ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN-POLONIA

VOL XLII, 18

SECTIO A

1988

Instytut Matematyki Uniwersytet Marii Curie-Skłodowskiej

J.WANIURSKI

On the Bloch-Landau Constant for Mobius Transforms of Convex Mappings

Abstract. Let S denote the familiar class of functions holomorphic in the unit disk D, normalized by: f(0) = f'(0 - 1 = 0).

Let $K \subset S$ be the subclass of S consisting of all f such that the image domain f(D) is convex.

Let for an arbitrary $w \in \mathbb{C} \setminus f(\mathbb{D})$, $F_f = \bigcup_{w} \tau_w \circ f$, where $\tau_w(\varsigma) = w\varsigma/(w-\varsigma)$ and let

$$\hat{K} = \bigcup_{f \in K} F_f$$

Barnard and Schober asked the question to find the properties of K that are inherited by \hat{K} . We prove that the class \hat{K} shares with K the property of linear invariance in the sense of Portmerenke. We also prove that Bloch-Landau constant within both classes \hat{K} and \hat{K} is equal to $\pi/4$.

1. Introduction. Let $\mathcal{X}(\mathbf{D})$ stand for the class of functions holomorphic in the unit disk $\mathbf{D} = \{z \in \mathbf{C} : |z| < 1\}$ and for $f \in \mathcal{X}(\mathbf{D})$ let L(f) be the least upper bound of ρ such that $f(\mathbf{D})$ contains a disk of radius ρ .

Let S denote the familiar subclass of $\lambda'(D)$ consisting of functions f univalent in D and normalized by the condition f(0) = f'(0) - 1 = 0 and let S_0 be a compact subclass of S.

Put

(1.1) $U(S_0) = \inf \{ L(f) : f \in S_0 \}.$

The exact value of $U(S_0)$ for $S_0 = S$ is still unknown, however Landau proved [12] that U(S) > 0.5625, while Beller and Hummel [5] were able to show that U(S) < 0.65641. As shown by Robinson [16] there exists $F \in S$ such that L(F) = U(S).

Let $K \subset S$ be the subclass of S consisting of all f such that the image domain $f(\mathbf{D})$ is convex.

If $\tau_w(\varsigma) = w\varsigma/(w - \varsigma)$ then with any $f \in S$ and any $w \in \mathbb{C} \setminus f(\mathbb{D})$ we may associate a subclass F_f of S consisting of all $\tau_w \circ f$. We define now another subclass K of S as $\bigcup_{f \in K} F_f$.

Various properties of functions $f \in K$ were established by Barnard and Schober [3], Clunie and Sheil-Small as well as by Hall [9].

The class K has obviously the property of rotational invariance. Barnard and Schober [3] asked the question to find further properties of K that are inherited by K.

In this paper we prove that the class K shares with K the property of linear invariance in the sense of Pommeren ke [15]. We will also show that $U(K) = U(K) = \pi/4$.

Moreover, we show that for any compact subclass S_0 of S the g.l.b. (1.1) is attained for some $f_0 \in S_0$. The constant defined in (1.1) is associated with Bloch [6]

and Landau[12] and the research initiated by them in 1925–29 was continued by e.g. Ahlfors [1], Ahlfors and Grunsky[2], Goodman [8], Heins [10], Pommerenke[13].

2. Linear invariance of K. Let K_n , $n \in \mathbb{N}$, denote the subclass of K consisting of all f such that $f(\mathbf{D})$ is a polygon, not necessarily bounded, with at most n sides. Thus K_1 consists of Möbius transformations mapping **D** onto a half-plane, while $K_2 \setminus K_1$ consists of functions mapping **D** on a domain whose boundary consists of two parallel lines, or two half-lines with common origin.

Let $K_n = \bigcup_{f \in K_n} F_f$. Any function $F = \tau_w \circ f \in K_n$ maps D on a circular polygon whose boundary consists of n arcs on circles intersecting each other at -w. Conversely, if all sides of a circular polygon Ω_n with interior angles $\alpha_k < \pi$ are situated on circles intersecting each other at -w, then the homography $\varsigma \mapsto w \varsigma/(\varsigma + w)$ maps Ω_n onto a convex polygon W_n . If $0 \in \Omega_n$ and the inner radius $R(0; \Omega_n) = 1$, then there exists $F \in K_n$ such that $\Omega_n = F(D)$.

The classes K_n , $n \in \mathbb{N}$, and K are compact in the usual topology of uniform convergence on compact subsets of D and so are \hat{K}_n and K, cf. [3].

