LUBLIN-POLONIA

Instytut Maternatyla
Uniwersytet Marii Curio-Sldodowikiej

J.WANIURSKI

On the Bloch-Landau Constant for Möbius Transforms of Convex Mappings

Abstract. Lot S denote the farriliar dass of functions holomorphic in the unit disk \mathbf{D}, normalized by : $f(0)=f^{\prime}(0-1=0$.

Lot $K \subset S$ be the subclass of S consisting of all f such that the image domain $f(D)$ is convex.
 $\hat{K}=\bigcup_{S \in K} F_{S}$.

Barnard and Schober askod the question to find the properties of K that are inherited by \hat{K}. We prove that the doss \dot{K} shares with K the property of linear invariance in the sence of Ponomerenke. Wo aleo prove that Bloch-Landau constant within both classes K° and K^{K} is equal to $\pi / 4$.

1. Introduction. Let $X(D)$ stand for the class of functions holomorphic in the unit disk $D=\{z \in C:|z|<1\}$ and for $f \in X(D)$ let $L(f)$ be the least upper bound of ρ such that $f(D)$ contains a disk of radius ρ.

Let S denote the familiar subclass of $X(D)$ consisting of functions f univalent in D and normalized by the condition $f(0)=f^{\prime}(0)-1=0$ and let S_{0} be a compact subclass of S.

Put

$$
\begin{equation*}
U\left(S_{0}\right)=\inf \left\{L(f): f \in S_{0}\right\} \tag{1.1}
\end{equation*}
$$

The exact value of $U\left(S_{0}\right)$ for $S_{0}=S$ is still unknown, however Landau proved [12] that $U(S)>0.5625$, while Beller and Hummel [5] were able to show that $U(S)<0.65641$. As shown by Robinson [16] there exists $F \in S$ such that $L(F)=U(S)$.

Let $K^{\prime} \subset S$ be the subclass of S consisting of all f such that the image doman $f(D)$ is convex.

If $T_{w}(S)=w /(\infty-s)$ then with any $f \in S$ and any $w \in \hat{C} \backslash f(D)$ we may associate a subclass F_{f} of S consisting of all $\tau_{\infty} \circ f$. We define now another subclass \dot{K} of S as $\bigcup_{\mathcal{J} \in \mathcal{K}} F_{\rho}$.

Various properties of functions $f \in \hat{K}$ were established by Barnard and Scho ber [3], Clunie and Sheil-Small as well as by Hall [9].

The class \dot{K} has obviously the property of rotational invariance. Barnard and Schober [3] asked the question to find further properties of K that are inherited by K.

In this paper we prove that the class K shares with K the property of linear invariance in the sense of Pommerenke [15]. We will also show that $U(\hat{K})=U(K)=\pi / 4$.

Moreover, we show that for any compact subclass S_{0} of S the g.l.b. (1.1) is attained for some $f_{0} \in S_{0}$. The constant defined in (1.1) is associated with Bloch [6]
and Landau[12] and the research initiated by them in 1925-29 was continued by e.g. Ahlfors [1], Ahlfors and Gransky[2], Goodman [8], Heins [10], Po mmerenke[13].
2. Linear invariance of K. Let $K_{n}, n \in N$, denote the subclass of K consisting of all f such that $f(D)$ is a polygon, not necessarily bounded, with at most n sides. Thus K_{1} consists of Möbios transformations mapping D onto a half-plane, while $K_{2} \backslash K_{1}$ consists of functions mapping D on a domain whose boundary consists of two parallel lines, or two half-lines with common origin.

Let $\dot{K}_{n}=\bigcup_{f \in K_{0}} F_{f}$. Any function $F=\tau_{\infty} \circ f \in \dot{K}_{n}$ maps D on a circular polygon whose boundary consists of n ancs on circles intersecting each other at $-w$. Conversely, if all sides of a circular polygon Ω_{n} with interior angles $\alpha_{k}<\pi$ are situated on circles intersecting each other at $-\infty$, then the homography $\varsigma \mapsto \omega \varsigma /(\varsigma+\infty)$ maps Ω_{n} onto a convex polygon W_{n}. If $C \in \Omega_{n}$ and the inner radius $R\left(0 ; \Omega_{n}\right)=1$, then there exists $F \in \dot{K}_{n}$ such that $\Omega_{n}=F(D)$.

The classes $K_{n}, n \in \mathrm{~N}$, and K are compact in the usual topology of uniform convergence on compact subsets of D and so are \dot{K}_{n} and $K, c f$. [3].

