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On the necessary condition for Baum–Katz
type theorem for non-identically distributed

and negatively dependent random fields

Abstract. Let {Xn,n ∈ Nd} be a random field of negatively dependent
random variables. The complete convergence results for negatively dependent
random fields are refined. To obtain the main theorem several lemmas for
convergence of families indexed by Nd have been proved. Auxiliary lemmas
have wider application to study the random walks on the lattice.

1. Introduction. The concept of complete convergence was introduced in
[6] by Hsu and Robbins. They proved that the sequence of arithmetic means
of independent, identically distributed (i.i.d.) random variables converges
completely to the expected value of the variables, provided the random vari-
ables are square-integrable. The result was later generalized to the now clas-
sical theorem by Baum and Katz [1] and in this shape was extended to the
multidimensional case by Gut in [5]. Therein the normalization is the prod-
uct of all indices having the same power. Klesov in [7] discussed more general
approach to the strong law of large numbers and Baum–Katz type theorems
viz., considered normalizing family in general form bn = b(n1, . . . , nd), as a
corollary he obtained the case where different indices have different powers
in the normalization. This case is also discussed by Gut and Stadtmüller
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in [5, 4], where the authors completed the results of Klesov, giving a con-
sistent approach. General context of these problems is given in recently
published monograph by Klesov [8], Chapter 13.5. All above mentioned au-
thors considered fields of independent, identically distributed random vari-
ables. Applying a new type of the Kahane–Hoffmann–Jørgensen inequality,
Łagodowski [9] proved a few Hsu–Robbins–Erdös–Spitzer–Baum–Katz type
theorems for random fields with dependence structures and non-identically
distributed. However, the necessary condition in Theorem 3.1 of [9] is not
a complete extension of independent identically distributed random fields
case. We are going to refine Theorem 3.1 of [9]. To achieve this goal, we
proved several results for the convergence of families {an,n ∈ Nd} and their
partial sums. These auxiliary lemmas can be also very useful to study the
complete convergence in more general context. Sufficient and necessary con-
ditions for convergence of {an,n ∈ Nd} as max1≤i≤d ni → ∞ in a metric
space, allow us to get straightforward extension of results for the metriz-
able convergence of random variables to analogous results for convergence
of random fields.

We will consider random variables on a probability space (Ω,F, P ), in-
dexed by the lattice points, i.e. by the index set Nd, d ≥ 2. The ele-
ments of Nd denoted: m = (m1,m2, . . . ,md), n = (n1, n2, . . . , nd), n(d) =
(n, n, . . . , n) etc. are partially ordered by coordinatewise relation:

m ≤ n if and only if mi ≤ ni, i = 1, 2 . . . , d.

Throughout the paper, the monotonicity of subfamilies or families is con-
sidered with respect to componentwise partial order; only in one case (cf.
Lemma 2.4), we use monotonicity with respect to |n|.

A family of random variables {Xn,n ∈ Nd} we also call a random field
and furthermore we denote Sn =

∑
k≤nXk.

Some additional notation. Let D = {1, 2, . . . , d} and J be subset of D,
Jc = D \ J . On Nd we introduce a relation and functions restricted to
subsets of D, i.e. for a given J ⊆ D and m,n ∈ Nd we define

mRJn if and only if miRni, for i ∈ J.

Similarly, for a given n we put minJ n := mini∈J ni (analogously maxJ n).
If J = D, we skip the “index” J and write mRn, maxn, etc., if J = ∅, then
the relation RJ is total and the functions are identities.

Recall that lim
minn→∞

an = a means

(1) ∀ε>0 ∃k0∈Nd ∀n>k0 d(an, a) < ε

and lim
maxn→∞

an = a (sometimes called “strong convergence”) means

(2) ∀ε>0 ∃k0∈N ∀n:|n|>k0 d(an, a) < ε.

Let us observe that in (1) we can substitute k0 by k0(d).
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2. Auxiliary lemmas. In this section we collect some useful lemmas,
maybe some of them are known, but we could not locate a reference. Un-
dermentioned result is the multidimensional version of the theorem for sub-
sequences in a metric space.

Lemma 2.1. If there exists an element a ∈ Y, such that from every sub-
sequence of family {an,n ∈ Nd} of elements of metric space (Y, d) we can
choose a subsequence that converges to a, then

lim
maxn→∞

an = a.