Theorem 2.1. Suppose that $F \in K$ and $\omega(z) = (z + a)/(1 + \overline{a}z)$, $a \in D$. Then

$$F_a(z) := \left[(1-|a|^2) F'(a) \right]^{-1} \left(F \circ \omega(z) - F(a) \right) \in K .$$

Proof. The set $\bigcup_{n=1}^{\infty} \hat{K}_n$ is dense in \hat{K} and consequently there exists a sequence $(F_n), F_n \in \hat{K}_n$, convergent to F uniformly on compact subsets of D. It is sufficient to prove that any \hat{K}_n , $n \in \mathbb{N}$, is linearly invariant. For $n \in \mathbb{N}$ put

$$F_{na}(z) := \left[(1-|a|^2) F'_n(a) \right]^{-1} \left(F_n \circ \omega(z) - F_n(a) \right) \, .$$

If $F_n(D) = \Omega_n$ is a circular polygon with at most *n* sides, then $F_{ne}(D)$ arises from Ω_n under a translation and similarity : $\varsigma \mapsto R^{-1}(\varsigma - F_n(a))$. Moreover, $F_{ne}(0) = 0$, $F'_{na}(0) = 1$ and hence $F_{na} \in \hat{K}_n$ and we are done.

3. The existence of an extremal function.

Theorem 3.1. Let S_0 be an arbitrary fixed compact subclass of S. Then there exists $f_0 \in S_0$ such the

$$U(S_0) := \inf \{ L(f) : f \in S_0 \} = L(f_0) .$$

Proof. Put for short $U(S_0) = L_0$. There exists a sequence (f_n) , $f_n \in S_0$, such that $L(f_n) \ge L_0$ and $\lim_{n \to \infty} L(f_n) = L_0$. Due to compactness of S_0 we may assume that (f_n) is convergent to $f_0 \in S_0$ uniformly on compact subsets of **D** and $(f_n(D))$ is convergent to its kernel $f_0(D)$ w.r.t. the origin. Suppose that $L(f_0) > L_0$ and take λ such that $L_0/L(f_0) < \lambda < 1$. Then for some $s_0 \in f_0(D)$ the closed disk $K(s_0, \lambda L(f_0))$ is not contained in $f_n(D)$ for sufficiently large n. However, this contradicts $f_0(D)$ to be the limit of $(f_n(D))$ in the sense of kernel convergence, cf. [14, p.31, Problem 3].

Since the classes K_n , $n \in \mathbb{N}$, and K are compact, there exist in view of Theorem 3.1, the functions $F_n \in K_n$, $F_0 \in K$, such that

(3.1) $L(F_n) = \inf \{ L(F) : F \in K_n \}, n \ge 2,$

(3.2)
$$L(F_0) = U(\hat{K}) = \lim_{n \to \infty} L(F_n)$$
.

Theorem 3.2. If n > 3 then

$$L(F_n) = \inf \{ L(F) : F \in K_3 \}$$

Proof. Suppose that the gl.b. (3.1) is attained for F mapping D onto a circular polygon Ω_n with n sides, n > 3, situated on circles intersecting each other at -w. There exists a disk $K_0 \subset \Omega_n$ of radius L(F) tangent to Ω_n at the points Q_k . The position of K_0 is determined either by two or by three points Q_k situated on different sides of Ω_n . The first possibility corresponds to Q_k being the end points of a diameter of K_0 , the second one means that three points Q_k can be chosen so as to devide ∂K_0 into three subarcs each having angular measure less than π . Since n > 3, at least one aide \tilde{L} of Ω_n does not contain any just chosen Q_k and therefore it is possible to shift \tilde{L} outside of Ω_n so that it takes the position \tilde{L}_1 on a circle through -w and the resulting circular polygon Ω_n will have the inner radius $R(0; \Omega_n) > 1$, while the radii $\rho(\Omega_n)$, $\rho(\Omega_n)$ of inscribed circles are equal. If F maps D conformally onto Ω_n , $\tilde{F}_n(0) = 0$, then $G = \tilde{F}/R(0; \tilde{\Omega}_n)$ belongs to K_n and maps D onto Ω'_n , while

$$L(G) = \rho(\Omega'_n) < L(F) = \rho(\Omega_n) = \rho(\Omega_n) = L(F)$$

which is a contradiction.