Theorem 2.1. Suppose that $F \in \hat{K}$ and $\omega(z)=(z+a) /(1+\bar{a} s), a \in D$. Then

$$
F_{a}(z):=\left[\left(1-|a|^{2}\right) F^{\prime}(a)\right]^{-1}(F \circ \omega(z)-F(a)) \in \dot{K} .
$$

Proof. The set $\bigcup_{n=1}^{\infty} \hat{K}_{n}$ is dense in \hat{K} and consequently there exists a sequence $\left(F_{n}\right), F_{n} \in \dot{K}_{n}$, convergent to F uniformly on compact subsets of D. It is sufficient to prove that any $\bar{K}_{n}, n \in \mathbb{N}$, is linearly invariant. For $n \in \mathbb{N}$ put

$$
F_{n a}(z):=\left[\left(1-|a|^{2}\right) F_{n}^{\prime}(a)\right)^{-1}\left(F_{n} \circ \omega(z)-F_{n}(a)\right)
$$

If $F_{n}(D)=\Omega_{n}$ is a circular polygon with at most n sides, then $F_{n a}(D)$ arises from Ω_{n} under a translation and similarity : $\varsigma \mapsto R^{-1}\left(\varsigma-F_{n}(a)\right)$. Moreover, $F_{n}(0)=0$, $F_{n a}^{\prime}(0)=1$ and hence $F_{n o} \in \dot{K}_{n}$ and we are done.

3. The existence of an extremal function.

Theorem 3.1. Let S_{0} be an arbitrary fixed compact subclass of S. Then there exists $f_{0} \in S_{0}$ such tha0

$$
U\left(S_{0}\right):=\inf \left\{L(f): f \in S_{0}\right\}=L\left(f_{0}\right)
$$

Proof. Pat for short $U\left(S_{0}\right)=L_{0}$. There exists a sequence $\left(f_{n}\right), f_{n} \in S_{0}$, such that $L\left(f_{n}\right) \geq L_{0}$ and $\lim _{n \rightarrow \infty} L\left(f_{n}\right)=L_{0}$. Due to compactness of S_{0} we may assume that $\left(f_{n}\right)$ is convergent to $f_{0} \in S_{0}$ uniformly on compact subsets of D and $\left(f_{n}(D)\right)$ is convergent to its kernel $\boldsymbol{f}_{0}(D)$ w.r.t. the origin. Suppose that $L\left(f_{0}\right)>L_{0}$ and take λ such that $L_{0} / L\left(f_{0}\right)<\lambda<1$. Then for some $\theta_{0} \in f_{0}(D)$ the closed disk $K\left(\rho_{0}, \lambda L\left(f_{0}\right)\right)$ is not contained in $f_{n}(D)$ for sufficiently large n. However, this contradicts $f_{0}(D)$ to be the limit of ($\left.f_{n}(D)\right)$ in the sense of kernel convergence, $d f$. [14, p.31, Problem 3].

Since the classes $\hat{K}_{n}, n \in \mathbb{N}$, and \hat{K} are compact, there exist in view of Theorem 3.1, the functions $F_{n} \in \hat{K}_{n}, F_{0} \in \hat{K}$, such that

$$
\begin{align*}
& L\left(F_{n}\right)=\inf \left\{L(F): F \in \hat{K}_{n}\right\}, n \geq 2 \tag{3.1}\\
& L\left(F_{0}\right)=U(\hat{K})=\lim _{n \rightarrow \infty} L\left(F_{n}\right) \tag{3.2}
\end{align*}
$$

Theorem 3.2. If $n>3$ then

$$
L\left(F_{n}\right)=\inf \left\{L(F): F \in K_{3}\right\} .
$$

Proof. Suppose that the gal.b. (3.1) is attained for F mapping D onto a circular polygon Ω_{n} with n sides, $n>8$, situated on circles intersecting each other at $-\infty$. There exists a disk $K_{0} \subset \Omega_{n}$ of radius $L(F)$ tangent to $\partial \Omega_{n}$ at the points Q_{k}. The position of K_{0} is determined either by two or by three points Q_{k} situated on different sides of Ω_{n}. The first possibility corresponds to Q_{k} being the end points of a diameter of K_{0}, the second one means that three points Q_{k} can be chosen so as to devide ∂K_{0} into three subarcs each having angular measure less than π. Since $n>3$, at least one side \tilde{L} of Ω_{n} does not contain any just chosen Q_{k} and therefore it is possible to shift \tilde{L} outside of Ω_{n} so that it takes the position \bar{L}_{1} on a circle through $-\infty$ and the resulting circular polygon $\bar{\Omega}_{n}$ will have the inner radius $R\left(0 ; \Omega_{n}\right)>1$, while the radii $p\left(\Omega_{n}\right), p\left(\bar{\Omega}_{n}\right)$ of inscribed circles are equal. If \hat{F} maps D conformally onto $\tilde{\Omega}_{n}$, $\tilde{f}_{n}(0)=0$, taen $G=\tilde{F} / R\left(0 ; \tilde{\Omega}_{n}\right)$ belongs to K_{n} and maps D onto Ω_{n}^{0}, while

$$
L(G)=\rho\left(\Omega_{n}^{\prime}\right)<L(\dot{F})=\rho\left(\bar{\Omega}_{n}\right)=\rho\left(\Omega_{n}\right)=L(F)
$$

which is a contradiction.