Proof. The idea of the proof is similar to the one-dimensional case. �

The following lemma gives the sufficient and necessary conditions for the
“strong convergence” of {an, n ∈ Nd}.

Lemma 2.2. Let {an,n ∈ Nd} be a family of elements of a metric space
(Y, d), thus the following conditions are equivalent:

(i) lim
maxn→∞

an = a,

(ii) ∀{nl}⊆Nd

(
{nl} increasing⇒ lim

l→∞
anl

= a
)

.

Proof. (i) ⇒ (ii)
If {nl} is increasing, then maxnl → ∞ as l → ∞, thus for every k ∈ N
almost all elements of sequence {nl} are included in {n : |n| ≥ k}.
(i) ⇐ (ii)
Let {nl} be an infinite subsequence of n ∈ Nd, then |nl| → ∞ as l → ∞.
Thus there exists ∅ 6= J ⊆ D such that

min
J

nl →∞ as l→∞ and ∃m∈Nd ∀l∈N nl ≤Jc m.

From the subsequence {nl} we can choose an increasing subsequence {nlk},
which upon the assumption is convergent to a. Now, application of Lem-
ma 2.1 completes the proof. �

Remark 1. Lemma 2.2 means that we can straightforwardly transfer metriz-
able convergence results for random variables to convergence of random
fields as maxn→∞. This tool is also very helpful to study the convergence
of partial sums, as we will see in the proof of Lemma 2.4. Obviously, conver-
gence in the sense maxn→∞ implies convergence in the sense minn→∞,
thus we have another sufficient condition without completeness of Y as it
was assumed in Lemma V-1-1 of [11].

Lemma 2.3. Let {an,n ∈ Nd} be a family of non-negative real numbers
and Sn =

∑
k≤n

ak, then the following conditions are equivalent:

(i) lim
minn→∞

Sn = S,
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(ii) ∀{nk}⊆Nd

(
{nk}is increasing ⇒ lim

k,l→∞
|Snk

− Snl
| = 0

)
.

Proof. (i) ⇒ (ii) is obvious. To prove (ii) ⇒ (i), it is enough to set nk =
k(d). �

Lemma 2.4. Let {ai,n, i ≤ n ∈ Nd} be a family of real numbers, non-
decreasing with respect to |n| , such that 0 < ai,n ≤ 1 for i ≤ n and 1−an,n =

o( 1
|n|), then

(3)
∑
n∈Nd

1

|n|

(
1−

∏
i≤n

ai,n

)
<∞ implies lim

maxn→∞

∏
i≤n

ai,n = 1.

Proof. By Lemma 2.2 the assertion is equivalent to convergence for any
increasing subsequence and let us observe that

∏
i≤n ai,n are bounded by 1.

On the contrary, assume that there exists increasing sequence {nk} such
that

(4) lim
k→∞

∏
i≤nk

ai,nk
= g < 1.

Hence, there exist 0 < q < 1 and k0, such that for all k > k0

(5)
∏
i≤nk

ai,nk
< q.

Note, that for n ≤ nk

(6)
∏
i≤n

ai,n ≤
∏
i≤n

ai,nk
=
∏
i≤nk

ai,nk

1∏
i≤nk, i�n

ai,nk

.

Let {nk} be the sequence as in proof of Lemma 2.2 and define sequence
{mk} as follows

mk =Jc nk and mk =J

[nk
2

]
,

where αn = (αn1, αn2, . . . , αnd).
On the virtue of the assumptions and standard arguments

1 ≥
∏

i≤nk, i�mk

ai,nk
≥

∏
i≤nk, i�mk

ai,i → 1 as k →∞.

Thus, for 0 < ε < 1− q, there exists k1 such that

(7) ∀k>k1
∏

i≤nk, i�mk

ai,nk
> 1− ε.

