomach symbiontów L. nigricans genu nodZ determinującego u ryzobiów specyficzność interakcji z roślinnym gospodarzem sugeruje, że u badanych izolatów grupa fukozylowa może być jednym z czynników regulujących symbiozę.

 mikrosymbionty L. nigricans należą do biowaru genistearum Bradyrhizobium japonicum; taką klasyfikację do symbiowaru potwierdza analiza sekwencji genów nodC oraz interakcja symbiotyczna z roślinami plemienia Genisteae.

8. Streszczenie

Biologiczne wiązanie azotu jest procesem, w którym N2 jest redukowany jest do amoniaku przez organizmy prokariotyczne i w tej formie wprowadzany jest do biosfery i metabolizowany w komórkach żywych organizmów. Główną rolę w tym procesie pełnią bakterie brodawkowe powszechnie zwane ryzobiami, które w symbiotycznej interakcji z roślinami bobowatymi asymilują od 30 do 50% N₂ wiązanego przez wszystkie organizmy diazotroficzne. Mutualistyczna interakcja ryzobiów z roślinami bobowatymi jest ważna dla rolnictwa i korzystna dla środowiska, stąd ogromne zainteresowanie tym procesem oraz bakteriami brodawkowymi (mikrosymbiontami) i ich partnerami roślinnymi (makrosymbiontami).

Celem niniejszej rozprawy doktorskiej była wielokierunkowa charakterystyka mikrosymbiontów określenie dziko rosnącej rośliny bobowatej *Lembotropis nigricans* (szczodrzyk czerniejący), polegająca na określeniu stopnia ich zróżnicowania fenotypowego, polimorfizmu genomowego oraz ustalenie ich pozycji taksonomicznej na poziomie rodzaju i gatunku. Jak również ustalenie ich pokrewieństwa filogenetycznego z innymi bakteriami w oparciu o ich geny rdzeniowe i geny *nod* oraz efektywności wiązania azotu atmosferycznego. Bakterie te nie były dotychczas opisane w literaturze naukowej.

W pierwszym etapie scharakteryzowano badane mikrosymbionty pod względem cech fenotypowych. Analiza numeryczna tych cech wykazała, że izolaty z brodawek korzeniowych *L. nigricans* są fenotypowo najbardziej podobne do bakterii rodzaju *Bradyrhizobium*.

Polimorfizm genomowy badanych ryzobiów, określono trzema metodami "genomowego odcisku palca" tj.: BOX–PCR, ERIC–PCR i AFLP, co łącznie z analizą wzorów restrykcyjnych 16S rDNA uzyskanych techniką RFLP – 16S rDNA pozwoliło wyselekcjonować szczepy (reprezentujące różne grupy genomowe) do analizy sekwencji 16S rDNA, genów rdzeniowych i symbiotycznych.

Pozycja taksonomiczna symbiontów szczodrzyka czerniejącego na poziomie rodzaju i ich pokrewieństwo filogenetyczne z innymi bakteriami zostało określone w oparciu o analizę sekwencji genu kodującego 16S rRNA. Tak ustalona przynależność badanych ryzobiów do rodzaju została zweryfikowana analizą sekwencji czterech genów metabolizmu podstawowego (*atpD*, *dnaK*, *gyrB*, *rpoB*). Uzyskane dane potwierdziły wyniki analizy numerycznej cech fenotypowych i wykazały, że badane mikrosymbionty należą do rodzaju *Bradyrhizobium*.

Zastosowanie techniki MLSA, tj. wielolokusowej analizy połączonych sekwencji genów metabolizmu podstawowego potwierdziło przynależność izolatów brodawek korzeniowych szczodrzyka czerniejącego do rodzaju Bradyrhizobium i umożliwiło określenie afiliacji symbiontów L. nigricans do gatunku Bradyrhizobium japonicum, co zostało również potwierdzone stopniem hybrydyzacji ich DNA na poziomie 77,5 – 83,3%. W badaniu ewolucji organizmów ryzobiów specyficznych dla szczodrzyka czerniejącego wykorzystano także geny symbiotyczne, tj. nodC i nodZ. Ważnym zadaniem niniejszej pracy była analiza akresu gospodarza badanych szczepów i efektywności wiązania N2 w symbiozie z naturalnym gospodarzem, tj. szczodrzykiem czerniejącym oraz innymi roślinami plemienia Genisteae (pomiar suchej masy części nadziemnej i test acetylenowy).

Wielokierunkowe badania dotychczas nieopisanych symbiontów szczodrzyka czerniejącego dotyczące ich różnorodności fenotypowej i genomowej oraz pokrewieństwa filogenetycznego z innymi bakteriami w oparciu o analizę sekwencji genów rdzeniowych i symbiotycznych, jak i określenie stopnia hybrydyzacji DNA tych bakterii z DNA referencyjnych ryzobiów, pozwoliły zaklasyfikować te bakterie do rodzaju, gatunku, a także symbiowaru, tj. do taksonu *Bradyrhizobium japonicum* symbiowar *genistearum*.

9. Abstract

Biological nitrogen fixation is the process in which atmospheric nitrogen is reduced to ammonia by prokaryotic organisms and in this form it is introduced into the biosphere and metabolized in cells of living organisms. The main role in this process play the nodule bacteria collectively called rhizobia, which in symbiotic interaction with legumes fix from 30 to 50% of the total N_2 asimilated by all diazotrophic organisms. Mutualistic interaction of rhizobia with Fabaceae plants is agriculturally and ecologically important and hence, the great interest in this symbiosis and their partners, i.e. nodule bacteria (microsymbionts) and legumes (macrosymbionts).

The aim of this dissertation was the determination of genomic polymorphism of rhizobia forming symbiosis with wild growinglegume plant *Lembotropis nigricans* (black broom), which have not yet been described in scientific literature, their taxonomic position at the genus and species levels, phylogenetic relationship with other bacteria and efficiency of atmospheric nitrogen fixation in symbiosis with Fabaceae plants.

In the first stage, black broom microsymbionts were characterized in terms of their phenotypic properties. Numerical analysis of phenotypic traits showed that root nodule isolates of *L. nigricans* are phenotypically most similar to bacteria of *Bradyrhizobium* genera.

The genomic polymorphism of the studied rhizobia, determined by three PCR-based DNA fingerprinting methods (BOX–PCR, ERIC–PCR and AFLP) together with 16S rDNA and analysis of restriction patterns obtained by RFLP–16S rDNA allowed for selection of strains, representing different genomic groups, for the 16SrRNA, core, and symbiotic gene sequences analysis.

The taxonomic position of black broom symbionts at the genus level and their phylogenetic relationship with other bacteria have been determined using comparative analysis of 16S rRNA gene sequences. The determined taxonomic rank of studied rhizobia has been verified by multilocus sequence analysis (MLSA).

Application of MLSA, i.e. concatenated the sequences of four housekeeping genes enabled affiliation of *L. nigricans* symbionts into *Bradyrhizobium japonicum* species. In the evolutionary studies of nodulation genes of diazotrophic rhizobia specific for black broom, symbiotic genes: *nodC* and *nodZ* (whose products

participate in the synthesis of the basic structure of Nod factors essential for root nodule formation) have been used.

Bearing in mind, that the aim of this work were diazotrophic symbionts of *L. nigricans* (one of two species in the genus *Lembotropis*) the analysis of their host range (laboratory plant inoculation test) and determination of the efficiency of nitrogen fixation by these bacteria in symbiosis with black broom (stem dry weight and acetylene test) were also important tasks of the presented research. The plant test results have shown the essential role of studied rhizobia in the stimulation of *L. nigricans* growth and generally, in the global nitrogen cycle. It should be also emphasized that information about the host range is one of the required criteria for the description of a new nodule bacteria species.

Multidirectional research of black broom symbionts concerning their phenotypic properties, genome diversity and their phylogenetic relatedness to other rhizobia, based on analysis of core and symbiotic gene sequences as well as the determination of DNA–DNA hybridization rate of these bacteria with reference rhizobia allowed us to classify *L. nigricans* microsymbionts to *Bradyrhizobium japonicum* symbiovar *genistarum*.

10. Bibliografia

- Acinas S. G., Marcelino L. A., Klepac–Ceraj V., Polz M. F., (2004), Divergence and redundancy of 16S rRNA sequences in genomes with multiple *rrn* operons, *Journal of Bacteriology*, 186:2629–2635.
- Amann R. I., Ludwig W., Schleifer K. H., (1995), Phylogenetic identification and in situ detection of individual microbial cells without cultivation, *Microbiol Rev*, 59:143–169.
- Amaral G. R. S., Dias G. M., Wellington–Oguri M., Chimetto L., Campeão M.E., Thompson, F.L., Thompson C.C., (2014), Genotype to phenotype: Identification of diagnostic vibrio phenotypes using whole genome sequences, *Int J Syst Evol Microb*, 64:357–365.
- Aranda–Olmedo I., Tobes R., Manzanera M., Ramos J. L., Margués S., (2002), Species-specific repetitive extragenic palindromic (REP) sequences in *Pseudomonas putida, Nucleic Acids Res*, 30(8):1826–1833.
- Aserse A. A., Räsänen L. A., Assefa F., Hailemaria, A., Lindström K., (2012), Phylogeny and genetic diversity of native rhizobia nodulating common bean (*Phaseolus vulgaris* L.) in Ethiopia, *Syst Appl Microbiol*, 35:120–131.
- Babalola O. O., Olanrewaju O. S., Dias T., Ajilogba C. F., Kutu F. R., Cruz C., (2017), Biological Nitrogen Fixation: The role of underutilized leguminous plants, *Micro Green Revol*, 431–443.
- Barnett M. J., Fisher R. F., (2006), Global gene expression in the rhizobiallegume symbiosis, *Symbiosis*, 42:1–24.
- Baumann P., Ishikawa H., Vondohlen C., Moran N., (1993), A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts., *Proc Roy Soc B: Biol Sci*, 253(1337):167–171.
- Beukes C. W., Stepkowski T., Venter S. N., Cłapa T., Phalane F. L., le Roux M. M., Steenkamp E. T., (2016), Crotalarieae and Genisteae of the South African Great Escarpment are nodulated by novel *Bradyrhizobium* species with unique and diverse symbiotic loci, *Mol Phyl Evol*, 100:206–218.
- Bidyut R. M., Klaas B., Asit M., (2007), Comparison of five rep–PCR genomic fingerprinting methods for differentiation of fecal Escherichia coli from humans, poultry and wild birds, *FEMS Microbiol Lett*, 277:98–106.