4. Somo lemmes.

Lemma 4.1. Let $\phi(x)=\Gamma^{\prime}(x) / \Gamma(x)$ where Γ is the gamma-Euler's function Then

$$
\begin{equation*}
d(x)=\phi(x)+\frac{\pi}{2} \operatorname{ctg} x \frac{\pi}{2}-\frac{1}{2} \log x(1-x) \tag{1.1}
\end{equation*}
$$

is decreasing function in $x \in(0 ; 1 / 2)$.
Proof. From the well known formulae :

$$
\begin{align*}
& \phi(x)=-\gamma+\sum_{n=0}^{\infty}\left[(n+1)^{-1}-(n+x)^{-1}\right] ; \tag{4.2}\\
& \pi^{2}(\sin x \pi)^{-2}=\sum_{n=-\infty}^{+\infty}(n-x)^{-2}, \quad(x \neq n)
\end{align*}
$$

we obtain

$$
\begin{equation*}
d^{\prime}(x)=\left(\frac{\pi}{2}\right)^{2} \cos ^{-2} x \frac{\pi}{2}-\sum_{n=1}^{\infty}(n-x)^{-2}-\frac{1}{2}(1-2 x)|x(1-x)|^{-1} \tag{4.3}
\end{equation*}
$$

and therefore it is sofficient to show that for $0<x<1 / 2$

$$
\begin{equation*}
\left(\frac{\pi}{8}\right)^{2} \cos ^{-8} x \frac{\pi}{2}<\sum_{n=1}^{\infty}(n-x)^{-3}+\frac{1}{2}(1-2 x)[x(1-x)]^{-1} \tag{4.4}
\end{equation*}
$$

Let us denote by $L(x), P(x)$ the left and right hand side of (4.4) resp. The functions L, P are convex on the interval $(0 ; 1 / 2)$ and $L(1 / 2)=P(1 / 2)$,
$L^{\prime}(1 / 2)=\frac{x^{3}}{2}>15.5, P^{\prime}(1 / 2)<12.96$. Besides, L increases in $(0 ; 1 / 2)$ while P is decreasing in $\left(0 ; x_{0}\right), 0.3<x_{0}<0.31$ and then increasing in $\left(x_{0} ; 1 / 2\right)$. Since $L(0.3)=3.1079, P(0.3)>3.7059$. inequality (4.4) holds in $(0 ; 0.3)$.

Let $x_{1}=0.3, x_{2}=0.4, x_{8}=0.44, x_{4}=0.5, I_{k}=\left(x_{k} ; x_{k+1}\right), k=1,2,3$. On each interval I_{k} it is possible to find a linear function $y_{k}(x)$ such that $L(x)<y_{k}(x) \leq P(x)$, $x \in I_{k}, k=1,2,3$. We omit the details.

Lemmin 4.2. The function

$$
l(x)=\varphi(x)-\phi(2 x)+\pi / 2 \sin x \pi+\frac{1}{2} \log \frac{2(1-2 x)}{1-x}
$$

decreases on $(0 ; 1 / 2)$ and $l(1 / 3)=0$.
Proof. From the well known identity: $\phi(x)-\phi(1-x)=-\pi \operatorname{ctg} x \pi$ as well as from (4.2) it follows that

$$
\begin{align*}
l(x)= & -x \operatorname{ctg} x \pi+\pi / 2 \sin x \pi+(1-3 x)\left[(2 x(1-x))^{-1}+\right. \tag{4.5}\\
& \left.+\sum_{n=1}^{\infty}(2 x+n)^{-1}(1-x+n)^{-1}\right]+\frac{1}{2} \log \frac{2(1-2 x)}{1-x}
\end{align*}
$$

Hence $l(1 / 3)=0$. Besides,

$$
\begin{aligned}
C^{\prime}(x)= & -x^{2} \sin ^{-2} x \pi-\frac{\pi^{2}}{2} \cos 3 \pi \sin ^{-2} x \pi-\frac{1}{2} x^{-2}+(1-x)^{-2}- \\
& -\sum_{n=1}^{\infty}\left[2(2 x+n)^{-2}+(1-x+n)^{-2}\right]-\frac{1}{2}(1-2 x)^{-1}(1-x)^{-1} .
\end{aligned}
$$

For any $n \in N$ the function: $x \mapsto 2(2 x+n)^{-2}+(1-x+n)^{-2}$ is decreasing on $[0 ; 1 / 2]$ so that
$\sum_{n=1}^{\infty} 2(2 x+n)^{-2}+(1-x+n)^{-2} \geq 2(2 x+1)^{-2}+(2-x)^{-2}+\sum_{n=2}^{\infty}\left[2(1+n)^{-2}+\left(\frac{1}{2}+n\right)^{-2}\right]$.
Hence, using the identities : $\sum_{n=1}^{\infty} n^{-2}=\frac{\frac{\pi}{}^{2}}{6} ; \sum_{n=1}^{\infty} 1(1+2 n)^{-2}=\frac{r^{2}}{4}$ we obtain inequality

$$
\begin{equation*}
{ }^{\prime}(x) \leq h_{1}(x)-h_{2}(x) \tag{4.6}
\end{equation*}
$$

where

$$
\begin{aligned}
h_{1}(x) & =\left(\frac{\pi}{2}\right)^{2} \cos ^{-2} x \frac{\pi}{2}+\frac{y^{2}}{2}\left(\sin ^{-2} x \pi-(x x)^{-2}\right)-2(1+2 x)^{-2}, \\
h_{2}(x) & =(1-x)^{-2}+\frac{1}{2}(1-2 x)^{-1}(1-x)^{-1}+(2-x)^{-2}+\delta, \\
\delta & =(5 / 6) x^{2}-125 / 18 .
\end{aligned}
$$

