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Abstract. Let S denote the familiar dass of functions holomorphic in the unit disk D,
normalized by : f(0) = f'(0—1=0.

Let X C S be the subclass of S consisting of all f such that the image domain f(D) is
convex.
Let for an arbitrary w € C\I(D), Fr=Uroof. where T () = w¢/(0 — ¢) and let

w

K=\ F,.

JEK
. Bamard and Schober asked the question to find the properties of K that are inherited by
K. We prove that the dass K shares with K the property of linear invanance in the sense of

Pormanerenke. We also prove that Bloch-Landau constant within both dasses K and K is equal to
x/4.

1. Introduction. Let ¥ (D) stand for the class of functions halomorphic in the
unit disk D = {z € C: |z] < 1} and for f € ¥ (D) let L(f) be the least upper bound
of p such that f(D) contains a disk of radius p.

Let S denote the familiar subclass of (D) consisting of functions f univalent
in D and normalized by the condition f(0) = f'(0) — 1 = 0 and let Sy be a compact
subclass of S.

Put

(1.1) U(So) = inf{L(f) : € So} .

The exact value of U(So) for So = S is still unknown, however Landau proved
[12] that U(S) > 0.5625, while Beller and Hummel [5] were able to show that
U(S) < 0.85641. As shown by Robinson [16] there exists F € S such that
L(F) =U(S).

Let K C S be the subclass of S consisting of all f such that the image domain
f(D) is convex.
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I ro(¢) = wg/(w — ¢) then with any f € S and any w € C\ f(D) we may
associate a subclass Fy of S consisting of all 7, o f. We define now another subclass
KofSas U Fy.

JEK J

Various properties of functions f € K were established by Barnard and Scho
ber [3}, Clunie and Sheil-Small as well as by Hall [9].

The class K has obviously the property of rotational invariance. Barnard and
Schober (3] asked the question to find further properties of K that are inherited by
K.

In this paper we prove that the class K shares with K the property of linear
invariance in the sense of Pommerenke [15]. We will also show that
U(K)=U(K) = /4.

- Moreover, we show that for any compact subclass Sp of S the glb. (1.1) is
attained for some fo € Sp. The constant defined in (1.1) is associated with Bloch
(6]
and Landau(l2] and the research initiated by them in 1925-29 was continued by
e.g. Ahlfors [1}, Aklfors and Grunsky[2], Goodman [8], Heins [10], Po-
mmerenke[13].

3. Linear invariance of K. Let K, n € N, denote the subclass of K consisting
of all f such that f(D) is a polygon, not necessarily bounded, with at most n sides.
Thus K, oonsists of MBbius transformations mapping D onto a half-plane, while
K3 \ K1 consists of functions mapping D on a domain whose boundary consists of
two parallel lines, or two half-lines with common origin. ;

Let Kn= U Fy. Any function F = r,0f € K,, maps D on a circular polygon

€Ka
whose bounda.r; consists of n arcs on circles intersecting each other at —w. Conversely,

if all sides of a circular polygon {1, with interior angles ax < & are situated on circles
intersecting each other at —w, then the homography ¢ — w¢/(¢ + ©) maps {1, onto
a convex polygon Wp. If C € {}, and the inner radius R(0;3,) = 1, then there exists
.F € K, such that O, = F(D).

The classes K,, n € N, and K are compact in the usual topology of uniform
convergence on compact subsets of D and 8o are K, and K, of. [3].

Theorem 2.1. Suppose that F € K andw(s) = (3 + a)/(1+ds), a € D. Then

Fo(2) := [(1 = [s)F'(e)] ' (Fow(z) - F(a)) €K .

“ ) -
Proof. The set |J K, is dense in K and consequently there exists a sequence

n=al
(Fn), Fn € Kp, convergent to F uniformly on compact subsets of D. It is sufficient
to prove that any K, n € N, is linearly invariant. For n € N put

Fra(z) = [(1 = |af*)F4(a) ™" (Fa 0 w(s) = Fa(a)) .

If F,(D) = {1, is a drcular polygon with at most n sides, then Fn,(D) arises from
0, under a translation and similarity : ¢ — R~ (¢ — Fa(a)). Moreover, Foe(0) = 0,
F!,(0) =1 and hence Fn, € K and we are done.
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3. The existence of an extremal function.

Theorem 3.1. Let Sy be an arbditrary fized compact subclass of S. Then there
exists fo € So such th~*

U(So) = inf{L(f) : f € So} = L(fo) .