4. Some lemmas.

Lemma 4.1. Let $\psi(z) = \Gamma'(z)/\Gamma(z)$ where Γ is the gamma-Euler's function. Then

(4.1)
$$d(x) = \psi(x) + \frac{\pi}{2} \operatorname{ctg} x \frac{\pi}{2} - \frac{1}{2} \log x (1-x)$$

is decreasing function in $x \in (0; 1/2)$.

Proof. From the well known formulae :

(4.2)
$$\psi(x) = -\gamma + \sum_{n=0}^{\infty} \left[(n+1)^{-1} - (n+x)^{-1} \right];$$
$$\pi^{2} (\sin x\pi)^{-2} = \sum_{n=-\infty}^{+\infty} (n-x)^{-2}, \quad (x \neq n)$$

we obtain

(4.3)
$$d'(x) = \left(\frac{\pi}{2}\right)^2 \cos^{-2} x \frac{\pi}{2} - \sum_{n=1}^{\infty} (n-x)^{-2} - \frac{1}{2} (1-2x) [x(1-x)]^{-1}$$

and therefore it is sufficient to show that for 0 < x < 1/2

(4.4)
$$\left(\frac{\pi}{2}\right)^2 \cos^{-2} x \frac{\pi}{2} < \sum_{n=1}^{\infty} (n-x)^{-2} + \frac{1}{2}(1-2x)[x(1-x)]^{-1}$$

Let us denote by L(x), P(x) the left and right hand side of (4.4) resp. The functions L, P are convex on the interval (0; 1/2) and L(1/2) = P(1/2),

 $L'(1/2) = \frac{1}{2} > 15.5$, P'(1/2) < 12.96. Besides, L increases in (0; 1/2) while P is decreasing in $(0; x_0)$, $0.3 < x_0 < 0.31$ and then increasing in $(x_0; 1/2)$. Since L(0.3) = 3.1079, P(0.3) > 3.7059, inequality (4.4) holds in (0; 0.3).

Let $x_1 = 0.3$, $x_2 = 0.4$, $x_3 = 0.44$, $x_4 = 0.5$, $I_k = [x_k; x_{k+1}]$, k = 1, 2, 3. On each interval I_k it is possible to find a linear function $y_k(x)$ such that $L(x) < y_k(x) \le P(x)$, $x \in I_k$, k = 1, 2, 3. We omit the details.

Lemma 4.2. The function

$$l(x) = \psi(x) - \psi(2x) + \pi/2\sin x\pi + \frac{1}{2}\log \frac{2(1-2x)}{1-x}$$

decreases on (0; 1/2) and l(1/3) = 0.

Proof. From the well known identity : $\psi(x) - \psi(1-x) = -\pi \operatorname{ctg} x\pi$ as well as from (4.2) it follows that

(4.5)
$$l(x) = -\pi \operatorname{ctg} x \pi + \pi/2 \sin x \pi + (1 - 3x) [(2x(1 - x))^{-1} + \sum_{n=1}^{\infty} (2x + n)^{-1} (1 - x + n)^{-1}] + \frac{1}{2} \log \frac{2(1 - 2x)}{1 - x}.$$

Hence l(1/3) = 0. Besides,

$$l'(x) = -\pi^{2} \sin^{-2} x\pi - \frac{\pi^{2}}{2} \cos x\pi \sin^{-2} x\pi - \frac{1}{2}x^{-2} + (1-x)^{-2} - \sum_{n=1}^{\infty} [2(2x+n)^{-2} + (1-x+n)^{-2}] - \frac{1}{2}(1-2x)^{-1}(1-x)^{-1}$$

1

For any $n \in \mathbb{N}$ the function : $z \mapsto 2(2z+n)^{-2} + (1-z+n)^{-2}$ is decreasing on [0; 1/2] so that

$$\sum_{n=1}^{\infty} 2(2x+n)^{-2} + (1-x+n)^{-2} \ge 2(2x+1)^{-2} + (2-x)^{-2} + \sum_{n=2}^{\infty} \left[2(1+n)^{-2} + (\frac{1}{2}+n)^{-2} \right].$$