- Bilung L. M., Pui C. F., Suut L., Apun K., (2018), Evaluation of BOX PCR and ERIC – PCR as Molecular Typing Tools for Pathogenic *Leptospira*, *Dis Mar*, 2018:1–9.
- 12. Bisen P., (2014), Microbial Taxonomy, Ident Met Taxon, 8(8):8–13.
- Bishop C. J., Aanensen D. M., Jordan G. E., Kilian M., Hanage W. P., Spratt B.G., (2009), Assigning strains to bacterial species via the internet, *BMC Biol*, 7:3.
- Blears M. J., De Grandis S. A., Le H., Trevors J. T., (1998), Amplified fragment length polymorphism (AFLP): A review of the procedure and its application, J Ind Microbiol Biot, 8:99–114.
- Brencic A., Winans S. C., (2005), Detection of and response to signals involved in host-microbe interactions by plant – associated bacteria, *Microbiol Mol Biol Rev*, 69:155–194.
- Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M., Boone D. R., Chairman V., Schleifer K. H., (2001), *Bergey's Manual of Systematic Bacteriology*, Volume Two: The Proteobacteria, Part A Introductory Essays, Wydawnictwo Springer Nature Switzerland AG.
- Broekhuijsen M., Johansson A., Bystro M., Eriksson U., Larsson E., Prior R. G., Titball R. W., (2003), Genome – wide DNA microarray analysis of *Francisella tularensis* strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent *F*. *tularensis* subsp. *tularensis*, *J Clin Microb*, 41(7):2924–2931.
- Broughton W. J., Jabbouri S., Perret X., (2013), Keys to symbiotic harmony, *J Bacteriol*, 182:5641–5652.
- 19. Busch U., Nitschko H., (1999), Methods for the differentiation of microorganisms, *J Chromatogr B Biomed Sci Appl*, 722(1–2):263–278.
- Busse H. J., Denner E. B. M., Lubitz W., (1996), Overview of methods used in bacterial systematics, *J Biotech*, 47(96):3–38.
- Cardoso D., Pennington R. T., de Queiroz L. P., Boatwright J. S., Van Wyk B. E., Wojciechowski M. F., Lavin M., (2013), Reconstructing the deep – branching relationships of the papilionoid legumes, *S Afr J Bot*, 89:58– 75.
- 22. Chahboune R., Carro L., Peix A., Ramírez-Bahena M. H., Barrijal S., Velázquez
E., Bedmar E. J., (2012), *Bradyrhizobium rifense* sp. nov. isolated from effective nodules of *Cytisus villosus* grown in the Moroccan Rif, *Syst Appl Microbiol*, 35:302–305.

- 23. Chen Y., Zhou F., Li G., Xu Y., (2008), A recently active miniature inverted– repeat transposable element, Chunjie, inserted into an operon without disturbing the operon structure in *Geobacter uraniireducens* Rf4, *Genetics*, 179:2291– 2297.
- Chidebe I. N., Jaiswal S. K., Dakora F. D., (2018), Distribution and phylogeny of microsymbionts associated with cowpea (*Vigna unguiculata*) nodulation in three agroecological regions of Mozambique, *Appl Environ Microbiol*, 84:01712–01717.
- 25. Chun J., Oren A., Ventosa A., Christensen H., Arahal D.R., da Costa M.S., Rooney A. P., Yi H., Xu X. W., De Meyer S., Trujillo M. E., (2018), Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes, *Int J Syst Evol Microbiol*, 68:461–466.
- 26. Chun J., Rainey F. A., (2014), Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea, *Int J Sys Evol Microb*, 64(2):316–324.
- Clarridge J. E., (2004), Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases, *Clin Microbiol Rev*, 17(4):840–862.
- 28. Clúa J., Roda C., Zanetti M. E., Blanco F. A., (2018), Compatibility between legumes and rhizobia for the establishment of a successful nitrogen-fixing symbiosis, *Genes*, 9(3).
- 29. Coenye T., Gevers D., Van De Peer Y., Vandamme P., Swings J., (2005), Towards a prokaryotic genomic taxonomy, *FEMS Microb Rev*, 29(2):147–167.
- 30. Cohan F. M., (2006), Towards a conceptual and operational union of bacterial systematics, ecology, and evolution. *Phil Trans Roy Soc B*, 361:1985–1996.
- Colwell R. R., (1970), Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species, Journal of Bacteriology, 104(1):410–433.
- Cooper J. E., (2007), Early interactions between legumes and rhizobia: Disclosing complexity in a molecular dialogue, *J App Microb*, 103(5):1355–1365.

- Correia F. F., Inouye S., Inouye M., (1988), A family of small repeated elements with some transposon–like properties in the genome of *Neisseria gonorrhoeae*, *J Biol Chem*, 263:12194–12198.
- 34. Costa E. M, Guimarães A. A., Carvalho S. T., Rodrigues L. T., Ribeiro P. R. A., Lebbe L., Willems A., Moreira F. M. S., (2018), *Bradyrhizobium forestalis* sp. nov., an efficient nitrogen-fixing bacterium isolated from nodules of forest legume species in the Amazon, *Arch Microbiol*, 200:743–752.
- 35. Crossman L.C., Castillo Ramirez S., McAnnula C., Lozano L., Vernikos G.S., Acosta J.L., Ghazoui Z.F., Gonzalez I.H., Meakin G., Walker A.W., Hynes M.F., Young J.P.W., Downie J.A., Romero D., Johnston A.W.B., Davila G., Parkhill J., González V., (2008), A common genomic framework for a diverse assembly of plasmids in the symbiotic nitrogen fixing bacteria, *PLoS One*, 3(7)e2567.
- 36. Cubas P., Pardo C., Hikmat T., Castroviejo S., (2010), Phylogeny and evolutionary diversification of *Adenocarpus* DC. (*Leguminosae*), *Taxon*, 59:720–732.
- 37. Cullimore J., Dénarié J., (2003), How legumes select their sweet talking symbionts, *Science*, 302:575–578.
- de Gregorio E., Silvestro G., Venditti R., Carlomagno M. S., Di Nocera P. P., (2006), Structural organization and functional properties of miniature DNA insertion sequences in yersiniae. *J Bacteriol*, 188:7876–7884.
- de Lajudie P., Laurent–Fulele E., Willems A., Torck U., Coopman R., Collins M.D., Kersters K., Dreyfus B., Gillis M., (1998), *Allorhizobium undicola* gen. nov., sp. nov., nitrogen – fixing bacteria that efficiently nodulate *Neptunia natans* in Senegal, *Int J Syst Bacteriol*, 48:1277–1290.
- De Ley J., (1968), Molecular biology and bacterial phylogeny, In *Evolutionary Biology*, 2:103–156, Edited by T. Dobzhansky, M.K. Hects, W.C. Steare, Amsterdam, The Netherlands: North Holland Publishing Co.
- Delamuta J. R., Ribeiro R. A., Menna P., Bangel E. V., Hungri, M., (2012), Multilocus sequence analysis (MLSA) of *Bradyrhizobium* strains: revealing high diversity of tropical diazotrophic symbiotic bacteria, *Braz J Microbiol*, 43:698– 710.
- 42. Delmont T. O., Prestat E., Keegan K. P., Faubladier M., Robe P., Clark I. M.,

Vogel T. M., (2012), Structure, fluctuation and magnitude of a natural grassland soil metagenome, *ISME J*, 6(9):1677–1687.

- 43. Delsuc F., Brinkmann H., Philippe H., (2005), Phylogenomics and the reconstruction of the tree of life, *Nat Rev Genet*, 6(5):361–375.
- Dixon R., Kahn D., (2004), Genetic regulation of biological nitrogen fixation, *Nat Rev Microbiol*, 2:621–631.
- 45. Doignon–Bourcier F., Willems A., Coopman R., Laguerre G., Gillis M., de Lajudie P., (2000), Genotyping characterization of Bradyrhizobium strains nodulating small senegalese legumes by 16S–23S rRNA intergenic gene spacers and amplified fragment length polymorphism fingerprint analyses. *Appl Environ Microb* 66:3987–3997.
- 46. Donelli G., Vuotto C., Mastromarino P., (2013), Phenotyping and genotyping are both essential to identify and classify a probiotic microorganism, *Microbial Ecol H Dis*, 24.
- Downie J. A., (2010), The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots, *FEMS Microb Rev*, 34(2), 150–170.
- 48. Doyle J. J. i Luckow M. A., (2003), The rest of the iceberg. Legume diversity and evolution in a phylogenetic context, *Plant Physiol*, 131:900–910.
- Drummond C. S., Eastwood R. J., Miotto S. T. S., Hughes C. E., (2012), Multiple continental radiations and correlates of diversification in *Lupinus* (*Leguminosae*): Testing for key innovation with incomplete taxon sampling, *Sys Biol*, 61(3):443–460.
- 50. Eisen J. A., (1995), The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species, *J Mol Evol*, 41(6):1105–1123.
- 51. Elkan G. H., (1992), Taxonomy of the rhizobia, Can J Microbiol, 38:446–450.
- 52. Espéli O., Moulin L., Boccard F., (2001), Transcription Attenuation Associated with Bacterial Repetitive Extragenic BIME Elements, *J Mol Biol*, 314:375–386.
- 53. Ewens W., (2003), Statistical methods in bioinformatics: An introduction, J Americ Stat Assoc, 98.
- Fellay R., Hanin M., Montorzi G., Frey J., Freiberg C., Golinowski W., Jabbouri S., (1998), nodD2 of *Rhizobium* sp. NGR234 is involved in the repression of the

nodABC operon, Mol Microb, 27(5):1039-1050.

- 55. Felsenstein J., (1981), Evolutionary trees from DNA sequences: A maximum likelihood approach, *J Mol Evol*, 17:368–376.
- 56. Felsenstein J., (2004), Inferring Phylogenies, Am J Hum Genet, 74(5):1074.
- Fiz–Palacios O.; Valcárcel V., (2013), From Messinian crisis to Mediterranean climate: A temporal gap of diversification recovered from multiple plant phylogenies, *Persp Plant Ecol Evol Syst*, 15:130–137.
- Fox G. E., Peckman K. J., Woese C. R., (1977), Comparative cataloging of 16S ribosomal ribonucleic acid: moelcular approach to prokaryotic systematics, *Inter J Syst Bacteriol* 27:44–57.
- 59. Frank B., (1889), Ueber die Pilzsymbiose der Leguminosen. Berichte der Deutschen Botanischen Gesellschaft, 7:332–346.
- Fraysse N., Couderc F., Poinsot V., (2003), Surface polysaccharide involvement in establishing the rhizobium – legume symbiosis, *Eur J Biochem*, 270(7):1365– 1380.
- 61. Gage D. J., (2004), Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes, *Microbiol Mol Biol Rev* 68:280–300.
- Garrity G., Brenner D. J., Kreig N., Staley J. T., (2005), Bergey's Manual of Systematic Bacteriology Vol. 2 Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. DOI: 10.1007/0-387-29298-5.
- Gaunt M. W., Turner S. L., Rigottier–Gois L., Lloyd–Macgilp S. A., Young J. P. W., (2001), Phylogenies of *atpD* and *recA* support the small subunit rRNA–based classification of rhizobia, *Int J Syst Evol Microbiol*, 51:2037–2048.
- Geurts R., Bisseling T., (2002), Rhizobium Nod factor perception and signalling, *Plant Cell*, 14:239–S249.
- 65. Gevers D., Coenye T., (2005), Phylogenetic and genomic analysis. W: ASM Manual of Environmental Microbiology. Edytorzy: J. L. Garland, S. O'Connell. ASM Press.
- Gevers D., Cohan F.M., Lawrence J.G., Spratt B.G., Coenye T., Feil E.J., Stackebrandt E., Van de Peer Y., Vandamme P., Thompson F. L., Swings J., (2005), Opinion: Re–evaluating prokaryotic species, *Nature Rev Microb*, 3(9):733–739.
- 67. Gibson K. E., Kobayashi H., Walker G. C., (2008), Molecular determinants of a symbiotic chronic infection, *Annu Rev Genet*, 42:413–441.