The functions h_{1}, h_{2} are increasing on $[0 ; 1 / 2]$ and $h_{1}\left(l_{k}\right)<h_{2}\left(l_{k-1}\right)$ on a sequence $\left(t_{k}\right), k=0,1, \ldots, 8, t_{k}=0 ; 0.1 ; 0.15 ; 0.2 ; 0.25 ; 0.3 ; 0.33 ; 0.4 ; 0.5$. From (4.6) the function $l(x)$ is decreasing on ($0 ; 1 / 2$).

Let G be a simply connected domain of hiperbolic type in C. Let $ص_{0} \in G$ and f is a conformal mapping of the unit disk D onto $G . f(0)=\omega_{0}$. Then $R\left(\omega_{0} ; G\right)=\left|f^{\prime}(0)\right|$.

Let $z_{0} \in \boldsymbol{B}:=\{z \in C: \operatorname{Im} z>0\}$ and let the function h maps the upper half-plane \boldsymbol{H} onto $G, h\left(z_{0}\right)=\omega_{0}$. Then the homography: $\varsigma \mapsto\left(z_{0}-\bar{z}_{0} \varsigma\right) /(1-\varsigma)$ maps the unit disk \mathbf{D} anto $\boldsymbol{E}: 0 \longrightarrow z_{0}$. Hence

$$
\begin{equation*}
R\left(w_{0} ; G\right)=2 \operatorname{Im} z_{0}\left|h^{\prime}\left(z_{0}\right)\right| \tag{4.7}
\end{equation*}
$$

The function

$$
\begin{equation*}
h(x)=\int_{0}^{2} x^{0-1}(1-x)^{0-1} d x \tag{4.8}
\end{equation*}
$$

maps conformally the upper half-plane B onto the triangle \tilde{T} of internal angles $a x$, $B \pi, \gamma x, a+\beta+\gamma=1$. From (4.7), (4.8) we have

$$
\begin{equation*}
R(\infty ; T)=2 y /\left[\left(x^{2}+y^{2}\right)^{1-\infty}\left((1-x)^{2}+y^{2}\right)^{1-\beta}\right]^{1 / 2} \tag{4.9}
\end{equation*}
$$

where $w=h(z), z=z+i y \in B$. Besides, $B(\alpha, B)=\int_{0}^{1} \varepsilon^{0-1}(1-\varepsilon)^{B-1} d x$ is the beta-Euler's function, while

$$
\begin{equation*}
\rho(\tilde{T})=\frac{\sin a \frac{\pi}{3} \sin \beta \frac{\pi}{2}}{\sin (\alpha+\beta) \frac{\pi}{2}} B(\alpha, \beta) \tag{4.10}
\end{equation*}
$$

is the radius of the disk inscribed in the triangle \bar{T}. We will consider the right hand side of (4.10) as a function defined on $I^{2}=(0 ; 1 / 2) \times(0 ; 1 / 2)$.

Lemana 4.s. Let $\Phi(x, y, \alpha, \beta)=R(w ; \tilde{T}) / \rho(\tilde{T})$ where $R(w ; \tilde{T}), \rho(\tilde{T})$ are given by (t.9), (4.10) resp. Hence the function $\Phi(x, y, \alpha, \beta)$ doesn't have critical points on $B \times\left(I^{2} \backslash(1 / 3 ; 1 / 3)\right)$.

Proof. Suppose that (x, y, α, β) is a critical point of Φ. Then it satisfies the system of equations :

$$
\left\{\begin{align*}
y^{-1}-(1-\alpha) y /\left(x^{2}+y^{2}\right)-(1-\beta) y /\left[(1-x)^{2}+y^{2}\right]=0 \tag{4.11}\\
-(1-\alpha) x /\left(x^{2}+y^{2}\right)+(1-\beta)(1-x) /\left[(1-x)^{2}+y^{2}\right]=0
\end{align*}\right.
$$

$$
\left\{\begin{array}{l}
\frac{1}{2} \log \left(x^{2}+y^{2}\right)-\frac{\pi}{2}\left(\operatorname{ctg} \alpha \frac{\pi}{2}-\operatorname{ctg}(\alpha+\beta) \frac{\pi}{2}\right)-\phi(\alpha)+\phi(\alpha+\beta)=0 \tag{4.12}\\
\frac{1}{2} \log \left((1-x)^{2}+y^{2}\right)-\frac{\pi}{2}\left(\operatorname{ctg} \beta \frac{\pi}{2}-\operatorname{ctg}(\alpha+\beta) \frac{\pi}{2}\right)-\phi(\beta)+\phi(\alpha+\beta)=0
\end{array}\right.
$$

where $\phi(x)=\Gamma^{\prime}(x) / \Gamma(x)$.
The only solution of (4.11) is the pair $\left(x_{0}, y_{0}\right)$ where

$$
\begin{equation*}
x_{0}=\alpha /(\alpha+\beta) ; y_{0}=\sqrt{\alpha \beta} /[(\alpha+\beta) \sqrt{1-\alpha-\beta}] . \tag{4.13}
\end{equation*}
$$