Hence, using the identities : $\sum_{n=1}^{\infty} n^{-2} = \frac{\pi^2}{6}$; $\sum_{n=1}^{\infty} 4(1+2n)^{-2} = \frac{\pi^2}{3}$ we obtain inequality

$$(4.6) l'(x) \le h_1(x) - h_2(x)$$

where

$$h_1(x) = \left(\frac{\pi}{2}\right)^2 \cos^{-2} x \frac{\pi}{2} + \frac{\pi^2}{2} \left(\sin^{-2} x \pi - (x \pi)^{-3}\right) - 2(1+2x)^{-2}$$

$$h_2(x) = (1-x)^{-2} + \frac{1}{2}(1-2x)^{-1}(1-x)^{-1} + (2-x)^{-2} + \delta,$$

$$\delta = (5/6)\pi^2 - 125/18.$$

The functions h_1, h_2 are increasing on [0; 1/2] and $h_1(t_k) < h_2(t_{k-1})$ on a sequence $(t_k), k = 0, 1, ..., 8, t_k = 0; 0.1; 0.15; 0.2; 0.25; 0.3; 0.33; 0.4; 0.5$. From (4.6) the function l(x) is decreasing on (0; 1/2).

Let G be a simply connected domain of hiperbolic type in C. Let $w_0 \in G$ and f is a conformal mapping of the unit disk D onto G, $f(0) = w_0$. Then $R(w_0; G) = |f'(0)|$.

Let $z_0 \in H := \{z \in \mathbb{C} : \text{Im } z > 0\}$ and let the function h maps the upper half-plane H onto G, $h(z_0) = w_0$. Then the homography : $\varsigma \mapsto (z_0 - \overline{z}_0\varsigma)/(1-\varsigma)$ maps the unit disk D onto $H : 0 \longrightarrow z_0$. Hence

(4.7)
$$R(w_0; G) = 2 \operatorname{Im} z_0 | h'(z_0) |$$

The function

4.8)
$$h(z) = \int_{0}^{z} u^{\alpha-1} (1-u)^{\beta-1} du$$

maps conformally the upper half-plane H onto the triangle T of internal angles $\alpha \pi$, $\beta \pi$, $\gamma \pi$, $\alpha + \beta + \gamma = 1$. From (4.7), (4.8) we have

(4.9)
$$R(w;T) = \frac{2y}{[(x^2 + y^2)^{1-\alpha}((1-x)^2 + y^2)^{1-\beta}]^{1/2}}$$

where w = h(z), $z = x + iy \in H$. Besides, $B(\alpha, \beta) = \int_{0}^{z} u^{\alpha-1} (1-u)^{\beta-1} du$ is the beta-Euler's function, while

(4.10)
$$\rho(\tilde{T}) = \frac{\sin \alpha \frac{\pi}{2} \sin \beta \frac{\pi}{2}}{\sin(\alpha + \beta) \frac{\pi}{2}} B(\alpha, \beta)$$

is the radius of the disk inscribed in the triangle \overline{T} . We will consider the right hand aide of (4.10) as a function defined on $I^2 = (0; 1/2) \times (0; 1/2)$.

Lemma 4.3. Let $\Phi(x, y, \alpha, \beta) = R(w; \overline{T})/\rho(\overline{T})$ where $R(w; \overline{T}), \rho(\overline{T})$ are given by (4.9), (4.10) resp. Hence the function $\Phi(x, y, \alpha, \beta)$ doesn't have critical points on $H \times (\mathbf{I}^2 \setminus (1/3; 1/3)).$

Proof. Suppose that (x, y, α, β) is a critical point of Φ . Then it satisfies the system of equations :

(4.11)
$$\begin{cases} y^{-1} - (1-\alpha)y/(x^2+y^2) - (1-\beta)y/[(1-x)^2+y^2] = 0\\ -(1-\alpha)x/(x^2+y^2) + (1-\beta)(1-x)/[(1-x)^2+y^2] = 0 \end{cases}$$

(4.12)
$$\begin{cases} \frac{1}{2}\log(x^2+y^2) - \frac{\pi}{2}(\operatorname{ctg}\alpha\frac{\pi}{2} - \operatorname{ctg}(\alpha+\beta)\frac{\pi}{2}) - \psi(\alpha) + \psi(\alpha+\beta) = 0\\ \frac{1}{2}\log((1-x)^2+y^2) - \frac{\pi}{2}(\operatorname{ctg}\beta\frac{\pi}{2} - \operatorname{ctg}(\alpha+\beta)\frac{\pi}{2}) - \psi(\beta) + \psi(\alpha+\beta) = 0 \end{cases}$$

where $\psi(x) = \Gamma'(x)/\Gamma(x)$.