- Gillis M., Vandamme P., De Vos P., Swings J., Kersters K., (2001), Polyphasic Taxonomy, *Bergey's Manual of Systematic Bacteriology*, (II), 43–48.
- 69. Glenn A. R. i Dilworth M. J., (1981), The uptake and hydrolysis of disaccharides by fast– and slow–growing species of *Rhizobium*, *Arch Microbiol*, 129:233–239.
- Gnat S., Małek W., Oleńska E., Trościańczyk A., Wdowiak–Wróbel S., Kalita M., Wójcik M., (2015), Insight into the genomic diversity and relationship of *Astragalus glycyphyllos* symbionts by RAPD, ERIC–PCR and AFLP fingerprinting, J Appl Genet, 56:551–554.
- Gnat S., Wójcik M., Wdowiak–Wróbel S., Kalita M., Ptaszyńska A., Małek W., (2014), Phenotypic characterization of *Astragalus glycyphyllos* symbionts and their phylogeny based on the 16S rDNA sequences and RFLP of 16S rRNA gene, *Anton Leeuw*, 105:1033–1048.
- 72. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M., (2007), DNA–DNA hybridization values and their relationship to whole–genome sequence similarities, *Int J Syst Evol Microbiol*, 57:81–91.
- 73. Gough C. i Jacquet C., (2013), Nod factor perception protein carries weight in biotic interactions, *Trends Plant Sci*, 18:566–574.
- 74. Graham P. H., Sadowsky M. J., Keyser H. H., Barnet Y. M., Bradley R. S., Cooper J. E., de Ley D. J., Jarvis B. D., Roslysky E. B., Strijdom B. W., Young P. W., (1991), Proposed minimal standards for the description of new genera and species of root and stem–nodulating bacteria, *Inter J Syst Bacteriol*, 41:582–587.
- Grönemeyer J.L., Bünger W., Reinhold–Hurek B., (2017), Bradyrhizobium namibiense sp. nov., a symbiotic nitrogen–fixing bacterium from root nodules of Lablab purpureus, hyacinth bean, in Namibia, Int J Syst Evol Microbiol, 67:4884–4891.
- 76. Guerrouj K., Ruíz–Díez B., Chahboune R., Ramírez–Bahena M. H., Abdelmoumen H., Quiñones M. A., El Idrissi M. M., Velázquez E., Fernández– Pascual M., Bedmar E. J., Peix A., (2013), Definition of a novel symbiovar (sv. retamae) within *Bradyrhizobium retamae* sp. nov., nodulating *Retama sphaerocarpa* and *Retama monosperma*, *Syst Appl Microbiol*, 36:218–223.
- 77. Guha S., Sarkar M., Ganguly P., Uddin M. R., Mandal S., DasGupta M., (2016), Segregation of nod–containing and nod–deficient bradyrhizobia as endosymbionts of *Arachis hypogaea* and as endophytes of *Oryza sativa* in

intercropped fields of Bengal Basin, India. Environ Microb, 18(8):2575-2590.

- Haag A. F., Arnold M. F., Myka K. K., Kerscher B., Dall'Angelo S., Zanda M., Mergaert P., Ferguson G. P., (2000), Molecular insights into bacteroid development during Rhizobium–legume symbiosis, *FEMS Microbiol Rev*, 37:364–383.
- Han S. Z., Wang E. T., Chen W. X., (2005), Diverse bacteria isolated from root nodules of *Phaseolus vulgaris* and species within of the genera *Campylotropis* and *Cassia* grown in China, *Syst Appl Microbiol*, 28:265–276.
- Hanage W. P., Fraser C., Spratt B. G., (2005), Fuzzy species among recombinogenic bacteria, *BMC Biol*, 3:1–7.
- Hanganu D., Filip L., Olah N. K., Mocan A., Vlase L., Raita O., Benedec D., (2016), Evaluation of polyphenolic profile and antioxidant activity for *Cytisus nigricans* and *Cytisus albus*, *Farmacia*, 64(6):863–867.
- 82. Harris J. M., Wais R., Long S. R., (2003), Rhizobium–induced calcium spiking in *Lotus japonicus*, *Mol Plant Microbe Interact*, 16:335–341.
- Heidstra R. i Bisseling T. O. N., (1996), Nod factor–induced host responses and mechanisms of Nod factor perception, *New Phytol*, 133:25–43.
- Horn K., Parker I. M., Małek W., Rodríguez–Echeverría, S., Parker M. A., (2014), Disparate origins of *Bradyrhizobium* symbionts for invasive populations of *Cytisus scoparius* (*Leguminosae*) in North America, *FEMS Microb Ecol*, 89(1):89–98.
- Hughes C. i Eastwood R., (2006), Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes, *Proc Natl Acad Sci USA*, 103:10334–10339.
- Hulton C. S. J., Higgins C. F., Sharp P. M., (1991), ERIC sequences: a novel family of repetitive elements in the genomes of *Escherichia coli*, *Salmonella typhimurium* and other *Enterobacteria*, *Mol Microbiol*, 5:825–834.
- Hungria M., Campo R. J., Chueire L. M. O., Grange L., Megias M., (2001), Symbiotic effectiveness of fast–growing rhizobial strains isolated from soybean nodules in Brazil, *Biol Fert Soils*, 33:387–394.
- Iganci J. R. V., Miotto S. T. S., (2015), Lupinus. In Lista de Espécies da Flora do Brasil; Jardim Botânico do Rio de Janeiro: Rio de Janeiro, Brazil.
- 89. Isenbarger T. A., Carr C. E., Johnson S. S., Finney M., Church G. M.,

Gilbert W., Ruvkun G., (2008), The most conserved genome segments for life detection on earth and other planets, *Orig Life Evol Biospheres*, 38(6):517–533.

- Jain C., Rodriguez L. M. R., Phillippy A. M., Konstantinidis K. T., Aluru S., (2018), High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries, *Na Commun*, 9:5114.
- Jain P., Pundir R.K., (2017), *Rhizobium Biology and Biotechnology*, 50:135–164, Springer International Publishing, ISBN 9783319649825.
- 92. Janssen P., Coopman R., Huys G., Swings J., Bleeker M., Vos P., Zabeau M., Kersters K., (1996), Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy, *Microbiol*, 142:1881–1893.
- 93. Jarabo–Lorenzo A., Pérez–Galdona R., Donate–Correa J., Rivas R., Velázquez E., Hernández M., Temprano F., Martínez–Molina E., Ruiz–Argüeso T., León–Barrios M., (2003), Genetic diversity of bradyrhizobial populations from diverse geographic origins that nodulate *Lupinus* spp. and *Ornithopus* spp, *Syst Appl Microbiol*, 26(4):611–623.
- 94. Jarvis B. D. W., Van Berkum P., Chen W. X., Nour S. M., Fernandez M. P., Cleyet–Marel J. C., Gillis M., (1997), Transfer of *Rhizobium loti*, *Rhizobium huakuii*, *Rhizobium ciceri*, *Rhizobium mediterraneum*, and *Rhizobium tianshanense* to *Mesorhizobium* gen. nov., *Int J Sys Bact*, 47(3):895–898.
- 95. Jordan D. C., (1982), Transfer of *Rhizobium japonicum* Buchanan 1980 to *Bradyrhizobium* gen. nov., a genus of slow–growing, root nodule bacteria from leguminous plants, *Int J Syst Bacteriol*, 32(1):136–139.
- 96. Kalita M. i Małek W., (2004) Phenotypic and genomic characteristics of rhizobia isolated from *Genista tinctoria* root nodules, *Syst Appl Microbiol*, 27:707–715.
- Kalita M. i Małek W., (2010), *Genista tinctoria* microsymbionts from Poland are new members of *Bradyrhizobium japonicum* bv. genistearum, Syst Appl Microbiol, 33:252–259.
- Kalita M. i Małek W., (2017), Molecular phylogeny of *Bradyrhizobium* bacteria isolated from root nodules of tribe Genisteae plants growing in southeast Poland, *Syst Appl Microbiol*, 40:482–491.
- 99. Kaneko T., Nakajima N., Okamoto S., Suzuki I., Tanabe Y., Tamaoki M., Nakamura Y., Kasai F., Watanabe A., Kawashima K., Kishida Y., Ono A., Shimizu Y., Takahashi C., Minami C., Fujishiro T., Kohara M., Katoh M.,

Nakazaki N., Nakayama S., Yamada M., Tabata S., Watanabe M. M., (2007), Complete genomic structure of the bloom–forming toxic cyanobacterium *Microcystis aeruginosa* NIES–843. *DNA Res*, 14:247–256.

- 100.Käss E. i Wink M., (1997), Molecular phylogeny and phylogeography of the genus *Lupinus* (family *Leguminosae*) inferred from nucleotide sequences of the *rbcL* gene and ITS 1 + 2 sequences of rDNA, *Plant Syst Evol*, 208:139–167.
- 101.Konstantinidis T. K. i Tiedje J. M., (2005), Genomic insights that advance the species definition for prokaryotes, *PNAS*, 102(7):2567–2572.
- 102.Konstantinidis T. K., Ramette A., Tiedje J. M., (2006), The bacterial species definition in the genomic era, *Philos T R Soc B*, 361(1475):1929–1940.
- 103.Labeda D. P., (2000), International Committee on Systematic Bacteriology, IXth International (IUMS), Congress of Bacteriology and Applied Microbiology Minutes of the meetings, 14 – 17.08.1999, Sydney, Australia, Int J Syst Evol Microbiol, 50:2245–2247.
- 104.Laguerre G., Allard M. R., Revoy F., Amarger N., (1994), Rapid Identification of Rhizobia by Restriction Fragment Length Polymorphism Analysis of PCR– Amplified 16S rRNA Genes, *Appl Environ Microbiol*, 56–63.
- 105.Laguerre G., Nour S. M., Macheret V., Sanjuan J., Drouin P., Amarger N., (2001), Classification of rhizobia based on *nodC* and *nifH* gene analysis reveals a close phylogenetic relationship among *Phaesolus vulgaris* symbionts, *Microbiol*, 147: 981–993.
- 106.Lee A. i Hirsch A. M., (2006), Signals and responses: Choreographing the complex interaction between legumes and α and β -rhizobia, *Plant Signaling Behav*, 1(4):161–168.
- 107.Li L., Sinkko H., Montonen L., Wei G., Lindström K., Räsänen L. A., (2012), Biogeography of symbiotic and other endophytic bacteria isolated from medicinal *Glycyrrhiza* species in China, *FEMS Microbiol Ecol*, 79:46 – 68.
- 108.Lilburn T. G. i Garrity G. M., (2004), Exploring prokaryotic taxonomy, *Int J* Syst Evol Microbiol, 54:7–13.
- 109.Lindstrom K., (2009), *Rhizobium galegae*, a new species of legume root nodule bacteria, *Int J Sys Bacteriol*, 39(3):365–367.
- 110.Liu J., Wang E. T., Chen W. X., (2005), Diverse rhizobia associated with woody legumes *Wisteria sinensis*, *Cercis racemosa* and *Amorphae fruticosa* grown in

the temperate zone of China, Syst Appl Microbiol, 28:465-477.