Patting (4.13) into (4.12) we get

$$
\begin{align*}
& \frac{1}{2} \log \frac{\alpha(1-\alpha)}{(\alpha+\beta)(1-\alpha-\beta)}-\phi(\alpha)+\phi(\alpha+\beta)-\frac{\pi}{2}\left(\operatorname{ctg} \alpha \frac{\pi}{2}-\operatorname{ctg}(\alpha+\beta) \frac{\pi}{3}\right)=0 \tag{4.14}\\
& \frac{1}{2} \log \frac{\beta(1-\beta)}{(\alpha+\beta)(1-\alpha-\beta)}-\psi(\beta)+\psi(\alpha+\beta)-\frac{\beta}{2}\left(\operatorname{ctg} \beta \frac{\pi}{2}-\operatorname{ctg}(\alpha+\beta) \frac{\pi}{3}\right)=0 .
\end{align*}
$$

Subtracting the both sides of (4.14) we get

$$
\begin{equation*}
d(\alpha)-d(\beta)=0 \tag{4.15}
\end{equation*}
$$

where d is the function of Lemma 4.1. Since d is decreasing (4.15) may, has the solution anly if $\alpha=\beta$. Petting $\alpha=\beta$ into one of the equation of (4.14) we obtain the equation

$$
\begin{equation*}
l(a)=0 . \tag{4.16}
\end{equation*}
$$

According to Lemma 4.2 equation (4.16) has the only solution $\alpha=1 / 3$ so that the pair $(1 / 3 ; 1 / 3)$ is the only salution of (4.14). This implies the conclusion of Lemma 4.3.

Lemma 4.4. Suppose that $P=\left\{s \in C:|\operatorname{lm} s|<\frac{\xi}{\}}\right\}$, $\operatorname{siv}(s)=\operatorname{ios} /(i v-s)$, $0>\pi / 4, \Omega=\operatorname{riv}_{i v}(P)$. Then for any $\tau \in \Omega$

$$
\begin{equation*}
R(r ; \Omega) \leq R_{\max }, \tag{4.17}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{\max }=\frac{4 y^{2}}{1-y^{4}} 0^{2} \tag{4.18}
\end{equation*}
$$

and $y=y(v)$ is the unique solution of the equation

$$
\begin{equation*}
\frac{1}{2}\left(y^{-1}-y\right)+\tan ^{-1} y=0 \tag{4.19}
\end{equation*}
$$

contained in the interval $(0 ; 1)$.
Proof. If $f(z)=\frac{1}{2} \log \frac{1+z}{1-z}$ then $P=f(D), \Omega=F(D)$ with $F=\tau_{i 0} \circ f$ and $R(r ; \Omega)=\left(1-|z|^{2}\right)\left|F^{\prime}(z)\right|$, where $r=F(z)$. Suppose $t+i \theta=\varsigma \in P,|0|<\frac{F}{4}$. Then for any $r \in \Omega$

$$
\begin{equation*}
R(r ; \Omega)=\frac{v^{2} \cos 2 s}{t^{2}+(c-s)^{2}} \leq \frac{v^{2} \cos 2 s}{(v-s)^{2}}=R\left(r_{1} ; \Omega\right) \tag{4.20}
\end{equation*}
$$

Thus for : fixed $R(r ; \Omega)$ attains its maximum at $r_{1}=r_{i v}(i s)$.
The function f maps the unit disk D onto the strip P such that $s=i o,|0|<\pi / 4$ corresponds so $z=i y,|y|<1$. Hence $s=\frac{1}{2} \log \frac{1+i y}{1-i y}=\tan ^{-1} y$ and

$$
\begin{equation*}
R\left(r_{1}: \Omega\right)=\frac{1-y^{2}}{1+y^{2}}\left(1-\frac{1}{y} \tan ^{-1} y\right)^{-2} \tag{4.21}
\end{equation*}
$$

The nght hand side of (4.21) attains its maxamum if $y=y(0)$ is the unique root of the equation (4.19) contained in the internal $(0 ; 1)$. Inequality in (4.20) as well as (4.21) and (4.19) gives (4.17) and (4.18). The proof is complete.

Lemma 4.5. Suppose that the triangle $T=T\left(\alpha_{0}, \beta_{0}\right)$ containing the origin, uith internal angles $\alpha_{0} \pi, \beta_{0} \pi, \gamma_{0} \pi, \alpha_{0}+\beta_{0}+7_{0}=1$, has its inner radius $R(0, T)=1$. Let $K=K(s o, r)$ be the disk inseribed in T. Then there exists the triangle $T^{\prime}=T^{\prime}(a, \beta)$ with the same disk K inseribed in T^{\prime} such that $R\left(0, T^{\prime}\right)>1$.