The only solution of (4.11) is the pair (x_0, y_0) where

(4.13)
$$z_0 = \alpha/(\alpha + \beta)$$
; $y_0 = \sqrt{\alpha\beta}/[(\alpha + \beta)\sqrt{1 - \alpha - \beta}]$

Putting (4.13) into (4.12) we get (4.14)

$$\frac{1}{2}\log\frac{\alpha(1-\alpha)}{(\alpha+\beta)(1-\alpha-\beta)} - \psi(\alpha) + \psi(\alpha+\beta) - \frac{\pi}{2}\left(\operatorname{ctg}\alpha\frac{\pi}{2} - \operatorname{ctg}(\alpha+\beta)\frac{\pi}{2}\right) = 0$$

$$\frac{1}{2}\log\frac{\beta(1-\beta)}{(\alpha+\beta)(1-\alpha-\beta)} - \psi(\beta) + \psi(\alpha+\beta) - \frac{\pi}{2}\left(\operatorname{ctg}\beta\frac{\pi}{2} - \operatorname{ctg}(\alpha+\beta)\frac{\pi}{2}\right) = 0$$

Subtracting the both sides of (4.14) we get

$$(4.15) d(\alpha) - d(\beta) = 0$$

where d is the function of Lemma 4.1. Since d is decreasing (4.15) may has the solution only if $\alpha = \beta$. Putting $\alpha = \beta$ into one of the equation of (4.14) we obtain the equation

$$(4.16) l(\alpha) = 0$$

According to Lemma 4.2 equation (4.16) has the only solution $\alpha = 1/3$ so that the pair (1/3; 1/3) is the only solution of (4.14). This implies the conclusion of Lemma 4.3.

Lemma 4.4. Suppose that $P = \{\varsigma \in \mathbb{C} : |\text{Im } \varsigma| < \frac{\pi}{4}\}, \tau_{iv}(\varsigma) = iv\varsigma/(iv - \varsigma), v > \pi/4, \Omega = \tau_{iv}(P)$. Then for any $r \in \Omega$

$$(4.17) R(\tau; \Omega) \leq R_{\max}$$

where

(4.18)
$$R_{\max} = \frac{4y^2}{1-y^4} \sigma^2$$

and y = y(v) is the unique solution of the equation

$$(4.19) \qquad \qquad \frac{1}{2}(y^{-1} - y) + \tan^{-1}y = t$$

contained in the interval (0; 1).

Proof. If $f(z) = \frac{1}{2} \log \frac{1+z}{1-z}$ then P = f(D), $\Omega = F(D)$ with $F = \tau_{iv} \circ f$ and $R(\tau; \Omega) = (1 - |z|^2)|F'(z)|$, where $\tau = F(z)$. Suppose $t + is = \varsigma \in P$, $|s| < \frac{\pi}{4}$. Then for any $\tau \in \Omega$

(4.20)
$$R(\tau;\Omega) = \frac{v^2 \cos 2s}{t^2 + (v-s)^2} \le \frac{v^2 \cos 2s}{(v-s)^2} = R(\tau_1;\Omega) .$$

Thus for \bullet fixed $R(\tau; \Omega)$ attains its maximum at $\tau_1 = \tau_{iv}(is)$.

The function f maps the unit disk D onto the strip P such that $\varsigma = is$, $|s| < \pi/4$ corresponds to z = iy, |y| < 1. Hence $\varsigma = \frac{1}{2} \log \frac{1+iy}{1+iy} = i \tan^{-1} y$ and

(4.21)
$$R(\tau_1;\Omega) = \frac{1-y^2}{1+y^2} \left(1-\frac{1}{y}\tan^{-1}y\right)^{-2}.$$

The right hand side of (4.21) attains its maximum if y = y(v) is the unique root of the equation (4.19) contained in the interval (0; 1). Inequality in (4.20) as well as (4.21) and (4.19) gives (4.17) and (4.18). The proof is complete.

Lemma 4.5. Suppose that the triangle $T = T(\alpha_0, \beta_0)$ containing the origin, with internal angles $\alpha_0 \pi$, $\beta_0 \pi$, $\gamma_0 \pi$, $\alpha_0 + \beta_0 + \gamma_0 = 1$, has its inner radius R(0,T) = 1. Let $K = K(\varsigma_0, r)$ be the disk inscribed in T. Then there exists the triangle $T' = T'(\alpha, \beta)$ with the same disk K inscribed in T' such that R(0,T') > 1.