On the other hand,

(8)
∏

i≤nk, i�n

ai,nk
≥

∏
i≤nk, i�mk

ai,nk
for n ≤ nk, n >mk.
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In order to finish the proof, let us observe that by (5)–(8), for every k large
enough∑

n�mk,n≤nk

1

|n|

(
1−

∏
i≤n

ai,n

)
≥

∑
n>mk,n≤nk

1

|n|

(
1− 1

1− ε
∏
i≤nk

ai,nk

)

≥
∑

n>mk,n≤nk

1

|n|

(
1− q

1− ε

)
≥
(

1

2

)|J |(
1− q

1− ε

)
= δ > 0,

which is in contradiction with the assumption together with Lemma 2.3. �

Remark 2. Assumption in Lemma 2.4 on asymptotic of (1−an,n) is crucial.
Even in the case d = 1 if lim supn→∞(1 − an,n) > 0, one can construct an
example that series in (3) is convergent but

∏
i≤n ai,n 9 1 as n→∞.

Lemma 2.5. If
∏

i≤n ai,n → 1 as maxn→∞, then for a given 0 < δ < 1

and sufficiently large n0 ∈ Nd (i.e. |n0| is sufficiently large)

∀n�n0
1−

∏
i≤n

ai,n ≥ (1− δ)
∑
i≤n

(1− ai,n) .

Proof. See the proof of Lemma 2.1 [9]. �

3. Main results and proofs. At the beginning of this section, let us recall
the notion of negative dependence.

Definition 3.1. A finite family of random variables {Xj,1 ≤ j ≤ n} is said
to be negatively dependent (ND) if

P

[⋂
j≤n

(Xj ≤ xj)
]
≤
∏
j≤n

P (Xj ≤ xj)

and

P

[⋂
j≤n

(Xj > xj)

]
≤
∏
j≤n

P (Xj > xj)

for xi ∈ R, i ≤ n.

An infinite family is ND if every finite subfamily is ND. The concept of
negative quadrant dependence (NQD – in pairs) was introduced by Lehmann
in [10]. Let us observe that negatively associated random variables are ND
and ND are NQD. For more recent results and comments see the monograph
[2] of Bulinski and Shashkin.

Since we are going to prove results for non-identically distributed random
variables, the following conditions allow us to formulate them in a simple
form as in i.i.d. case and compare them.



6 Z. A. Łagodowski

Definition 3.2. Random variables {Xk,k ∈ Nd} are weakly mean bounded
(WMB) by random variable ξ (possibly defined on a different probability
space) if and only if there exist some constants κ1, κ2 > 0 such that for all
x > 0 and n ∈ Nd

κ2 · P (|ξ| > x) ≤ 1

|n|
∑
k≤n

P (|Xk| > x) ≤ κ1 · P (|ξ| > x).

To state our main results we need some additional notation. Let log+ x :=
max(0, log x) and α = (α1, α2, . . . , αd) ∈ (12 ,+∞)d. Coordinates αi are
arranged in non-decreasing order, α1r ≥ 1, p = max{k : αk = α1}, and
nα = (nα1

1 , . . . , nαd
d ). Now, we are ready to refine the necessary condition

in Theorem 3.1 of [9].

Theorem 3.3. Let r > 0, α1 >
1
2 and {Xn,n ∈ Nd} be a random field of

negatively dependent random variables, weak mean bounded by ξ.
(i) If α1r ≥ 2 and

(9)
∑
n

|n|α1r−2P
(

max
k≤n
|Sk| > |nα|ε

)
<∞ for all ε > 0,

then

(10) E|ξ|r(log+ |ξ|)p−1 <∞ and if r ≥ 1, Eξ = 0,

(ii) if α1r ∈ [1, 2) and (9) holds, P (|Xn| > |nα|) = o( 1
|n|), then we ob-

tain (10).

Proof. The assertion (i) is proved in [9], thus we sketch the proof of (ii).
The negative and positive part of ND random variables are still ND, then

(11)

P
(

max
k≤n
|Sk| > |nα|ε

)
≥ P

(
max
k≤n
|Xk| > 2|nα|ε

)
≥ P

(
max
k≤n

X+
k > 2|nα|ε

)
= 1− P

(⋂
k≤n

[X+
k ≤ 2|nα|ε]

)
≥ 1−

∏
k≤n

P (X+
k ≤ 2|nα|ε) = 1−

∏
k≤n

(1− P (X+
k > 2|nα|ε)).

Let ak,n = P (X+
k ≤ 2ε|nα|)), thus Lemma 2.4 implies that∏

k≤n
(1− P (X+

k > 2ε|nα|))→ 1 as maxn→∞.