Proof. The function h given by (4.8) maps the upper half-plane B onto the triangle $\dot{T}=\dot{T}(\alpha, \beta)$ similar to $T^{\prime}(\alpha, \beta)$. Let $\rho(\dot{T})$ be the radius of the disk inscribed in \dot{T}. Then for some $w_{0} \in \dot{T}$ and for sonve $\eta,|\eta|=1$ the mapping: $n r\left(\varphi-\omega_{0}\right) / \rho(\dot{T})$ transforms the triangle \tilde{T} onto T^{\prime} such that $r_{0} \longrightarrow 0$. Hence, $R\left(0 ; T^{\prime}\right)=r R\left(\omega_{0} ; \dot{T}^{\prime}\right) / \rho(\dot{T})=r \Phi(x, y, a, \beta)$ where Φ is the function of Lemma 4.3.

Case (i) $\left(a_{0}, \beta_{0}\right) \neq(1 / 3,1 / 3)$. If $R\left(0 ; T^{\prime}\right) \leq 1$ for any admissible triangle T^{\prime} then Φ would have a critical paint conerury to the conclusion of Lemma 4.3.

Case (ii) $a_{0}=\beta_{0}=1 / 3$. Then it easily follows that the only critical point of $\$$ corresponds to the minimam of Φ.

5. Main reaults.

Theorem 6.1. $\inf \left\{L(F): F \in \dot{K}_{3}\right\}=\inf \left\{L(F): F \in \dot{K}_{2}\right\}$.
Proof. Suppose that the g.l.b. of $L(F)$ is attained for F which maps D onto the circular triangle Ω_{3} with three sides situated on circles intersecting each other at
the point $-\infty$. There exists a disk \hat{K} of radius $L(F)$ tangent to $\delta \Omega_{8}$ at two or three points.

If the position of K is determined by two points situated on two different sides, then - similarly like in the proof of Theorem 3.2 we may shift the third free side. outside of Ω_{3} so that it takes the position on a circle through $-v$ and the resulting circular triangle $\tilde{\Omega}_{3}$ will have the inner radius $R\left(0 ; \tilde{\Omega}_{3}\right)>1$, while $p\left(\Omega_{8}\right)=p\left(\Omega_{8}\right)$. Consequently, there is a function $G \in K_{8}$ such that $L(G)<L(F)$ contrary to that F gives the ga.b. of $L(F), F \in \hat{K}_{3}$.

Suppose now, that the position of \hat{K} is determined by three points Q_{h}. This means that the circle $\partial \hat{K}$ is devided by these Q_{k} onto three subarcs each having angular measure less than π. Besides, there exists the function $f \in K_{3}$ which mape D onto the triangle $T=f(D)$ and the point io $\in C \backslash T$, such that $F(D)=\Omega_{3}$, $F=r_{w} \circ f$.

The disk R is the image of the disk $K=\left\{s:\left|s-s_{0}\right|<r\right\} \subset T$ by the mapping $\tau_{w}(s)=w s /(w-s)$ and therefore the radius of the disk \hat{K} is equal to $L(F)=r|w|^{2} /\left(|w-s|^{2}-r^{2}\right)$. From Lemma 4.5 it follows that there exists the triangle T^{\prime} with the same disk K inscribed in T^{\prime} and conformal mapping \tilde{f} which maps D onto T^{\prime}, such that $\tilde{f}(0)=0, \tilde{f}^{\prime}(0)=R\left(0 ; T^{\prime}\right)>1$.

Let $\tilde{G}=r_{\infty} \circ \tilde{f}$. Then $L(\tilde{f})=r$ and

$$
\begin{equation*}
L(\dot{G})=L(F) \tag{5.1}
\end{equation*}
$$

If $f_{1}=\tilde{f} / \tilde{f}^{\prime}(0), F_{1}=\tau_{0} \circ f_{1}$ then $f_{1} \in K_{3}, F_{1} \in K_{3}$. Beaidea, $f_{1}(D) \subset T^{\bullet}$ and therefore $L\left(F_{1}\right)<L(G)$. From $(5.1) L\left(F_{1}\right)<L(F)$. The proof is complete.

From the Theorems : 3.1, 5.1 it follows that the g.L.b. of $L(F)$ on \hat{K} is attained by $F \in \hat{K}_{2}$. It is very easy to see that the extremal image domain $\Omega_{2}=F(D)$ can't have an internal angles greater than zera.

Let

$$
\begin{equation*}
F=\tau_{\bullet} \circ f \tag{5.2}
\end{equation*}
$$

where

$$
\varsigma=f(z)=\frac{1}{2} \log \frac{1+z}{1-z}, \infty=z+i v,|v|>\frac{\pi}{4}
$$

The homography $\tau_{w}(\varsigma)=w s /(w-\varsigma)$ maps then any stright line : $\varsigma=x+i y_{0}, y_{0}$ being fixed, $y_{0} \neq 0$ anto a circle through -0 with the diameter $2 r=m a x\left|r_{0}\left(x+i y_{0}\right)+v\right|$.