- 111.Logan N. A., Berge O., Bishop A. H., Busse H. J., De Vos P., Fritze D., Heyndrickx M., Kampfer P., Rabinovitch L., (2009), Proposed minimal standards for describing new taxa of aerobic, endospore – forming bacteria, *Int J Syst Evol Microbiol*, 59:2114–2121.
- 112.Lorite M. J., Muñoz S., Olivares J., Soto M. J., Sanjuán J., (2010), Characterization of strains unlike *Mesorhizobium loti* that nodulate *Lotus* spp. in saline soils of Granada, Spain, *App Envir Microbiol*, 76(12):4019–4026.
- 113.Lu Y. L., Chen W. F., Wang E. T., Guan S. H., Yan X. R., Chen W. X., (2009), Genetic diversity and biogeography of rhizobia associated with *Caragana* species in three ecological regions of China. *Sys Appl Microbiol*, 32(5):351–361.
- 114.Lupski J. R. i Weinstock G. M., (1992), Short, interspersed repetitive DNA sequences in prokaryotic genomes, *J Bacteriol*, 174:4525–4529.
- 115.Maiden M. C. J., (2006), Multilocus sequence typing of bacteria, Ann Rev Microbiol, 60(1):561–588.
- 116.Małek, W. i Sajnaga, E., (1999), Current taxonomy of the rhizobia, Acta Microbiol Pol, 48:109–122.
- 117.Marmur J. i Doty P., (1961), Procedure for isolation of deoxyribonucleic acid from microorganisms, *J Mol Biol*; 3:585.
- 118.Marek–Kozaczuk M., Leszcz A., Wielbo J., Wdowiak–Wróbel S., Skorupska A., (2013), *Rhizobium pisi* sv. *trifolii* K3.22 harboring nod genes of the *Rhizobium leguminosarum* sv. *trifolii* cluster, *Sys Appl Microbiol*, 36(4):252–258.
- 119.Martens M., Delaere M., Coopman R., De Vos P., Gillis M., Willems A., (2007),
 Multilocus sequence analysis of *Ensifer* and related taxa, *Int J Sys Evol Microbiol*, 57:489–503.
- 120.Martens M., Dawyndt P., Coopman R., Gillis M., De Vos P., Willems A., (2008), Advantages of multilocus sequence analysis for taxonomic studies: A case study using 10 housekeeping genes in the genus *Ensifer* (including former *Sinorhizobium*). *Int J Sys Evol Microbiol*, 58(1):200–214.
- 121.Martin B., Humbert O., Camara M., Guenzi E., Walker J., Mitchell T., Andrew P., Prudhomme M., Alloing G., Hakenbeck R., Morrison D. A., Boulnois G. J., Claverys J. P., (1992), A highly conserved repeated DNA element located in the chromosome of *Streptococcus pneumoniae*, *Nucleic Acids Res*, 20:3479–3483.

- 122.Menna P., Barcellos F.G., Hungria M., (2009), Phylogeny and taxonomy of a diverse collection of *Bradyrhizobium* strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and *glnII*, *recA*, *atpD* and *dnaK* genes, *Int J Sys. Evol Microbiol*, 59:2934–2950.
- 123.Michener Ch. i Sokal R. R., (1957), A quantitative approach to a problem in classification, *Evol*, 1:130–162.
- 124.Mierzwa B., Wdowiak–Wróbel S., Kalita M., Gnat S., Małek W., (2010), Insight into the evolutionary history of symbiotic genes of *Robinia pseudoacacia* rhizobia deriving from Poland and Japan, *Arch Microbiol*, 192(5):341–350.
- 125.Mnasri B., Mrabet M., Laguerre G., Aouani M.E., Mhamdi R., (2007), Salttolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N₂-fixation with *Phaseolus vulgaris* constitute a novel biovar (bv. *mediterranense*) of *Sinorhizobium meliloti*, *Arch Microbiol*, 187(1):79–85.
- 126.Monteiro R.; Gibbs P. E., (1986), A taxonomic revision of the unifoliate species of Lupinus (*Leguminosae*) in Brazil, *Notes Royal Bot Gard Edin*, 44:71–104.
- 127.Moore E. R. B., Mau M., Arnscheidt A., Böttger E. C., Hutson R. A., Collins M. D., Timmis K. N., (1996), The determination and comparison of the 16S rRNA gene sequences of species of the genus *Pseudomonas (sensu stricto)* and estimation of the natural intrageneric relationships, *Syst Appl Microbiol*, 19(4):478–492.
- 128.Moulin L., Béna G., Boivin–Masson C., Stępkowski T., (2004), Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co–transfer within the *Bradyrhizobium* genus, *Mol Phyl Evol*, 30:720–732.
- 129.Mousavi S. A., Li L., Wei G., Räsänen L., Lindström K., (2016), Evolution and taxonomy of native mesorhizobia nodulating medicinal Glycyrrhiza species in China, *Syst Appl Microbiol*, 39(4):260–265.
- 130.Murray R. G. E., Brenner D. J., Colwell R. R., De Vos P., Goodfellow M., Grimont P. A. D., Zavarzin G. A., (1990), Report of the ad hoc committee on approaches to taxonomy within the Proteobacteria, *Int J Syst Bacteriol*, 40(2):213–215.
- 131.Murray, R. G. E. i Stackebrandt E., (1995), Taxonomic note: Implementation of the provisional status candidatus for incompletely described Procaryotes, *Int J Syst Bacteriol*, 45(1):186–187.

- 132.Nevado B., Atchison G. W., Hughes C. E., Filatov D. A., (2016), Widespread adaptive evolution during repeated evolutionary radiations in New World lupins, *Nature Commun*, 7:1–9.
- 133.Okubo T., Tsukui T., Maita H., Okamoto S., Oshima K., Fujisawa T., Minamisawa K., (2012), Complete genome sequence of *Bradyrhizobium* sp. S23321: Insights into symbiosis evolution in soil oligotrophs, *Microbes Environ*, 27(3):306–315.
- 134.Oldroyd G. E., Murray J. D., Poole P. S., Downie J. A., (2011), The rules of engagement in the legume–rhizobial symbiosis, *Annu Rev Genet*, 45:119–144.
- 135.Olive D. M. i Bean P., (1999), Principles and applications of methods for DNA– based typing of microbial organisms, *J Clin Microbiol*, 37(6):1661–1669.
- 136.On S. L. W. i Holmes B., (1991), Reproducibility of tolerance tests that are useful in the identification of campylobacteria, J Clin Microbiol, 29(9):1785– 1788.
- 137.On S. L. W. i Holmes B., (1992), Assessment of enzyme detection tests useful in identification of *Campylobacteria*, *J Clin Microbiol*, 30(3):746–749.
- 138.Oren A., (2011), How to name new genera and species of Prokaryotes? *Met Microbiol*, 38:437–463.
- 139.Ormeño–Orrillo E., Servín–Garcidueñas L. E., Imperial J., Rey L., Ruiz– Argueso, T., Martinez–Romero E., (2013), Phylogenetic evidence of the transfer of *nodZ* and *nolL* genes from *Bradyrhizobium* to other rhizobia, *Mol Phyl Evol*, 67(3):626–630.
- 140.Ott T., van Dongen J. T., Günther C., Krusell L., Desbrosses G., Vigeolas H., Bock V., Czechowski T., Geigenberger P., Udvardi M. K., (2005), Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development, *Curr Biol*, 15:531–535.
- 141.Overmann J., Huang S., Nübel U., Hahnke R. L., Tindall B. J., (2019), Relevance of phenotypic information for the taxonomy of not-yet-cultured microorganisms, *Syst Appl Microbiol*, 42(1):22–29.
- 142.Palleroni N. J., (2003), Prokaryote taxonomy of the 20th century and the impact of studies on the genus *Pseudomonas*: a personal view, *Microbiology*, 149:1–7.
- 143. Parker C.T., Tindall B.J., Garrity M.G., (2015), International code of nomenclature of Prokaryotes, *Int J Syst Evol Microbiol*, 69(1A):1–111.

- 144.Parker M.A., (2015), The spread of *Bradyrhizobium lineages* across host legume clades: from Abarema to Zygia, *Microbial Ecol*, 69(3):630–640.
- 145.Percy D. M. i Cronk Q. C. B., (2002), Different fates of island brooms: Contrasting evolution in Adenocarpus, Genista and Teline (*Genisteae*, *Leguminosae*) in the Canary Islands and Madeira, Am J Bot, 89:854–864.
- 146.Perret X., Staehelin C., Broughton W.J., (2000), Molecular basis of symbiotic promiscuity, *Microbiol Mol Biol Rev*, 64:180–201.
- 147.Perry J. J. i Staley J. T., (1997), *Taxonomy of Eubacteria and Archaea*, Microbiology: Dynamics & Diversity. Fort Worth: Saunders College Publishing: 409–411.
- 148.Polhill R. M. i Van Wyk B. E., (2005), Genisteae. In Legumes of the World; Edytorzy: Lewis G., Schrire B., Mackinder B., Lock M., Royal Botanic Gardens, Kew: Richmond, UK, 283–297, ISBN 1-900-34780-6.
- 149.Popp C. i Ott T., (2011), Regulation of signal transduction and bacterial infection during root nodule symbiosis, *Curr Opin Plant Biol*, 14:458–467.
- 150.Prakash O., Verma M., Sharma P., Kumar M., Kumari K., Singh A., Kumari H., Jit S., Gupta S. K., Khanna M., Lal R., (2007), Polyphasic approach of bactieria classification – An overview of recent advances, *Indian J Microbiol*, 47:98–108.
- 151.Pueppke S. G. i Broughton W. J., (1999), *Rhizobium* sp. Strain NGR234 and *R. fredii* USDA257 share exceptionally broad, nested host ranges, *Mol Plant Microbe Inter*, 12(4):293–318.
- 152.Radutoiu S., Stougaard J., Madsen L. H., Madsen E. B., Felle H. H., Umehara Y., Mette G., Sato S., Nakamura Y., Tabata S., Sandal N., (2003), Plant recognition of symbiotic bacteria requires two LysM receptor–like kinases, *Nature*, 425:585–592.
- 153.Rainey F.A., (2011), How to describe new species of Prokaryotes, *Met Microbiol*, 38:7–14.
- 154.Rainey F.A. i Oren A., (2011), Taxonomy of Prokaryotes Introduction, *Met Microbiol*, 38:1–5.
- 155.Ramasamy D., Mishra A.K., Lagier J.C., Padhmanabhan R., Rossi M., Sentausa E., Fournier P.E., (2014), A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species, *Int J Syst Evol Microbiol*, 64(2):384–391.