Proof. Put for short U(S,) = L. There exists a sequence (f,), fa € So, such
that L(fn) 2 Lo and nli.'%o L(fa) = Lo. Due to conipactness of Sy we may assune

that (f,) is convergent to fo G Sp uniformly on compact subsets of D and (f, (D)) is
convergent to its kernel fo(D) w.r.t. the origin. Suppose that L(fp) > Lo and take A
such that Lo/L(fo) < A < 1. Then for some 89 € fo(D) the closed disk K (e, AL (fo))
is not contained in fn(D) for sufficently large n. However, this contradicts fo(D) to
be the limit of (fn(D)) in the sense of kernel convergence, d. [14, p.31, Problem 3].

Since the classes K, n € N, and K are compact, there exist in view of Theorem
3.1, the functions F, € f(.., Fo € K, such that

(8.1) L(F.)=inf{L(F):F€K,}, n22,
(3.2) L(F) =U(K) = Jim L(Fy) -

Theorem 3.2. I[fn > 3 then ’
L(Fp)=inf{L(F): FeKs} .

Proof, Suppose that the gl.b. (3.1) is attained a:r F mapping D onto a circular
polygon (), with n sides, n > 8, aituated on circles intersecting each other at ~w.
There exists a disk Ko C (n of radius L(F) tangent to d{}n at the paints Qi. The
position of Kp is determined either by two or by three points Qx situated on different
sides of 02,,. The first possibility corresponds to @, being the ead points of a diameter
of Ko, the second one means that three paints Qx can be chosen so as to devide 3Ky
into three subarcs each having angular measure less than x. Since n > 3, at least
one side L of 01, does not contain any just chosen Q: and therefore it is possible to
shift L outaide of 1, so0 that it takes the position Ly on a dircle through —» and
the resulting circular polygon {3, will have the inner radius R(0;1,) > 1, while the
radii p(fln), o(8n) of inscribed circles are equal. If F mape D conformally onto {1n,
Fa(0) =0, tnen G = F/R(0;{1,) belongs to K, and maps D onto 02, while

L(G) = p(%,) < L(F) = p(fla) = p(0n) = L(F)
which is a contradiction.
4. Some lenmmas.

Lerruma 4.1, Let ¢(z) = IM(2)/T'(z) where T is the gamma-Euler’s function.
Then »

(¢.1) d(z) = p(=) + § ctg 2§ - Llogz(1 - 2)
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ts decreasing function in z € (0;1/2).
Proof. From the well known formulae :

(42) ) =1+ 3l 1) = (2 5
n=0
x?(dnzx)"? = Z (r=2)2, (z#n),
we obtain

(4.3) d'(z) = (-;-)’ cos™? 2% — Z(u -z)7? - 11 - 22)[z(1 - 2)]!

and therefore it is suffident to show that for0 < z < 1/2

(4.4) (§)’ecos 225 < Y (n=2)"2 + b1 - 22)[2(1 - 2)]" .
na=l

Let us denote by L(z), P(z) the left and right hand side of (4.4) resp. The functions
L, P are convex on the interval (0;1/2) and L(1/2) = P(1/2),
L'(/2) = r,i > 15.5, P’(1/2) < 12.96. Besides, L increases in (0;1/2) while P
is decreasing in (0:20), 0.3 < zo < 0.31 and then increasing in (zo;1/2). Smoe
L(0.3) = 3.1079, P(0.3) > 3.7059. inequality (4.4) holds in (0;0.3).

Letz. =03,2z2=04,23 23044, 2, =0.5, I, —lzl,.xk.“) k=1,2,3. On each
interval I} it is possible to find a linear function y, (z) such that L(x) < g (z) € P(z),
2€I, k=1,2,3. We omit the details.

Lerrarm 4.3. The function

2(1 - 22)

I(z) = 9(z) — ¥(22) + x/2sinzx + Llog a2

decreases on (0;1/2) and 1(1/3) = 0.

Proof. From the well known identity : ¥(z) — ¢(1 — z) = —x ctg zx as well as
from (4.2) it follows that

(4.5) I(z) = - x ctgzx + x/2sinzx + (1 — 3z)[(22(1'- .r))-l+
2(1 — 22)

+E(2:+n)"(l—z+n)"'] + } log i

nm]
7

Hence {(1/3) = 0. Besides,

F(z)=-x?sin"?zx - '}cosztsin" rx — %r"-&- (1-=2)"2-

=Y [@r+n)?+(1-z+n)?) - f(1-27)"'1-2)" .
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For any n € N the function : z +~ 2(22+n)~2+ (1 —z+n)~? is decreasing on [0;1/2]
so that

}ci 2(2z48) 2+ (1-2z4n)"2 2 2(22+1)"?+(2-2) "2+ i [2(14n)"2+ (4 +n)7?] .
nm3

Q0 o0 s
Hence, using the identities : }_ n™? = ”7’ i L 41+2n)"2 = !;- we obtain
n=l )

inequality PR
(4.6) I'(z) < hy(z) = ha(z)
where

hy(z) = (§)?cos™2 2§ + I (sin? zx — (2x)77) - 2(1 + 22)7?
h(z)=(1-2)+}(1-20)""'(1-2)""+ (2-2)"" +5,
§ = (5/6)x? — 125/18 .