Proof. The function h given by (4.8) maps the upper half-plane H onto the triangle $T = T(\alpha, \beta)$ similar to $T'(\alpha, \beta)$. Let $\rho(T)$ be the radius of the disk inscribed in \tilde{T} . Then for some $w_0 \in T$ and for some η , $|\eta| = 1$ the mapping: $w \mapsto \eta r(w - w_0)/\rho(\tilde{T})$ transforms the triangle \tilde{T} onto T' such that $w_0 \longrightarrow 0$. Hence,

 $R(0;T') = rR(w_0;T)/\rho(T) = r\Phi(x,y,\alpha,\beta)$ where Φ is the function of Lemma 4.3. Case (i) $(\alpha_0,\beta_0) \neq (1/3,1/3)$. If $R(0;T') \leq 1$ for any admissible triangle T' then

 Φ would have a critical point contrary to the conclusion of Lemma 4.3. Case (ii) $\alpha_0 = \beta_0 = 1/3$. Then it easily follows that the only critical point of Φ

case (ii) $a_0 = p_0 = 1/3$. Then it easily follows that the only critical point of corresponds to the minimum of Φ .

5. Main results.

Theorem 5.1. $\inf\{L(F) : F \in K_3\} = \inf\{L(F) : F \in K_2\}.$

Proof. Suppose that the g.l.b. of L(F) is attained for F which maps D onto the circular triangle Ω_3 with three sides situated on circles intersecting each other at

165

the point -w. There exists a disk \tilde{K} of radius L(F) tangent to $\partial \Omega_{0}$ at two or three points.

If the position of K is determined by two points situated on two different sides, then - similarly like in the proof of Theorem 3.2 we may shift the third free side outside of Ω_3 so that it takes the position on a circle through -w and the resulting circular triangle $\tilde{\Omega}_3$ will have the inner radius $R(0; \tilde{\Omega}_3) > 1$, while $\rho(\tilde{\Omega}_3) = \rho(\Omega_3)$. Consequently, there is a function $G \in \hat{K}_3$ such that L(G) < L(F) contrary to that Fgives the gl.b. of L(F), $F \in \hat{K}_3$.

Suppose now, that the position of K is determined by three points Q_k . This means that the circle ∂K is devided by these Q_k onto three subarcs each having angular measure less than π . Besides, there exists the function $f \in K_3$ which maps **D** onto the triangle $T = f(\mathbf{D})$ and the point $w \in \mathbf{C} \setminus T$, such that $F(\mathbf{D}) = \Omega_3$, $F = \tau_w \circ f$.

The disk \mathcal{K} is the image of the disk $\mathcal{K} = \{\varsigma : |\varsigma - \varsigma_0| < r\} \subset T$ by the mapping $\tau_w(\varsigma) = w\varsigma/(w-\varsigma)$ and therefore the radius of the disk \mathcal{K} is equal to $L(F) = r|w|^2/(|w-\varsigma_0|^2 - r^2)$. From Lemma 4.5 it follows that there exists the triangle T' with the same disk \mathcal{K} inscribed in T' and conformal mapping \tilde{f} which maps D onto T', such that $\tilde{f}(0) = 0$, $\tilde{f}'(0) = R(0;T') > 1$.

Let $G = r_{\omega} \circ f$. Then L(f) = r and

$$(5.1) L(G) = L(F) .$$

If $f_1 = f/f'(0)$, $F_1 = \tau_{w} \circ f_1$ then $f_1 \in K_3$, $F_1 \in K_3$. Besides, $f_1(\mathbf{D}) \subset T'$ and therefore $L(F_1) < L(\tilde{G})$. From (5.1) $L(F_1) < L(F)$. The proof is complete.

From the Theorems : 3.1, 5.1 it follows that the g.l.b. of L(F) on K is attained by $F \in K_2$. It is very easy to see that the extremal image domain $\Omega_2 = F(D)$ can't have an internal angles greater than zero.

Let

$$(5.2) F = \tau_{\psi} \circ f$$

where

$$g = f(z) = \frac{1}{2} \log \frac{1+z}{1-z}$$
, $w = u + iv$, $|v| > \frac{\pi}{4}$.

The homography $\tau_w(\varsigma) = w\varsigma/(w-\varsigma)$ maps then any stright line : $\varsigma = z + iy_0$, y_0 being fixed, $y_0 \neq v$ onto a circle through -w with the diameter $2r = \max |\tau_w(z+iy_0) + w|$.