- 156.Ramírez–Babena M. H., García–Fraile P., Peix A., Valverde A., Rivas R., Igual J. M., Velázquez E., (2008), Revision of the taxonomic status of the species *Rhizobium leguminosarum* (Frank 1879) Frank 1889AL, *Rhizobium phaseoli* Dangeard 1926AL and *Rhizobium trifolii* Dangeard 1926AL. *R. trifolii* is a later synonym of *R. leguminosarum*. Reclassification of the strain, *Int J Sys Evol Microbiol*, 58(11):2484–2490.
- 157.Reimer L. C., Vetcininova A., Carbasse J. S., Söhngen C., Gleim D., Ebeling C., Overmann J., (2019), BacDive in 2019: Bacterial phenotypic data for High– throughput biodiversity analysis, *Nucleic Acids Res*, 47(1):631–636.
- 158.Reinhold–Hurek B., Bünger W., Grönemeyer J.L., Hurek T., (2015), *Bradyrhizobium vignae* sp. nov., a nitrogen–fixing symbiont isolated from effective nodules of *Vigna* and *Arachis*, *Int J Sys Evol Microbiol*, 66(1):62–69.
- 159.Reveal J. L., Classification of extant Vascular Plant Families An expanded family scheme, (2009), http://www.plantsystematics.org/reveal/pbio/fam/vascplfam.html.
- 160.Rivas R., García–Fraile P., Velázquez E., (2017), Taxonomy of bacteria nodulating legumes, *Microbiol Insights*, 2:51–69.
- 161.Rivas R., Martens M., de Lajudie P., Willems A., (2009), Multilocus sequence analysis of the genus *Bradyrhizobium*, Syst Appl Microbiol, 32:101–110.
- 162.Rosselló–Móra R., (2002), The species concept for prokaryotes, FEMS Microbiol Rev, 25(1):39–67.
- 163.Rosselló–Móra R., (2005), Updating prokaryotic taxonomy, *J Bacteriol*, 187:6255–6257.
- 164.Rosselló–Móra R., (2006), DNA–DNA reassociation methods applied to microbial taxonomy and their critical evaluation, Molecular Identification, Systematics, and Population Structure of Prokaryotes, 23–50, Springer, ed. E. Stackebrandt.
- 165.Rosselló–Móra R. i Amann R., (2001), The species concept for prokaryotes, *FEMS Microbiology Reviews*, 25:39–67.
- 166.Rubio L. M. i Ludden P. W., (2005), Maturation of nitrogenase: a biochemical puzzle, *J Bacteriol*, 187:405–414.
- 167.Sahgal M. i Johri B. N., (2003), The changing face of rhizobial systematics, *Curr Sci*, 84(1):43–48.

- 168.Santos S. R. i Ochman H., (2004), Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins, *Environ Microbiol*, 6(7):754–759.
- 169.Savelkoul P. H. M., Aarts H. J. M., de Haas J., Dijkshoorn L., Dium B., Otsen M., Rademaker J. L. W., Schools L., Lenstra J. A., (1999), Amplified–fragment length polymorphism analysis: The state of an art, *J Clin Microbiol*, 37:3083–3091.
- 170.Sawada H., Kuykendall L.D., Young J.M., (2003), Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts, J General Appl Microbiol, 49:155–179.
- 171.Schildkraut C.L., Marmur J., Doty P., (1961), The formation of hybrid DNA molecules and their use in studies of DNA homologies, *J Mol Biol*, 3(5):595–617.
- 172.Skorupska A., Janczarek M., Marczak M., Mazur A., Król J., (2006), Rhizobial exopolysaccharides: Genetic control and symbiotic functions, *Microb Cell Fact*, 5:1–19.
- 173.Skorupska A., Wielbo J., Kidaj D., Marek-Kozaczuk M., (2010), Enhancing Rhizobium-legume symbiosis using signaling factors (w) *Microbes for Legume Improvement*, red. M.S. Khan, J. Musarrat, A. Zaidi, Springer – Verlag, Vienna, 27–54.
- 174.Söhngen C., Podstawka A., Bunk B., Gleim D., Vetcininova A., Reimer L. C., Leibniz J. O., (2016), BacDive – the bacterial diversity metadatabase, *Nucleic Acids Res*, 44(1):581–585.
- 175.Spalik K. i Piwczyński M., (2009), Rekonstrukcja filogenezy i wnioskowanie filogenetyczne w badaniach ewolucyjnych, *Kosmos*, 58:485–498.
- 176.Sprent J. I., Ardley J., James E. K., (2017), Biogeography of nodulated legumes and their nitrogen–fixing symbionts, *New Phytolog*, 215(1):40–56.
- 177.Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. D., Kampfer P., Maiden .C. J., Nesme X., Rosselló–Móra R., Swings J., Truper H. G., Vauterin L., Ward A. C., Whitman W. B., (2002), Report of the ad hoc committee for the reevaluation of the species definition in bacteriology, *Int J Sys Evol Microb*, 52:1043–1047.
- 178.Stackebrandt E. i Goebel B. M., (2008), Taxonomic note: A place for DNA-

DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology, *Int J Sys Evol Microbiol*, 44(4):846–849.

- 179.Staley J. T., (2009), Universal species concept: Pipe dream or a step toward unifying biology? *J Ind Microbiol Biotech*, 36(11):1331–1336.
- 180. Stasiak G., Mazur A., Koper P., Żebracki K., Skorupska A., (2016), Symbioza rizobiów z roślinami bobowatymi (*Fabaceae*), 55(3):289–299.
- 181.Stern M. J., Ames G. F., Smith N. H., Robinson E. C., Higgins C. F., (1984), Repetitive extragenic palindromic sequences: a major component of the bacterial genome, *Cell*, 37:1015–1026.
- 182.Stępkowski T., Banasiewicz J., Granada C.E., Andrews M., Passaglia L.M.P., (2018), Phylogeny and phylogeography of rhizobial symbionts nodulating legumes of the tribe genisteae, *Genes*, 9:163.
- 183.Stępkowski T., Czaplińska M., Miedzinska K., Moulin L., (2003), The variable part of the *dna*K gene as an alternative marker for phylogenetic studies of rhizobia and related alpha *Proteobacteria*, *Syst Appl Microbiol*, 26:483–494.
- 184.Stępkowski T., Hughes C. E., Law I. J., Markiewicz Ł., Gurda D., Chlebicka A., Moulin L., (2007), Diversification of lupine *Bradyrhizobium* strains: evidence from nodulation gene trees, *Appl Environ Microbiol*, 73:3254–3264.
- 185.Stępkowski T., Żak M., Moulin L., Króliczak J., Golińska B., Narożna D., Safronowa V. I., Mądrzak C. J., (2011), *Bradyrhizobium canariense* and *Bradyrhizobium japonicum* are the two dominant rhizobium species in root nodules of lupin and serradella plants growing in Europe, *Syst Appl Microbiol*, 34:368–375.
- 186.Stottmeier U., (2009), Environmental biotechnology, Technology Guide: Principles - Applications - Trends (Vol. 10), ISBN-13: 978-3540885450.
- 187.Suneja P., Dudeja S.S., Dahiya P., (2017), Deciphering the phylogenetic relationships among rhizobia nodulating chickpea: A Review, J Appl Biol Biotechnol, 4(3):61–70.
- 188.Terpolilli J. J., Hood G. A., Poole P. S., (2012), What determines the efficiency of N₂ fixing Rhizobium–legume symbioses? *Adv Microb Physiol*, 60:325–389.
- 189.Timmers A. C., (2008), The role of the plant cytoskeleton in the interaction between legumes and rhizobia, *J Microsc*, 231:247–256.

- 190.Timmers A.C., Soupène E., Auriac M.C., de Billy F., Vasse J., Boistard P., Truchet G., (2000), Saprophytic intracellular rhizobia in alfalfa nodules, *Mol Plant Microbe Interact*, 13:1204–1213.
- 191.Tindall B. J. i Garrity G. M., (2008), Proposals to clarify how type strains are deposited and made available to the scientific community for the purpose of systematic research, *Int J Sys Evol Microbiol*, 58(8):1987–1990.
- 192.Tindall B. J., Rosselló–Móra R., Busse H. J., Ludwig W., Kämpfer P., (2010), Notes on the characterization of prokaryote strains for taxonomic purposes, *Int J Sys Evol Microbiol*, 60(1):249–266.
- 193.Tobes R. i Pareja E., (2006), Bacterial repetitive extragenic palindromic sequences are DNA targets for Insertion Sequence elements, *BMC Genomics*, 7:62.
- 194.Ueda T., Suga Y., Yahiro N., Matsuguchi T., (1995), Phylogeny of sym plasmids of rhizobia by PCR–based sequencing of a *nodC* segment, *J Bacteriol*, 177:468–472.
- 195.Ursing J. B., Rosselló–Móra R., Garcia–Valdes E., Lalucat J., (2009). Taxonomic note: A pragmatic approach to the nomenclature of phenotypically similar genomic groups, *Int J Sys Bacteriol*, 45(3)604–604.
- 196.Valsangiacomo C., Baggi F., Gaia V., Balmelli T., Peduzzi R., Piffaretti J. C., (1995), Use of amplified fragment length polymorphism in molecular typing of *Legionella pneumophila* and application to epidemiological studies, *J Clin Microbiol*, 33(7):1716–1719.
- 197.Valverde A., Igual J. M., Peix A., Cervantes E., Velázquez E., (2006), *Rhizobium lusitanum* sp. nov. a bacterium that nodulates *Phaseolus vulgaris*, *Int J Sys Evol Microbiol*, 56(11):2631–2637.
- 198.Van Berkum P., Elia P., Eardly B.D., (2006), Multilocus sequence typing as an approach for population analysis of Medicago–nodulating rhizobia. *J Bacteriol*, 188(15):5570–5577.
- 199.Van de Velde W., Mergaert P., Zehirov G., Szatmari A., Debreczeny M., Ishihara H., Kevei Z., Farkas A., Mikulass K., Nagy A., Tiricz H., Satiat – Jeunemaître B., Alunni B., Bourge M., Kucho K., Abe M., Kereszt A., Maroti G., Uchiumi T., Kondorosi E., (2010), Plant peptides govern terminal differentiation of bacteria in symbiosis, *Science*, 327:1122–1126.