The functions Ay,A; are increasing on [0;1/2] and A;(tx) < ha(te-1) on a sequence
(t), k=0,1,...,8, tx = 0; 0.1; 0.15; 0.2; 0.25; 0.3; 0.33; 0.4; 0.5. From (4.6) the
function I(z) is decreasing on (0;1/2).

Let G be a simply connected domain of hiperbalic typein C. Let vy € G and f is
a conformal mapping of the unit disk D onto G, f(0) = we. Then R(wo;G) = |f’(0)].

Let 20 € H := {z € C : Im z > 0} and let the function A maps the upper
half-plane H onto G, A(z0) = wo. Then the homography : ¢ — (20 — To¢)/(1 = ¢)
maps the unit disk D onto H : 0 =— z,. Hence

(4.7) R(w0; G) = 2 Im 20[A (20)]
The function
(4.8) h(z) = / « @ 1 - u)? "l de

maps conformally the upper half-plane H onto the triangle T of internal angles ax,
Bx, 9%, a + 3 + v = 1. From (4.7), (4.8) we have

(4.9) R(o:T) = 29/[(£* + )2 ((1 - 2> + )" 71)°

1
where w = A(z), z = r + iy € H. Besides, B(a.8) = fu®~'(1 — «)°~! du is the
0
beta-Euler’s function, while
sin ai' sin BI'

(3-8 P(T) & sin{o + d)-;-

B(a,B)
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is the radius of the disk inscribed in the triangle T'. We will consider the right hand
side of (4.10) as a function defined on I? = (0;1/2) x (0;1/2).

Lemma 4.3. Let &(z,y,0,8) = R(w;f‘)/p(f') where R(w0; T), p(T) are given
by (4.9), (4.10) resp. Hence the function ®(z,y,a,B) doesn’t have eritical points on
B x (1?\ (1/8;1/3)).

Proof. Suppose that (z,y,a,8) is a critical point of ¥. Then it satisfies the
system of equations :

(v~ = (1= a)y/( +9°) - (1= B/l(1 - 2)* + 7] = 0

@I U —-a)e/le? + 5 + (1= B = 2)/I(1 - )P + 5] =0
(412) { Flog(z? + %) — f(ctg af —ctg (a + B)§) — ¥(a) + ¥(a+8) =0
y Flog((1-2)°+9°) - §(ctg 8] - ctg (a+B)f) - ¥(B) + ¥(a+8) =0

where ¢¥(z) = IV(z)/T'(z).
The only solution of (4.11) is the pair (zo,y0) where

(4.13) =af(a+8) ; m=\/a—ﬂ/[(a+ﬂ)\/l-a-ﬁ|.

Putting (4.13) into (4.12) we get

(4.14)
pros ST - 4(e) + ¥l + £) - (ctg g - cig o+ AP =0
h BU=B) ___ y(8)+vla+8) - §(ctg 8% - g (a+A)§) =0.

%e+hli-e-p)
Subtracting the both sides of (4.14) we get
(4.15) d(a) - d(8) =0

where d is the function of Lemma 4.1. Since d is decreasing (4.15) may has the
salution only if @ = 8. Putting @ = 8 into one of the equation of (4.14) we obtain
the equation

-

(4.16) l(a)=0.

According to Lemma 4.2 equation (4.16) has the only solution @ = 1/8 so that the
pair (1/3;1/3) is the only salution of (4.14). This implies the conclusion of Lemma
4.3

Lemuma 4.4. Suppose that P = {¢ € C: |Im ¢| < £}, 7. (¢) = svg/(0 = ¢),
0> x/4, Q=1,,(P). Then foranyr €

(4.17) ‘ R(r;0) € Rmax ,
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where

3
(4.18) = i’—‘- o3,
l-y

and y = y(v) is the unigue solution of the eguation
(4.19) ™' -y)+tanly=v
contained in the interval (0;1).

Proof. If f(z) = }log =% then P = f(D), 0} = F(D) with F =, o[ and
R(r:0) = (1 — [z]*)IF’(2)|, where r = F(z). Suppose t +is =¢ € P, o] < §. Then
for any r €

v3 cos 2e v3 cos2s
3+ (c—9)2 =~ (v—19)?