Since the boundary of $f(D)$ consists of two lines : $l_{1}: s=m+i \frac{z}{4} ; l_{2}: s=a-i \frac{z}{4}$, $-\infty<x<+\infty, r_{\infty}\left(l_{1} \cup l_{2}\right)$ consists of two circles with the diameters $2 r_{1}=|x|^{2} /|0-\pi / 4|, 2 r_{2}=|\infty|^{2} /|0+\pi / 4|$ resp. Hence, the radins of the disk inscribed in Ω_{2} is $\rho\left(\Omega_{2}\right)=\frac{\pi}{4}|\nabla|^{2} /\left(0^{2}-\left(\frac{\pi}{1}\right)^{2}\right)$. For fixed $\theta=\operatorname{Im} \vartheta$,

$$
\begin{equation*}
\operatorname{Pmin}\left(\Omega_{2}\right)=\frac{\pi}{4} v^{2} /\left(v^{2}-\left(\frac{\pi}{4}\right)^{2}\right) . \tag{5.3}
\end{equation*}
$$

Theorem 5.2. $\inf \left\{L(F), F \in K_{2}\right\}=\frac{7}{4}$.
Proof. Since \hat{K}_{2} is linearly invariant we shall consider the g.Lb. of $L(G)$ for all

$$
\begin{equation*}
G(z)=\left(F \circ \omega(z)-s_{0}\right) / R\left(r_{0} ; \Omega_{2}\right), \tag{5.4}
\end{equation*}
$$

where $\omega(z)=\left(z+z_{0}\right) /\left(1+z_{0} z\right), z_{0} \in D, \tau_{0}=F\left(z_{0}\right)$ while F is given by (5.2).
For any function (5.4) inequality (4.17) of Lemma 4.4 gives $L(G) \geq p_{\text {min }}\left(\Omega_{2}\right) / R_{\text {max }}$ where $\rho_{\text {moln }}\left(\Omega_{2}\right), R_{\text {max }}$ are given by (5.3), (4.18) resp. Hence, we will have to show that

$$
\begin{equation*}
\Omega_{\min }\left(\Omega_{2}\right) / R_{\max }>\frac{\pi}{8} \tag{5.5}
\end{equation*}
$$

Tating into account (4.19) as well as (5.3) we obtain inequality

$$
\begin{equation*}
\left(1-y^{2}+2 y \tan ^{-1} y\right)^{2}<1-y^{4}+y^{2}\left(\frac{\pi}{3}\right)^{2} \quad, \quad 0<y<1 . \tag{5.6}
\end{equation*}
$$

An elementary real analysis technique shows the truth of (5.6).
The left hand side of (5.5) can be as close to $\pi / 4$ as we want, so that $\pi / 4$ is indeed the g.l.b. of $L(F), F \in \dot{K}_{2}$.

The extremal function $F=r_{0} \circ f$ corresponds to $w=\infty 80$ that $F \equiv f \in K$ and therefore $\left.L(\hat{K})=L \hat{K}_{2}\right)=L(K)$.

Hence $f(x)=\frac{1}{2} \log \frac{1+z}{1-z}$ and its rotations are the only extremal fuactions.
6. Univalence criteria. The Blach-Landan constant within the class \bar{K} is connected with some geometric aspect of univalence criteria introduced by Kruyz [11]. A domain Ω in the finite plane \mathbf{C} is called a univalence domain (for short : a U-domain) if the inclusion: $\left\{\log g^{\prime}(z): z \in D\right\} \subset \Omega$ for $g \in \mathcal{X}(D)$ and some branch of $\log g$ implies the univalence of g in D. Ench U-domain corresponds to a particular criterion of anivalence. For example, the strip $\{s:|\operatorname{Im} s|<\pi / 2\}$ corresponds to Noshiro-Warshawalo univalence criterion [7, p.47].

We will use the following rgsults in further considerations
Theorern B [4]. Suppose that $g \in X(D), g^{\prime}(0) \neq 0$. 8

$$
\begin{equation*}
\left(1-|z|^{2}\right) \frac{\left|g^{n t}(z)\right|}{\left|g^{\prime}(z)\right|} \leq 1 \quad(z \in D) \tag{6.1}
\end{equation*}
$$

then g is univalent in \mathbf{D}.
Theorem K [11]. Suppose $\varphi \in X(D)$ and the values of p are contained in a domain Ω possessing a generalized Green's function. Then for any $z \in D$

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\varphi^{\prime}(z)\right| \leq R\left(\varphi(z) ; \cap^{\prime}\right. \tag{6.2}
\end{equation*}
$$

The sign of equality at some point $z_{0} \in D$ holds only for the univalens function φ and for a simply connected domain $\Omega=\varphi(D)$

Theorem 6.1. Suppose $F \in \mathcal{K}, L(F)=\beta_{1}^{\frac{2}{4}, 1 \leq \beta<\infty}$. Let moreover for $0<\lambda<\mu^{-1}, f:=\lambda F$ and

$$
\begin{equation*}
\Omega=\dot{f}(D) \tag{6.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
R(\omega ; \Omega) \leq 1 \quad(\infty \in \Omega) . \tag{6.4}
\end{equation*}
$$