Since the boundary of $f(\mathbf{D})$ consists of two lines: $l_1: \varsigma = x + i\frac{\pi}{4}; l_2: \varsigma = x - i\frac{\pi}{4}, -\infty < x < +\infty, \tau_w(l_1 \cup l_2)$ consists of two circles with the diameters $2r_1 = |w|^2/|v - \pi/4|, 2r_2 = |w|^2/|v + \pi/4|$ resp. Hence, the radius of the disk inscribed in Ω_2 is $\rho(\Omega_2) = \frac{\pi}{4} |w|^2/(v^2 - (\frac{\pi}{4})^2)$. For fixed $v = \operatorname{Im} w$,

(5.3)
$$\rho_{\min}(\Omega_2) = \frac{\pi}{4} v^2 / (v^2 - (\frac{\pi}{4})^2) .$$

Theorem 5.2. $\inf\{L(F), F \in K_2\} = \frac{\pi}{4}$.

Proof. Since K_2 is linearly invariant we shall consider the g.l.b. of L(G) for all

(5.4)
$$G(z) = (F \circ \omega(z) - \tau_0)/R(\tau_0; \Omega_2),$$

where $\omega(z) = (z + z_0)/(1 + z_0 z)$, $z_0 \in D$, $\tau_0 = F(z_0)$ while F is given by (5.2).

For any function (5.4) inequality (4.17) of Lemma 4.4 gives $L(G) \ge \rho_{\min}(\Omega_2)/R_{\max}$ where $\rho_{\min}(\Omega_2)$, R_{\max} are given by (5.3), (4.18) resp. Hence, we will have to show that

$$(5.5) \qquad \qquad \rho_{\min}(\Omega_2)/R_{\max} > \frac{\pi}{4} .$$

Taking into account (4.19) as well as (5.3) we obtain inequality

(5.6)
$$(1-y^2+2y\tan^{-1}y)^2 < 1-y^4+y^2(\frac{x}{2})^2$$
, $0 < y < 1$.

An elementary real analysis technique shows the truth of (5.6).

The left hand aide of (5.5) can be as close to $\pi/4$ as we want, so that $\pi/4$ is indeed the g.l.b. of $L(F), F \in K_2$.

The extremal function $F = r_w \circ f$ corresponds to $w = \infty$ so that $F \equiv f \in K$ and therefore $L(K) = LK_2 = L(K)$.

Hence $f(s) = \frac{1}{2} \log \frac{1}{2}$ and its rotations are the only extremal functions.

6. Univalence criteria. The Bloch-Landau constant within the class K is connected with some geometric aspect of univalence criteria introduced by Krzyż [11]. A domain Ω in the finite plane C is called a univalence domain (for short : a U-domain) if the inclusion : $\{\log g'(z) : z \in D\} \subset \Omega$ for $g \in X(D)$ and some branch of $\log g'$ implies the univalence of g in D. Each U-domain corresponds to a particular criterion of univalence. For example, the strip $\{\varsigma : |\text{Im } \varsigma| < \pi/2\}$ corresponds to Noshiro-Warshawaki univalence criterion [7, p.47].

We will use the following results in further considerations

Theorem B [4]. Suppose that $g \in X(D)$, $g'(0) \neq 0$. If

(6.1)
$$(1-|z|^2) \frac{|g''(z)|}{|g'(z)|} \leq 1 \quad (z \in \mathbb{D}),$$

then g is univalent in D.

Theorem K [11]. Suppose $\varphi \in \mathbb{X}(D)$ and the values of φ are contained in a domain Ω possessing a generalized Green's function. Then for any $z \in D$

$$(6.2) \qquad (1-|z|^2)|\varphi'(z)| \leq R(\varphi(z);\Omega)$$

The sign of equality at some point $z_0 \in \mathbf{D}$ holds only for the univalent function φ and for \bullet simply connected domain $\Omega = \varphi(\mathbf{D})$

Theorem 6.1. Suppose $F \in \hat{K}$, $L(F) = \mu_4^{\mathbb{Z}}$, $1 \le \mu < \infty$. Let moreover for $0 < \lambda < \mu^{-1}$, $\tilde{f} := \lambda F$ and

 $(6.3) \qquad \qquad \Omega = \dot{f}(\mathbf{D}) \; .$

Then

$$(6.4) R(w; \Omega) \leq 1 (w \in \Omega)$$

Proof. Suppose, contrary to (6.4) that $R(w_0; \Omega) > 1$ for particular $w_0 \in \Omega$. Then $G(z) = (F \circ \omega(z) - w_0)/R(w_0; F(D)) \in K$, where $\omega(z) = (z + z_0)/(1 + z_0 z)$, $z_0 \in D$, $F(z_0) = w_0$. Hence

$$L(G) = L(F)/R(\boldsymbol{w}_0; F(\mathbf{D})) = L(f)/R(\boldsymbol{w}_0; \Omega) < \pi/4$$

which gives a contradiction.