(4-20) R(r:0) = = R(n;;0) .

Thus for ¢ fixed R(7;(}) attains its maxdimum at 11 = fie(18).
The function f maps the unit disk D onto the strip P such that ¢ = e, |o] < x/4
corresponds to z = iy, |y| < 1. Hence ¢ = llog—t’- =1 tan "'y and

(421) R(n:0) = L tan ~'y)™?

The nght hand side of (4.21) attains its maxamum if y = y(vr) is the unique root of
the equation (4.19) contained in the interval (0;1). Inequality in (4.20) as well as
(4.21) and (4.19) gives (4.17) and (4.18). The proof is complete.

Lenumn 4.8.  Suppose that the triangle T = T(ao,P0) containing the on-
gin, uith internal angles agx, fox, Yo%, ao + Bo + 70 = 1, has its inner radius
R(0.T) = 1. Let K = K(¢o.r) be the disk inscrided inT. Then there exists the triangle
T = T'(a,3) with the same diskt K inscribed in T' such that R(0,T’) > 1.

Proof. The function A given by (4.8) maps the upper half-plane H onto the
triangle T = T(a, 8) similar to T'(a. 8). Let p(T) be the radius of the disk inscribed in
1. Then for some vy € T and for sonx 7, |g| = 1 the mapping : @ = pr(w—100)/p(T")
transforms the triangle T onto T’ such that «y — 0. Hence,

R(0;:T') = rR(wo.T)/p(T) = r®(x.y.0a.3) where & is the function of Lemma 4.3.

Case (i) (a0.Bo) # (1/3,1/3). If R(0;T') € 1 for any admissible triangle T' then
® would have a critical point contrury to the condusion of Lemma 4.3.

Case (ii) a0 = fo = 1/3. Then it easily follows that the only critical point of &
corresponds to the minimum of ®.

8. Main results.
Theorem 8.1. inf{L(F): F € K3} =inf{L(F): F € K,}.

Proof. Suppose that the gl.b. of L(F) is attained for F which maps D onto
the drcular triangle 3y with three sides situated on circles intersecting each other at
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the paint ~w. There exists a disk K of radius L(F) tangent to )3 at two or three
points.

If the pasition of K is determined by two points situated on two different sides,
then — similarly like in the proof of Theorem 3.2 we may shift the third free side
outside of 13 so that it takes the position on a drcle through —w and the resulting
circular triangle (I3 will have the inner radius R(0;{}3) > 1, while p(f}3) = po(03).
Consequently. there is a function G € Ry such that L(G) < L(F) contrary to that F
gives the gl.b. of L(F), F € K;.

Suppose now, that the position of K is determined by ‘three points Q4. This
means that the circle K is devided by these Q¢ onto three subarcs each having
angular measure less than x. Besides, there exists the function f € K3 which maps
D onto the triangle T = f(D) and the point w € C \ T, such that F(D) = (13,
F=r,0]f.

The disk K is the image of the disk K = {¢ : |¢ — | < r} € T by the
mapping ro(s) = w¢/(w — ¢) and therefore the radius of the disk K is equal to
L(F) = r|w|*/(|jo - ¢0|> = #}). From Lemma 4.5 it follows that there exists the
triangle T/ with the same disk K inscribed in T and conformal mapping f which
maps D onto T¥, such that f(0) =0, f(0) = R(0;T’) > 1.

Let G=ro0f. Then L(f) =r and

(5.1) L(G) = L(F).

K fi = f/f'(0), Fi = 1o 0 f; then f; € Ky, F, € R;. Besides, f;(D) € T¥ and
therefore L(F}) < L(G). From (5.1) L(F}) < L(F). The proof is complete.

From the Theorems : 3.1, 5.1 it follows that the g.Lb. of L(F) on K is-attained
by F € K;. 1t is very easy to see that the extremal i image domain 0’ F(D) can't
have an internal angles greater than zero.

Let

(5.2) F=r1,0f

where

1

= 100 = Fiog 22
The homography 7, (s) = w¢/(w —¢) mape then any stright line : ¢ = z+1y,, yo being
fixed, yo # v anto a circle through —w with the diameter 2r = m'a.xlr.(z+|'yo) + w|.

Since the boundary of f(D) consists of twolines: l} ;¢ m 2 +i%; 31 ¢ m a—if,
=00 < z < +00, Tp(ly Ulp) consists of two circles with the diameters
2 = |w|’/|u x/4|, 2r3 = |©|*/|v+ x /4| resp. Hence, the radius of the disk inscribed
in 03 is p(02) = §|w|*/(0? ~ (%)?). For fixed v =Imw,

(53) Protn (1s) = £ 03 /(0% = (§)?) .

y w=s+iv , |o]>%.