- 200.Van der Wurff A. W. G., Chan Y. L., van Straalen N. M., Schouten J., (2000), TE–AFLP: combining rapidity and robustness in DNA fingerprinting, *Nucleic Acids Res*, 28:e105.
- 201.Vance C. P. i Heichel G. H., (1991), Carbon in N₂ fixation: Limitation or exquisite adaptation, *Ann Rev Plant Physiol Plant Mol Biol*, 42(1):373–390.
- 202.Vandamme P., Pot B., Gillis M., Vos P. D. E., Kersters K., Swings J., (1996), Polyphasic taxonomy, a consensus approach to bacterial systematics, *Microbiol Rev*, 60(2):407–438.
- 203.Vandamme P. i Peeters C., (2014), Time to revisit polyphasic taxonomy, *Anton Leeuw*, 106(1):57–65.
- 204.Vasse J., de Billy F., Camut S., Truchet G., (1990), Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules, *J Bacteriol*, 172:4295–4306.
- 205.VanInsberghe D., Maas K. R., Cardenas E., Strachan C. R., Hallam S. J., Mohn W. W., (2015), Non–symbiotic *Bradyrhizobium* ecotypes dominate North American forest soils, *ISME Journal*, 9(11):2435–2441.
- 206.Versalovic J., Koeuth T., Lupski J. R., (1991), Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes, *Nucleic Acids Res*, 19(24):6823 – 6831.
- 207.Versalovic J., Schneider M., de Bruijn F.J., Lupski J.R., (1994), Genomic fingerprinting of bacteria using repetitive sequence–based polymerase chain reaction, *Methods Mol Cell Biol*, 5:25–40.
- 208.Villegas M. D. C., Rome S., Mauré L., Domergue O., Gardan L., Bailly X., Brunel B., (2006), Nitrogen-fixing sinorhizobia with *Medicago laciniata* constitute a novel biovar (bv. *medicaginis*) of *S. meliloti*, *Sys Appl Microbiol*, 29(7):526–538.
- 209.Vincent J. M., (1970), The cultivation, isolation and maintenance of rhizobia, *In: Vincent JM, ed. A Manual for the Practical Study of Root-Nodule*, Oxford: Blackwell Scientific Publications, 1970:1–13.
- 210. Vinuesa P., León–Barrios M., Silva C., Willems A., Jarabo–Lorenzo A., Pérez–Galdona R., Werner D., Martinez–Romero E., (2005a), *Bradyrhizobium canariense* sp. nov., an acid–tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along

with *Bradyrhizobium japonicum* bv. *genistearum*, *Bradyrhizobium* genospecies α and *Bradyrhizobium* genospecies β , *Int J Syst Evol Microbiol*, 55:569–575.

- 211.Vinuesa P., Rojas–Jiménez K., Contreras–Moreira B., Mahna S. K., Prasad B. N., Moe H., Werner D., (2008), Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four *Bradyrhizobium* species that nodulate soybeans on the asiatic continent. *Appl Environ Microbiol*, 74(22):6987–6996.
- 212. Vinuesa P., Silva C., Werner D., Martinez–Romero E., (2005b), Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in *Bradyrhizobium* species cohesion and delineation, *Mol Phyl Evol*, 34:29–54.
- 213.Wang F. Q., Wang E. T., Liu J., Chen Q., Sui X. H., Chen W. F., Chen, W. X., (2007), *Mesorhizobium albiziae* sp. nov., a novel bacterium that nodulates *Albizia kalkora* in a subtropical region of China, *Int J Syst Evol Microbiol*, 57:1192–1199.
- 214.Watson L. i Dallwitz M. J., (1994), The Families of Flowering Plants. Interactive Identification and Information Retrieval on CD-ROM version 1.0 1993, and colour illustrated manual, CSIRO Publications, Melbourne, ISBN: 0-643-05507-X.
- 215.Wayne L. G., Brenner D. J., Colwell R. R., Grimoxt P. A. D., Kaniiler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Truper H. G., (1987), Report of the ad hoc committee on reconciliation of approaches to bacterial systematics, *Int J Syst Bacteriol* 37:463–464.
- 216.Wei G., Chen W., Zhu W., Chen C., Young J.P.W., Bontemps C., (2009), Invasive *Robinia pseudoacacia* in China is nodulated by *Mesorhizobium* and *Sinorhizobium* species that share similar nodulation genes with native American symbionts, *FEMS Microbiol Ecol*, 68(3):320–328.
- 217.Weir, B.S., (2016), The current taxonomy of rhizobia, NZ Rhizobia website. https://www.rhizobia.co.nz/taxonomy/rhizobia Last updated: Jan, 2016.
- 218.Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J., (1991), 16S ribosomal DNA amplification for phylogenetic study, *J Bacteriol*, 173(2):697–703.
- 219. Wernegreen J. J. i Riley M. A., (1999), Comparison of the evolutionary

dynamics of symbiotic and housekeeping loci: A case for the genetic coherence of rhizobial lineages, *Mol Biol Evol*, 16:98–113.

- 220.Weston L.A. i Mathesius U., (2013), Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy, *J Chem Eco*, 39(2):283–297.
- 221.Whitaker R. J., Grogan D. W., Taylor J. W., (2003), Geographic barriers isolate endemic populations of hyperthermophilic Archaea, *Science*, 301:2002–2004.
- 222. White J., Prell J., James E. K., Poole P., (2007), Nutrient sharing between symbionts, *Plant Physiol*, 144:604–614.
- 223.Whitman W.B., Vos P.D., Garrity G.M., Jones D., Krieg N.R., Ludwig W., Karl-Heinz S., (2012), *Bergey's manual of systematic bacteriology – Vol 3: The Firmicutes.* In Springer-Verlag New York Inc.
- 224.Wielbo J., Golus J., Marek–Kozaczuk M., Skorupska A., (2010), Symbiosis stage associated alterations in quorum sensing autoinducer molecules biosynthesis in *Sinorhizobium meliloti*, *Plant Soil*, 329:399–410.
- 225.Wielbo J. i Skorupska A., (2003), Ewolucja układu symbiotycznego Rhizobium rośliny motylkowe, *Post Mikrobiol*, 42:263–283.
- 226.Willems A., (2006), The taxonomy of rhizobia: An overview, *Plant Soil*, 287(1–2):3–14.
- 227.Willems A., Coopman R., Gillis M., (2001), Comparison of sequence analysis of 16S–23S rDNA spacer regions, AFLP analysis and DNA–DNA hybridizations in *Bradyrhizobium*, *Inter J Syst Evol Microbiol*, 51:623–632.
- 228.Willey J. M., Sherwood L. M., Woolverton C. J., (2007), Prescott, Harley and Klein's Microbiology, Seventh Edition, Mc Graw – Hill International Education. United States.
- 229.Wilson L. A. i Sharp P. M., (2006), Enterobacterial repetitive intergenic consensus (ERIC) sequences in *Escherichia coli*: Evolution and implications for ERIC–PCR, *Mol Biol Evol*, 23(6):1156–1168.
- 230.Winker K., (2009), Reuniting phenotype and genotype in biodiversity research, *BioScience*, 59(8):657–665.
- 231.Winsor B. A. T., (1989), A nod at differentiation: the *nodD* gene product and initiation of *Rhizobium* nodulation, *Trends Genet*, 5(C):199–201.
- 232.Woese C. R. i Fox G. E., (1977), Phylogenetic Structure of the Prokaryotic Domain: The Primary Kingdoms, *Proc Natl Acad Sci USA*, 74(11):5088–5090.

- 233.Woese C. R., Kandler O., Wheelis M. L., (1990), Towards a natural system of organisms: proposal for the domains *Archaea*, *Bacteria*, and *Eucarya*, *Proc Natl Acad Sci USA*, 87(12):4576–4579.
- 234.Woese C. R., Stackebrandt E., Weisburg W. G., Paster B. J., Madigan M. T., Fowler V. J., Fox G. E., (1984), The phylogeny of purple bacteria: The alpha subdivision, *Syst Appl Microbiol*, 5(3):315–326.
- 235.Xu L. M., Ge C., Cui Z., Li J., Fan H., (1995), Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans, Int J Syst Bacteriol, 45:706–711.
- 236.Yang J. K., Xie F. L., Zou J., Zhou Q., Zhou J. C., (2005), Polyphasic characteristics of bradyrhizobia isolated from nodules of peanut (*Arachis hypogea*) in China, *Soil Biol Biochem*, 37:141–153.
- 237.Yao Z. Y., Kan F. L., Wang E. T., Wie G. H., Chen W. X., (2002), Characterization of rhizobia that nodulate legume speeies of the genus *Lespendeza* and description of *Bradyrhizobium yuanmingense* sp. nov., *Int J Syst Evol Microbiol*, 52:2219–2230.
- 238.Yarza P., Yilmaz P., Pruesse E., Glöckner F.O., Ludwig W., Schleifer K.H., Whitman W.B., Euzéby J., Amann R., Rosselló–Móra R., (2014), Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences, *Nat Rev Microbiol*, 12:635–645.
- 239.Young J. M., Park D.C., Weir B. S., (2004), Diversity of 16S rDNA sequences of *Rhizobium* spp. implications for species determinations, *FEMS Microbiol Lett*, 238:125–131.
- 240.Young J. M., Kuykendall L. D., Martinez–Romero E., Kerr A., Sawada H., (2001), A revision of *Rhizobium* Frank 1889, with an emended description of the genus, and the inclusion of all species of *Agrobacterium* Conn 1942 and *Allorhizobium undicola* de Lajudie *et al.* 1998 as new combinations: *Rhizobium radiobacter*, *R. rhizogenes*, *R. rubi*, *R. undicola* and *R. vitis*, *Int J Syst Evol Microbiol*, 51:89–103.
- 241.Zachos J.; Pagani M.; Sloan L.; Thomas E.; Billups K., (2001), Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present, *Science*, 292:686–693.

- 242.Zając, A., Zając, M., (2001), Distribution Atlas of Vascular Plants in Poland, wyd. Polish Academy of Sciences.
- 243.Zurkowski W., Lorkiewicz Z., (1976), Plasmid deoxyribonucleic acid in *Rhizobium trifolii*, *J Bacteriol*, 128(1):481–484.

11. Spis rysunków i tabel

Rys. 2.1. Piramida taksonomiczna organizmów
Rys. 2.2. Zależności zachodzące pomiędzy identyfikacją, klasyfikacją
i nomenklaturą w taksonomii wielokierunkowej [Opracowanie własne] 15
Rys. 2.3. Schemat przedstawiający zdolność dyskryminacyjną technik i metod
stosowanych w taksonomii wielokierunkowej [Opracowanie własne] 20
Rys. 2.4. Droga postępowania od momentu wyizolowania bakterii z materiału
środowiskowego do opublikowania doniesienia o nowym gatunku [Opracowanie
własne]21
Tab. 2.1. Przykładowe sekwencje repetetywne używane w typowaniu molekularnym
bakterii
Rys. 2.5. Schemat pochodzenia organizmów: monofiletycznych - wywodzących się
od jednego przodka, parafiletycznych – obejmuje tylko część potomków wspólnego
przodka, polifiletycznych – obejmujących organizmy pochodzące od różnych
przodków [Opracowanie własne]
Rys. 2.6. Schemat obrazujący elementy budowy ukorzenionego drzewa
filogenetycznego; Objaśnienie: A, B, C, D, E, F - liście, badane jednostki
filogenetycznego; Objaśnienie: A, B, C, D, E, F – liście, badane jednostki taksonomiczne (OTU) [Opracowanie własne na podst. Perry i Staley, 1997; Willey
filogenetycznego; Objaśnienie: A, B, C, D, E, F – liście, badane jednostki taksonomiczne (OTU) [Opracowanie własne na podst. Perry i Staley, 1997; Willey i in., 2007]
filogenetycznego; Objaśnienie: A, B, C, D, E, F – liście, badane jednostki taksonomiczne (OTU) [Opracowanie własne na podst. Perry i Staley, 1997; Willey i in., 2007]
filogenetycznego; Objaśnienie: A, B, C, D, E, F – liście, badane jednostki taksonomiczne (OTU) [Opracowanie własne na podst. Perry i Staley, 1997; Willey i in., 2007]
filogenetycznego; Objaśnienie: A, B, C, D, E, F – liście, badane jednostki taksonomiczne (OTU) [Opracowanie własne na podst. Perry i Staley, 1997; Willey i in., 2007]
filogenetycznego; Objaśnienie: A, B, C, D, E, F – liście, badane jednostki taksonomiczne (OTU) [Opracowanie własne na podst. Perry i Staley, 1997; Willey i in., 2007]
filogenetycznego; Objaśnienie: A, B, C, D, E, F – liście, badane jednostki taksonomiczne (OTU) [Opracowanie własne na podst. Perry i Staley, 1997; Willey i in., 2007]
filogenetycznego; Objaśnienie: A, B, C, D, E, F – liście, badane jednostki taksonomiczne (OTU) [Opracowanie własne na podst. Perry i Staley, 1997; Willey i in., 2007]
filogenetycznego; Objaśnienie: A, B, C, D, E, F – liście, badane jednostki taksonomiczne (OTU) [Opracowanie własne na podst. Perry i Staley, 1997; Willey i in., 2007]
filogenetycznego; Objaśnienie: A, B, C, D, E, F – liście, badane jednostki taksonomiczne (OTU) [Opracowanie własne na podst. Perry i Staley, 1997; Willey i in., 2007]
filogenetycznego; Objaśnienie: A, B, C, D, E, F – liście, badane jednostki taksonomiczne (OTU) [Opracowanie własne na podst. Perry i Staley, 1997; Willey i in., 2007]
filogenetycznego; Objaśnienie: A, B, C, D, E, F – liście, badane jednostki taksonomiczne (OTU) [Opracowanie własne na podst. Perry i Staley, 1997; Willey i in., 2007]
filogenetycznego; Objaśnienie: A, B, C, D, E, F – liście, badane jednostki taksonomiczne (OTU) [Opracowanie własne na podst. Perry i Staley, 1997; Willey i in., 2007]