Inequality (6.4) as well as Theorem K allow us to apply Theorem B to the function $g \in \mathcal{N}(D)$ such that $\{\log g'(z) : z \in D\} \subset \Omega$.

Hence we get

Theorem 6.2. The domain $\Omega = f(D)$ given by (6.3) is a U-domain.

In particular, if $f(z) = \frac{1}{2} \log \frac{1+z}{1+z}$ and $F = r_{iv} \circ f \in K$, then

$$L(F) = \rho(\Omega_2) = \frac{\pi}{2} v^2 / (v^2 - (\pi/4)^2) .$$

If we take $0 < \lambda < 1 - (\pi/4v)^2$ then $f = \lambda F$ yields a *U*-domain $\Omega = f(\mathbf{D})$. Moreover, if $|v| > 3\pi/4$ then Ω is not contained in the strip of width π so that Theorem 6.2 gives a criterion of univalence which does not follow from the Noshiro-Warahawski Theorem.

REFERENCES

- [1] Ablfors, L.V., An estension of Schwarz's Lemma, Trans. Amer. Math. Soc., 43 (1938), 359-364.
 - [2] Ahlfors, L.V., Grunsky, H., Über die Blachsche Konstante, Math. Z., 42 (1937), 671-673.
- [3] Barnard, R.W., Schober, G., Möbrus transforms of convex mappings, Complex Variables, 3, 1-3 (1984), 55-69.
- [4] Becker, J., Löunersche Differentialgleichung und quankonform fortsetzbare schlichte Punktionen, J. Raine Anguw. Math. 255 (1972), 23-43.
- [5] Beller, E., Hummel, J.A., On the univalent Bloch constant, Complex Variables, 4(3), (1985), 243-252.
- [6] Bloch, A., Les théorèmes de M. Valiron sur les fonctions entières et la treorie de l'aniformisation, Ann. de Toulouse, 3s., 17 (1925), 1-22.
- [7] Duren, P.L., Univalent Functions, Springer-Verlag, New-York, 1983.

1

- [8] Goodman, R.E., On the Bloch-Landau constant for Schlicht functions, Bull. Amer. Math. Soc. 51 (1945), 234-239.
- [9] Hall, R.R., On a conjecture of Clunie and Sheil-Small, Bull. London Math. Soc. 12 (1980), 25-28.
- [10] Heins, M.H., A class of conformal metrics, Bull Amer. Math. Soc., 67 (1961), 475-478.

- [11] KIIYI, J.G., John's criterion of univalence and a problem of Robertson, Complex Variables, 3 (1984), 173-183.
- [12] Landau, E., Über die Blochsche Konstante und swei verwandte Weltkonstanten, Math. Z. 30 (1929), 608-634.
- [13] Pommerenke, Ch., On Bloch functions, J. London Math. Soc., 2 (2) (1970), 689-695.
- [14] Pommerenke, Ch., Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
- [15] Pommerenke, Ch., Linear-invariante Familien analytischen Panktionen I, Math. Annalen, 155 (1964), 108-154.
- [16] Robinson, R. M., The Bloch constant A for a schlicht functions, Bull. Ame.. Math. Soc. 41 (1935), 535-540.

STRESZCZENIE

Niech S oznacza klasę funkcji holomorficznych i jednolistnych w kole jednostkowym. $\mathbf{D} = \{z \in \mathbf{C} : |z| < 1\}$ i tylach, że f(0) = f'(0) - 1 = 0.

Niech $K \subset S$ będzie podklasą tych funkcji $f \in S$, dla których zbiór f(D) jest wypukły.

Dia dowolnej liczby $w \in \hat{\mathbb{C}} \setminus f(\mathbb{D})$ niech $F_f = \bigcup \tau_w \circ f$, gdzie $\tau_w(\varsigma) = w \varsigma / (w - \varsigma)$, oraz

 $\hat{K} = \bigcup_{f \in K} F_f.$

Barnard i Schober postawili problem badania tych własności klasy K, które dziedziczone są od klasy K. Wykażemy, że klasa \hat{K} jest liniowo niezmiennicza w sensie Pommerenke, oraz że stała Blocha-Landaua zarówno w klasie \hat{K} jak i w klasie K jest równa $\pi/4$.