Analogously, we can get∏
k≤n

(1− P (X−k > 2ε|nα|))→ 1 as maxn→∞.
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Now, applying Lemma 2.5 with ak,n = P (X+
k ≤ ε|n

α|) and âk,n = P (X−k ≤
ε|nα|), WMB condition and Lemma 2.2 of [5], for sufficiently large minn0,
we have ∑

n�n0

|n|α1r−2P
(

max
k≤n
|Sk| > ε|nα|

)
≥ C1

∑
n�n0

|n|α1r−2P
(

max
k≤n
|Xk| > 2ε|nα|

)
≥ C2

∑
n�n0

|n|α1r−2
∑
k≤n

P (|Xk| > 2ε|nα|)

≥ C3

∑
n�n0

|n|α1r−1P (|ξ| > 2ε|nα|)

≥ C4E|ξ|r(log+ |ξ|)|p−1.
The second part of the assertion, i.e., that if r ≥ 1, then Eξ = 0, is rather
known, confer [5] or [3]. �

If {Xn,n ∈ Nd} is a random field of negatively dependent, identically
distributed random variables, then P (X+

k ≤ ε|nα|) = an and P (X−k ≤
ε|nα|) = ân, for every k ≤ n. In this case Lemma 2.4 can be proved
without any additional assumptions and we can obtain a generalization of
Theorem 1.3 in [5] to negatively dependent random fields.

Theorem 3.4. Let r > 0, α1 >
1
2 , α1r ≥ 1 and {Xn,n ∈ Nd} be a random

field of negatively dependent, identically distributed as X random variables.
If

(12) E|X|r(log+ |X|)d−1 <∞, and if r ≥ 1, EX = 0,

then

(13)
∑
n

|n|α1r−2P (|Sn| > |nα|ε) <∞ for all ε > 0.

Conversely, if

(14)
∑
n

|n|α1r−2P
(

max
k≤n
|Sk| > |nα|ε

)
<∞ for all ε > 0,

then (12) holds.

Acknowledgments. The author is grateful to the referee for careful read-
ing of the manuscript and valuable suggestions.

References

[1] Baum, L. E., Katz, M., Convergence rates in the law of large numbers, Trans. Amer.
Math. Soc. 120 (1965), 108–123.

[2] Bulinski, A., Shashkin, A., Limit Theorems for Associated Random Fields and Re-
lated Systems, World Scientific Publishing, Singapore, 2007.



8 Z. A. Łagodowski

[3] Gut, A., Marcinkiewicz laws and convergence rates in the law of large numbers for
random variables with multidimensional indices, Ann. Probability 6 (3) (1978), 469–
482.

[4] Gut, A., Stadtmüller, U., An asymmetric Marcinkiewicz–Zygmund LLN for random
fields, Statist. Probab. Lett. 79 (8) (2009), 1016–1020.

[5] Gut, A., Stadtmüller, U., On the Hsu–Robbins–Erdös–Spitzer–Baum–Katz theorem
for random fields, J. Math. Anal. Appl. 387 (1) (2012), 447–463.

[6] Hsu, P. L., Robbins, H., Complete convergence and the law of large numbers, Proc.
Nat. Acad. Sci. U.S.A. 33 (1947), 25–31.

[7] Klesov, O. I., The strong law of large numbers for multiple sums of independent iden-
tically distributed random variables, Matem. Zametki 38 (1985), 915–930 (English
transl. in Math. Notes 38 (1986), 1006–1014).

[8] Klesov, O. I., Limit Theorems for Multi-Indexed Sums of Random Variables, Springer-
Verlag, Berlin–Heidelberg, 2014.

[9] Łagodowski, Z. A., An approach to complete convergence theorems for dependent
random fields via application of Fuk–Nagaev inequality, J. Math. Anal. Appl. 437
(2016), 380–395.

[10] Lehmann, E. L., Some concepts of dependence, Ann. Math. Statist. 37 (1966), 1137–
1153.

[11] Neveu, J., Discrete-Parameter Martingales, North-Holland, Amsterdam; American
Elsevier, New York, 1975.

Zbigniew A. Łagodowski
Department of Mathematics
Lublin University of Technology
Nadbystrzycka 38D
20-618 Lublin
Poland
e-mail: z.lagodowski@pollub.pl

Received April 13, 2018