Rys. 2.13. Najnowszy podział rodzajowy bakterii brodawkowych. Na rysunku
podkreślone zostały rodzaje ryzobiów infekujące rośliny plemienia Genisteae
[Stępkowski i in., 2018]
Rys. 2.14. Drzewo filogenetyczne bakterii rodzaju Bradyrhizobium i innych bakterii
brodawkowych skonstruowane w oparciu o analizę MLSA [Stępkowski
i in., 2018]
Tab. 2.2. Rodzaje bakterii brodawkowych infekujące rośliny plemienia Genisteae
[Stępkowski i in., 2018]
Rys. 2.15. Etapy inicjacji symbiozy między ryzobiami a roślinami bobowatymi (opis
w tekście) [Stasiak i in., 2016]
Tab. 4.1. Podstawowe informacje dotyczące modeli substytucji
Rys. 5.1. Wykorzystanie 28 związków chemicznych jako źródła węgla. Na wykresie
kolorem jasnozielonym zaznaczono disacharydy. Na osi y przedstawiono liczbę
badanych szczepów n=33 102
Rys. 5.2. Wykorzystanie 21 związków chemicznych, jako jedyne źródło azotu. Na
osi y przedstawiono liczbę badanych szczepów n=33 102
Rys. 5.3. Zdolność do aktywnego ruchu przykładowych mikrosymbiontów
L. nigricans na podłożu 79CA zawierającym 0,35% agar. Oznaczenia: LN15,
L. nigricans na podłożu 79CA zawierającym 0,35% agar. Oznaczenia: LN15, LN17, LN29 – przykładowe izolaty z brodawek korzeniowych L. nigricans,
 L. nigricans na podłożu 79CA zawierającym 0,35% agar. Oznaczenia: LN15, LN17, LN29 – przykładowe izolaty z brodawek korzeniowych L. nigricans, K – Ensifer meliloti L5 – 30
 L. nigricans na podłożu 79CA zawierającym 0,35% agar. Oznaczenia: LN15, LN17, LN29 – przykładowe izolaty z brodawek korzeniowych L. nigricans, K – Ensifer meliloti L5 – 30
 L. nigricans na podłożu 79CA zawierającym 0,35% agar. Oznaczenia: LN15, LN17, LN29 – przykładowe izolaty z brodawek korzeniowych L. nigricans, K – Ensifer meliloti L5 – 30
L. nigricans na podłożu 79CA zawierającym 0,35% agar. Oznaczenia: LN15, LN17, LN29 – przykładowe izolaty z brodawek korzeniowych L. nigricans, K – Ensifer meliloti L5 – 30
<i>L. nigricans</i> na podłożu 79CA zawierającym 0,35% agar. Oznaczenia: LN15, LN17, LN29 – przykładowe izolaty z brodawek korzeniowych <i>L. nigricans,</i> K - Ensifer meliloti L5 – 30
L. nigricans na podłożu 79CA zawierającym 0,35% agar. Oznaczenia: LN15, LN17, LN29 – przykładowe izolaty z brodawek korzeniowych L. nigricans, K – Ensifer meliloti L5 – 30
<i>L. nigricans</i> na podłożu 79CA zawierającym 0,35% agar. Oznaczenia: LN15, LN17, LN29 – przykładowe izolaty z brodawek korzeniowych <i>L. nigricans,</i> K - Ensifer meliloti L5 – 30
L. nigricans na podłożu 79CA zawierającym 0,35% agar. Oznaczenia: LN15, LN17, LN29 – przykładowe izolaty z brodawek korzeniowych L. nigricans, K – Ensifer meliloti L5 – 30
 L. nigricans na podłożu 79CA zawierającym 0,35% agar. Oznaczenia: LN15, LN17, LN29 – przykładowe izolaty z brodawek korzeniowych L. nigricans, K – Ensifer meliloti L5 – 30
L. nigricans na podłożu 79CA zawierającym 0,35% agar. Oznaczenia: LN15, LN17, LN29 – przykładowe izolaty z brodawek korzeniowych L. nigricans, K – Ensifer meliloti L5 – 30
<i>L. nigricans</i> na podłożu 79CA zawierającym 0,35% agar. Oznaczenia: LN15, LN17, LN29 – przykładowe izolaty z brodawek korzeniowych <i>L. nigricans,</i> K – <i>Ensifer meliloti</i> L5 – 30
<i>L. nigricans</i> na podłożu 79CA zawierającym 0,35% agar. Oznaczenia: LN15, LN17, LN29 – przykładowe izolaty z brodawek korzeniowych <i>L. nigricans,</i> K – <i>Ensifer meliloti</i> L5 – 30
<i>L. nigricans</i> na podłożu 79CA zawierającym 0,35% agar. Oznaczenia: LN15, LN17, LN29 – przykładowe izolaty z brodawek korzeniowych <i>L. nigricans,</i> K – <i>Ensifer meliloti</i> L5 – 30

"Gene RulerTM SM0333 DNA Ladder Plus" (100-10000 bp), ścieżki 2 – 6 – szczepy Rys. 5.6. Schemat profili genomowego DNA ryzobiów specyficznych dla L. nigricans uzyskanych metodą ERIC-PCR; 1 i 35 - wzorzec mas cząsteczkowych "Gene RulerTM SM0333 DNA Ladder Plus" (100 – 10000 bp); 2 – 34 – mikrosymbionty Lembotropis nigricans LN1 – LN33 109 Rys. 5.7. Dendrogram przedstawiający stopień podobieństwa genomowego 33 mikrosymbiontów Lembotropis nigricans, skonstruowany w oparciu o profile genomowego DNA uzyskane metodą ERIC-PCR 110 Rys. 5.8. Obraz elektroforetyczny profili genomowych DNA ryzobiów specyficznych dla Lebotropis nigricans uzyskanych metodą BOX-PCR, A. ścieżka 1 i 16 - wzorzec mas molekularnych "Gene RulerTM SM0333 DNA Ladder Plus" (100-10000 bp); ścieżki 2 – 15 – szczepy LN1 – LN14; B. ścieżka 1 i 16 – wzorzec mas molekularnych "Gene RulerTM SM0333 DNA Ladder Plus" (100-10000 bp), ścieżki 2 – 15 – szczepy LN15 – LN28; C. ścieżka 1 i 7 – wzorzec mas molekularnych "Gene RulerTM SM0333 DNA Ladder Plus" (100-10000 bp), ścieżki **Rys.** 5.9. Schemat profili genomowego DNA ryzobiów specyficznych dla Lembotropis nigricans uzyskanych metodą BOX-PCR, ścieżka 1 i 35 - wzorzec mas molekularnych "Gene RulerTM SM0323 DNA Ladder Plus" (100-3000 bp), ścieżki 2 – 34 – szczepy LN1 – LN33 111 Rys. 5.10. Dendrogram przedstawiający stopień podobieństwa genomowego 33 mikrosymbiontów Lembotropis nigricans, skonstruowany w oparciu o profile genomowe uzyskane metodą BOX–PCR 112 Rys. 5.11. Profile elektroforetyczne genomowego DNA ryzobiów specyficznych dla L. nigricans uzyskane metodą AFLP ze starterem PstI-G, A. ścieżka 1 i 16 wzorzec mas molekularnych "Gene RulerTM SM0323 DNA Ladder Plus" (100-3000 bp); ścieżki 2 – 15 – szczepy LN1 – LN14; B. ścieżka 1 i 16 – wzorzec mas molekularnych "Gene RulerTM SM0323 DNA Ladder Plus" (100-3000 bp), ścieżki 2 – 15 – szczepy LN15 – LN28; C. ścieżka 1 i 7 – wzorzec mas molekularnych "Gene RulerTM SM0323 DNA Ladder Plus" (100-3000 bp), ścieżki 2 – 6 – szczepy

Rys. 5.12. Schemat profili genomowego DNA ryzobiów specyficznych dla L. nigricans uzyskanych metodą AFLP ze starterem PstI–G, ścieżka 1 i 35 – wzorzec mas molekularnych "Gene RulerTM SM0323 DNA Ladder Plus" (100-3000 bp), ścieżki 2 – 34 – szczepy LN1 – LN33 114 Rys. 5.13. Dendrogram przedstawiający stopień podobieństwa genomowego 33 mikrosymbiontów Lembotropis nigricans utworzony na podstawie analizy profili DNA uzyskanych metodą AFLP ze starterem PstI–G 115 **Rys. 5.14.** Profile elektroforetyczne genomowego DNA ryzobiów specyficznych dla Lembotropis nigricans uzyskane metodą AFLP ze starterem PstI-GC, A. ścieżka 1 i 16 - wzorzec mas molekularnych "Gene RulerTM SM0323 DNA Ladder Plus" (100–3000 bp); ścieżki 2 – 15 – szczepy LN1 – LN14; B. ścieżka 1 i 16 – wzorzec mas molekularnych "Gene RulerTM SM0323 DNA Ladder Plus" (100-3000 bp), ścieżki 2 – 15 – szczepy LN15 – LN28; C. ścieżka 1 i 7 – wzorzec mas molekularnych "Gene RulerTM SM0323 DNA Ladder Plus" (100-3000 bp), ścieżki Rys. 5.15. Schemat profili genomowego DNA ryzobiów specyficznych dla Lembotropis nigricans uzyskany metodą AFLP ze starterem PstI-GC, ścieżka 1 i 35 - wzorzec mas molekularnych "Gene RulerTM SM0323 DNA Ladder Plus" (100-3000 bp), ścieżki 2 – 34 – szczepy LN1 – LN33 116 Rys. 5.16. Dendrogram przedstawiający stopień podobieństwa genomowego 33 mikrosymbiontów *Lembotropis nigricans* utworzony na podstawie analizy profili DNA uzyskanych metodą AFLP ze starterem PstI–GC 117 Tab. 5.2. Stopień zróznicowania profili genomowych symbiontów L. nigricans uzyskanych metodami: ERIC-PCR, BOX-PCR i AFLP 117 Rys. 5.17. Profile elektroforetyczne RFLP 16S rDNA mikrosymbiontów L. nigricans oraz szczepów referencyjnych rodzaju Bradyrhizobium, uzyskane w wyniku trawienia 16S rDNA enzymem restrykcyjnym Hin6I 119 Rys. 5.18. Schemat profili elektroforetycznych 16S rDNA mikrosymbiontów L. nigricans i referencyjnych bradyrhizobiów uzyskanych w wyniku trawienia enzymem *Hin*6I......119 Rys. 5.19. Profile elektroforetyczne RFLP 16S rDNA mikrosymbiontów L. nigricans oraz szczepów referencyjnych rodzaju Bradyrhizobium, uzyskane w wyniku trawienia 16S rDNA enzymem restrykcyjnym HinfI..... 120