Proof. Suppose, contrary to (6.4) that $R\left(\omega_{0} ; \Omega\right)>1$ for particular $\omega_{0} \in \Omega$. Then $G(z)=\left(F \circ \omega(z)-\infty_{0}\right) / R\left(\omega_{0} ; F(D)\right) \in K$, where $\omega(z)=\left(z+z_{0}\right) /\left(1+z_{0} z\right)$, $z_{0} \in D, F\left(z_{0}\right)=\infty_{0}$. Heace

$$
L(G)=L(F) / R\left(w_{0} ; F(\mathrm{D})\right)=L(\dot{\zeta}) / R\left(w_{0} ; \Omega\right)<\pi / 4
$$

which gives a contradiction.
Inequality (6.4) as well as Theorem K allow us to apply Theorem B to the function $g \in M(D)$ such that $\left\{\log s^{\prime}(z): z \in D\right\} \subset \Omega$.

Hence we get
Theorem 6.2. The domain $\Omega=f(D)$ given by (6.3) is a U-domain.
In particular, if $f(z)=\frac{1}{2} \log \frac{1+x}{1-z}$ and $F=\tau_{i v} \circ f \in \hat{K}$, then

$$
L(F)=\rho\left(\Omega_{2}\right)=\frac{\pi}{4} v^{2} /\left(v^{2}-(x / 4)^{2}\right)
$$

If we take $0<\lambda<1-(x / 10)^{2}$ then $\tilde{f}=\lambda F$ yields a U-domain $\Omega=\tilde{f}(D)$. Moreover, if $|0|>3 \pi / 4$ then Ω is not contained in the strip of width π so that Theorem 6.2 gives a criterion of univalence which does not follow from the Noshiro-Warshawski Theorem

REPERENCES

[1] Ahlfors, L. V., An esenono of Schwors's Lemma, Trans. Arnar. Math. Soc, 43 (1938) 36-384.
[2] Ahlfori, L.V., Grunsky, B. . Über die Blocheche Konatarie , Mash 2. 42 (1937) 671-673.
[3] Baraard. R.W. Schober. G. M Mober trandorms of conver mappongs. Complea Variables, 3, 1-3 (1984), 55-69.
[1] Becker, J. , Lömersche Differeminalglewchang and quankonorm fortselabare echichse Finktiomen, J. Reim Angow. Math 233 (1972), 23-43.
[S] Beller, E. . Bummel, J.A. On the asioclest Bloch conetans, Compler Varables, if 3h (1985), 243-232
[of Bloch. A. Les thiontmes de M Valinow sur les fonctions extueres et lo theorve de l'untor misation. Aner de Toulousa, 3s., 17 (1925), 1-22.
[1] Duren, P.L. . Uniealent Functions, Springer-Veriag, Now-York, 1983.
[8] Goodman, R.E. On the Bloch-Landas conglant for Schlech fenctions, Bull. Anser. Math Soc 81 (1945), 234-239
[8] Hell, R.R. . On a conjecture of Clunce and Shed-Small. Bull. London Mhth. Soc. 12 (1980), 25-28
[10] Heins, M. H. . A clace of conformal metrice, Bull. Arrer. Mish. Soc., 67 (1961), $175-478$.
[11] Krsyz, J. G. John's criterion of mivalence and a problem of Robertson, Complex Vasiables, 3 (1984), 173-183.
[12] Landau, E. , Über die Blochoche Konstante und swei verwandie Welikonstanter, Math. Z. 30 (1929), 608-634.
[13] Pommerenke, Ch. . On Bloch functions, J. London Math. Soc, 2 (2) (1970), 689-695.
[14] Pommerenke, Ch. , Univalent functions, Vandenhoeck and Raprechl, Göttingen, 1975.
[15] Pommerenke, Ch. , Linear-invarianse Pamilien analytischen Purktionen I, Math. Asnalen, 155 (1964), 100-154.
[16] Robinson, R. M. . The Bloch constant A for a schlicht functions, Bull. Ame.. Meth. Soc. 41 (1935), 535-540.

STRESZCZENIE

Niech S ornacsa klasq funkoji holomorficznych i jednolistnych w bole jednosthowyrr. $D=\{z \in$ $C:|z|<1\}$ i t abich, io $f(0)=f^{\prime}(0)-1=0$.

Niech $K \subset S$ bodzie podldaea tych funkcji $f \in S$, dla których zbior $f(D)$ jest wypuldy.
Dis dowalnej licaby $0 \in \mathcal{C} \backslash f(D)$ niech $F_{\rho}=\bigcup_{\omega} \tau_{\omega} \circ f, g d_{\text {rie }} \tau_{w}(\varsigma)=\omega \rho /(\omega-\varsigma)$, oras $\hat{K}=\bigcup_{\boldsymbol{f} \in \boldsymbol{K}} \boldsymbol{F}_{\boldsymbol{f}}$.

Barnard i Schober postawili problem badania tych wiasnośa klasy K, które driedziczone sq od klasy K. Wylajemy, ie klasa \hat{K} jest liniowo niezriennicza w sensio Pommerenke, oraz ie stata Blocha-Landaua zarówno w klasie \hat{K} jak i w klasie K jest równa $\pi / 4$.