Theorem 5.2. inf{L(F),F € K3} =2
Proof. Since K is lineary invariant we shall consider the g.Lb. of L(G) for all _
(5.4) G(z) = (Faw(z) = 1) /R(r0; M) ,
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where w(z) = (2 + 20)/(1 + £0z2), 20 € D, 10 = F(z0) while F is given by (5.2).

For any function (5.4) inequality (4.17) of Lemma 4.4 gives L(G) 2 pmin (03)/ Rmax
where prin(03), Rmax 8re given by (5.3), (4.18) resp. Hence, we will have to show
that

(5.5) £min (03)/Renax > § ©
Taking into account (4.19) as well as (5.3) we obtain inequality

(5.6) (1-P+2tan~y)’ <1-p*+5°(5)® , O0<y<l.

An elementary real analysis technique shows the truth of (5.6).

The left hand side of (5.5) can be as close to /4 as we want, 80 that x/4 is
indeed the gl.b. of L(F), F € K;.

The extremal function F = 1, 0 f corresponds to w = co so that F = f € K and
therefore L(K) = LK,) = L(K).

Hence f(3) = } log }£2 and its rotations are the only extremal functions.

6. Univalence criteria. The Bloch-Landan constant within the class K is
connected with some geometric aspect of univalence criteria introduced by Krzyz
[11). A domain 0 in the finite plane C is called a univalence domain (for short : a
U—domain) if the inclusion : {logg’(s) : s € D} € € for g € ¥(D) and some branch
of log ¢ implies the univalence of g in D. Each Y—domain corresponds to a particular
cTiterion of univalence. For example, the strip {s : [Im ¢| < x/2} corresponds to
Noshiro-Warshawski univalence criterion {7, p.47).

We will use the fallowing results in further considerations

Theoremn B [4). Suppose that g € X¥(D), ¢’(0) #0. I

(6.1) (1=1)) %:—))} <1 (s€eD),

then g is univalent in D.

Theorem K [11). Suppose p € N(D) and the values of p are contained in a
domain 1 possessing a gencralized Green's function. Then for any z € D

(6.2) (1= 1P’ (2)] < Rp(=)i 0

The sign of equality at some point 2o € D holds only for the univalent function p and
Jor @ simply conneeted domain 0} = p(D)

Theorem 6.1. Suppose F € K, L(F) = p%, 1 € g < co. Let moreover for
0<A<p?, f:=AF and

(6.9) n=f(D).
Then
(6.4) R(w;N)S1 (veN).
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Proof. Suppose, contrary to (6.4) that R(wo;{1) > 1 for particular wo € fl.
Then G(z) = (F o w(z) = wo)/R(wo; F(D)) € K, where w(z) = (s + 20)/(} + 202),
29 € D, F(z0) = wy. Hence

L(G) = L(F)/R(wo; F(D)) = L(f)/R(w0; Q) < x/4
which gives a contradiction.
Inequality (6.4) as well as Theorem K allow us to apply Theorem B to the function
g € ¥(D) such that {logg’(z): s € D} Cc 0.
Hence we get
Theorem 6.3. The domain (1 = f(D) given by (6.3) is a U-domain.

In particular, if f(z) = }log }£% and F = 5, 0 f € K|, then
L(F) = p(0a) = 7¢*/ (" = (x/4)?) -

If we take 0 < A < 1= (x/4v)? then f = AF yields a U~domain 01 = f(D). Moreover,
if Jv] > 3x/4 then 0 is not contained in the strip of width x so that Theorem 6.2
gives a criterion of univalence which does not follow from the Noshiro-Warshawsk
Theorem.
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STRESZCZENIE

#

Niech S oznacza klasq funkeji holomorficznych i jednolistnych w kole jednostiowyrr. D = {; e
C:|z] <1} taddch, 3 f(0) = f'(0) -~ 1 =0.

Niech K C S bedze podklasy tych funkcji f € S, dla ktérych zhiér (D) jest wypuldy.

Dla dowolnej licaby © € €\ f(D) niech Fy = {1, © [, gdzie 74 (¢) = 0¢ /(0 —¢), oras
K=\ F,.

JEK

_Barnard i Schober postawili problem badania tych wiasnodci klasy K, kiére dziedziczone sy
od klasy K. Wykazemy, ze klasa K jest liniowo niezmiennicza w sensie Pommerenke, oraz ze stala
Blocha-Landaua zaréwno w klasie K jak i w kasie K jest réwna x /4.
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