Rys. 5.20. Schematy profili elektroforetycznych 16S rDNA mikrosymbiontów
L. nigricans i referencyjnych bradyrhizobiów uzyskane w wyniku trawienia
enzymem <i>Hinf</i> I
Rys. 5.21. Profile elektroforetyczne RFLP 16S rDNA mikrosymbiontów L. nigricans
oraz szczepów referencyjnych rodzaju Bradyrhizobium, uzyskane w wyniku
trawienia 16S rDNA enzymem restrykcyjnym MspI 121
Rys. 5.22. Schemat profili elektroforetycznych 16S rDNA mikrosymbiontów
L. nigricans i referencyjnych bradyrhizobiów uzyskane w wyniku trawienia
enzymem <i>Msp</i> I
Rys. 5.23. Profile elektroforetyczne RFLP 16S rDNA mikrosymbiontów L. nigricans
oraz szczepów referencyjnych rodzaju Bradyrhizobium, uzyskane w wyniku
trawienia 16S rDNA enzymem restrykcyjnym RsaI 122
Rys. 5.24. Schematy profili elektroforetycznych 16S rDNA mikrosymbiontów
L. nigricans i referencyjnych bradyrhizobiów uzyskane w wyniku trawieniu
enzymem <i>Rsa</i> I
Rys. 5.25. Profile elektroforetyczne RFLP 16S rDNA mikrosymbiontów L. nigricans
oraz szczepów referencyjnych rodzaju Bradyrhizobium, uzyskane w wyniku
trawienia 16S rDNA enzymem restrykcyjnym TaqI 123
Rys. 5.26. Schematy profili elektroforetycznych 16S rDNA mikrosymbiontów
L. nigricans i referencyjnych bradyrhizobiów uzyskane w wyniku trawieniu
enzymem TaqI 123
Tab. 5.3. Genotypy 16S rDNA mikrosymbiontów L. nigricans i bakterii
referencyjnych rodzaju Bradyrhizobium ustalone w oparciu o łączną analizę wzorów
DNA uzyskanych przy udziale 5 restryktaz (RFLP-16S rDNA) 124
Rys. 5.27. Dendrogram przedstawiający stopień podobieństwa profili RFLP-16S
rDNA mikrosymbiontów L. nigricans oraz szczepów referencyjnych rodzaju
Bradyrhizobium
Tab. 5.4. Zawartość zasad G+C w genomowym DNA mikrosymbiontów
Lembotropis nigricans i wybranych szczepów referencyjnych 127
Tab. 5.5. Stopień podobieństwa sekwencji 16S rDNA (%) badanych symbiontów
L. nigricans i szczepów referencyjnych rodzaju Bradyrhizobium, Mesorhizobium

Rys. 5.28. Drzewo filogenetyczne skonstruowane w oparciu o sekwencję genu 16S rRNA symbiontów Lembotropis nigricans oraz bakterii referencyjnych rodzaju Bradyrhizobium, Mesorhiozobium i Rhizobium pochodzące z bazy danych Tab. 5.6. Stopień podobieństwa sekwencji 16S rDNA (%) badanych symbiontów Rys. 5.29. Drzewo filogenetyczne skonstruowane w oparciu o sekwencję genu 16S Lembotropis nigricans oraz bakterii rRNA symbiontów referencyjnych pochodzących z bazy danych GenBank......131 Tab. 5.6. Charakterystyka analizowanych sekwencji czterech genów metabolizmu podstawowego użytych w badaniach pokrewieństwa filogenetycznego Tab. 5.7. Stopień podobieństwa sekwencji genu atpD mikrosymbiontów szczodrzyka czerniejącego oraz referencyjnych bakterii brodawkowych rodzaju Rys. 5.30A. Drzewo filogenetyczne skonstruowane w oparciu o analizę sekwencji genu atpD badanych mikrosymbiontów Lembotropis nigricans oraz referencyjnych gatunków bakterii rodzaju Rhizobium, Mesorhizobium, Ensifer i Bradyrhizobium **Rys. 5.30B.** Drzewo filogenetyczne skonstruowane w oparciu o analizę sekwencji genu *atpD* badanych mikrosymbiontów *Lembotropis nigricans* oraz referencyjnych gatunków bakterii rodzaju Bradyrhizobium pobranych z bazy danych Tab. 5.8. Stopień podobieństwa sekwencji, przedstawiony w procentach, genu dnaK mikrosymbiontów szczodrzyka czerniejącego oraz referencyjnych bakterii brodawkowych rodzaju Bradyrhizobium [%].....137 Rys. 5.31A. Drzewo filogenetyczne powstałe w oparciu o analizę sekwencji genu dnaK badanych mikrosymbiontów Lembotropis nigricans oraz referencyjnych gatunków bakterii rodzaju Rhizobium, Mesorhizobium, Ensifer i Bradyrhizobium pobranych z bazy danych GeneBank 138 Rys. 5.31B. Drzewo filogenetyczne powstałe w oparciu o analizę sekwencji genu dnaK badanych mikrosymbiontów Lembotropis nigricans oraz referencyjnych

gatunków bakterii rodzaju Bradyrhizobium pobranych z bazy danych
GeneBank
Tab. 5.9. Stopień podobieństwa sekwencji genu gyrB mikrosymbiontów szczodrzyka
czerniejącego oraz referencyjnych bakterii brodawkowych rodzaju Bradyrhizobium.
Wartości wyrażone w %140
Rys. 5.32A. Drzewo filogenetyczne powstałe w oparciu o analizę sekwencji genu
gyrB badanych mikrosymbiontów Lembotropis nigricans oraz referencyjnych
gatunków bakterii rodzaju Rhizobium, Mesorhizobium, Ensifer i Bradyrhizobium
pobranych z bazy danych GeneBank
Rys. 5.32B. Drzewo filogenetyczne powstałe w oparciu o analizę sekwencji genu
gyrB badanych mikrosymbiontów Lembotropis nigricans oraz referencyjnych
gatunków bakterii rodzaju Bradyrhizobium pobranych z bazy danych
GeneBank
Tab. 5.10. Stopień podobieństwa sekwencji genu <i>rpoB</i> mikrosymbiontów
szczodrzyka czerniejącego oraz referencyjnych bakterii brodawkowych rodzaju
Bradyrhizobium. Wartości wyrażone w %
Rys. 5.33A. Drzewo filogenetyczne powstałe w oparciu o analizę sekwencji genu
rpoB badanych mikrosymbiontów Lembotropis nigricans oraz referencyjnych
gatunków bakterii rodzaju Rhizobium, Mesorhizobium, Ensifer i Bradyrhizobium
pobranych z bazy danych GeneBank 144
Rys. 5.33B. Drzewo filogenetyczne powstałe w oparciu o analizę sekwencji genu
rpoB badanych mikrosymbiontów Lembotropis nigricans oraz referencyjnych
gatunków bakterii rodzaju Bradyrhizobium (B) pobranych z bazy danych
GeneBank
Tab. 5.11. Stopień podobieństwa czterech połączonych sekwencji genów atp D $-$
dnaK – gyrB – rpoB mikrosymbiontów szczodrzyka czerniejącego (LN)
i referencyjnych bakterii brodawkowych rodzaju Bradyrhizobium (MLSA) Wartości
wyrażone w % 147
Rys. 5.34. Drzewo filogenetyczne powstałe w oparciu o analizę sekwencji czterech
genów atpD – dnaK – gyrB – rpoB badanych mikrosymbiontów Lembotropis
nigricans oraz referencyjnych bakterii rodzaju Bradyrhizobium pobranych z bazy
danych GeneBank

Rys. 5.35. Drzewo filogenetyczne powstałe w oparciu o analizę sekwencji czterech genów *atpD – dnaK – rpoB* badanych mikrosymbiontów *Lembotropis nigricans* oraz referencyjnych bakterii rodzaju Bradyrhizobium pobranych z bazy danych GeneBank......149 Tab. 5.12. Stopień podobieństwa DNA symbiontów L. nigricans z DNA szczepów referencyjnych reprezentujących różne gatunki bakterii brodawkowych oznaczony Tab. 5.13. Efektywność brodawkowania oraz wiązania azotu przez ryzobia specyficzne dla Lembotropis nigricans w symbiozie z roślinami plemienia **Tab. 5.14.** Aktywność nitrogenazy w układzie symbiotycznym badane izolaty (LN) 5.15. Aktywność nitrogenazy w układzie symbiotycznym między Tab. mikrosymbiontami Lembotropis nigricans a roślinami z plemienia Genisteae inne niż średnie z pomiarów dla badanych szczodrzyk czerniejący (wartości mikrosymbiontów szczodrzyka czerniejącego) 153 Tab. 5.16. Charakterystyka analizowanych sekwencji genów nod użytych w badaniach filogenetycznych mikrosymbiontów Lembotropis nigricans 154 Tab. 5.17. Stopień podobieństwa sekwencji genu nodC mikrosymbiontów szczodrzyka czerniejącego oraz referencyjnych bakterii brodawkowych rodzaju Bradyrhizobium. (wartości wyrażone w %)......154 Rys. 5.36. Drzewo filogenetyczne powstałe w oparciu o analizę sekwencji genu nodC badanych mikrosymbiontów Lembotropis nigricans oraz referencyjnych bakterii rodzaju Bradyrhizobium pobranych z bazy danych GeneBank 156 Tab. 5.18. Stopień podobieństwa sekwencji genu nodZ mikrosymbiontów szczodrzyka czerniejącego oraz referencyjnych bakterii brodawkowych rodzaju Bradyrhizobium (wartości wyrażone w %)...... 157 Rys. 5.37. Drzewo filogenetyczne powstałe w oparciu o analizę sekwencji genu nodZ badanych mikrosymbiontów Lembotropis nigricans oraz referencyjnych gatunków bakterii rodzaju Bradyrhizobium pobranych z bazy danych