LUBLIN-POLONIA

Depertment of Mathematics

Paiscii Hilendarsla University, Plovdiv

P.G.TODOROV

On the Coefficients of Certain Classes of Analytic Functions
O wspótezynnikach pewnych kas funkcji analitycznych

Abstract

In this paper wolve cortain problers for the coefficients of $N_{1,2}(a)$ dasses of Novanlinna analytic functions, $S_{1,2}(C)$ classes of Schwarz analytic functions and P dass of annlytic function with positive roal part in $|z|<1$.

1. Let $N_{1}(a)$ denote the class of Nevanlinna analytic functions

$$
\begin{equation*}
f(z)=\int_{a}^{1} \frac{d \mu(t)}{z-t}=\sum_{k=1}^{\infty} \frac{c_{k}(a)}{z^{k}}, \quad z \notin\{z \mid a \leq z \leq 1\} \tag{1}
\end{equation*}
$$

where a is a fixed real number $(-1 \leq a<1), \mu(l)$ is a probability measure on $[a, 1]$ and

$$
\begin{equation*}
c_{k}(c)=\int_{a}^{1} t^{k-1} d \mu(l), \quad k=1,2, \ldots \quad\left(e_{1}(a)=1\right) \tag{2}
\end{equation*}
$$

Let $N_{2}(a)$ denote the class of associated analytic functions

$$
\begin{equation*}
\varphi(z) \equiv f\left(\frac{1}{z}\right) \equiv \int_{0}^{1} \frac{z d \mu(t)}{1-t z}=\sum_{k=1}^{\infty} c_{k}(a) z^{k} \tag{3}
\end{equation*}
$$

in the z-plane with the cats $1 \leq z \leq+\infty$ and $-\infty \leq z \leq 1 / a$ for $-1 \leq a<0$, $1 \leq z \leq+\infty$ for $a=0$ and $1 \leq s \leq 1 / \in$ for $0<\sigma<1$, where the coefficients $c_{k}(a)$ are given by (2). The classes $N_{1,2}(a)$ were introduced in [1] - [3]. Certain properties of the special classes of Nevanlinna analytic functions N_{1} 포 $N_{1}(-1), N_{2} \equiv N_{2}(-1)$ and cotally monotonic functions $T \equiv N_{2}(0)$ were examined in [4]-[6] and [7], respectively: For example, in [1] it was noted that the functions (1) and (3) are univalent for $|z|>1$ and $|z|<1$, respectively. Now we shall solve certain problems for the coefficients (2). Farther we shall indicate the class $N_{2}(\mathrm{c})$ only.

Theorem 1. For fired a $(-1 \leq a<1)$, the coefficients (2) satisfy the sharp inequalities

$$
\begin{equation*}
\left|e_{k}(a)\right| \leq 1, \quad k=2,3, \ldots, \tag{4}
\end{equation*}
$$

where the equality holds only for the rational function

$$
\begin{equation*}
\varphi(z)=\frac{z}{1-z}=\sum_{k=1}^{\infty} z^{k} \in N_{2}(a), \tag{5}
\end{equation*}
$$

as well as for the rational function

$$
\begin{equation*}
\varphi(z)=\frac{z}{1+z}=\sum_{k=1}^{\infty}(-1)^{k-1} z^{k} \in N_{2}(-1) \tag{6}
\end{equation*}
$$

if $a=-1$, and for the rational functions

$$
\begin{align*}
\varphi(z)= & \frac{A_{1} z}{1+z}+\frac{A_{2} z}{1-z}=\sum_{k=1}^{\infty}\left((-1)^{k-1} A_{1}+A_{2}\right) z^{k} \in N_{2}(-1), \tag{7}\\
& A_{1,2}>0, A_{1}+A_{2}=1
\end{align*}
$$

if $a=-1$ and $k-1$ is an even number.
Proof. For $-1 \leq c<1$ and $k=2,3, \ldots$ from (2) it is obvious that

$$
\begin{equation*}
\left|c_{k}(a)\right|=\left|\int_{0}^{1} t^{k-1} d \mu(t)\right| \leq \int_{0}^{1} d \mu(t)=1 \tag{8}
\end{equation*}
$$

where the equality holds if and only if $\mu(l)$ is a step-function with one jump 1 at the point $t=1$, and if $a=-1$ with one jump 1 at the point $t=-1$, and if $a=-1$ and $k-1$ is an even number with two jumps $A_{1,2}>0$ with sum 1 at the points $t=-1$ and $t=1$, reapectively. Thus from (8) and the representation formula (3) we obtain the sharp inequalities (4) and the corrcaponding extremal functions (5) - (7).

Theorem 2. Let $:(-1 \leq a<1)$ be fired and $m-1 \quad(m=2,3, \ldots)$ be a divisu: of $n-1 \quad(n=3,4, \ldots)$, where $m<n$. Then the coefficients (2) satisfy the sharp inequalities

$$
\begin{equation*}
1-c_{n}(a) \leq \frac{n-1}{m-1}\left(1-c_{m}(a)\right) . \tag{9}
\end{equation*}
$$

where the equality holds only for the function (5) and, if a $x-1$ and $m-1$ is an even number, for the functions (6) and (7) as well

Corollary . In particular, for $m=2$, the sharp inequalities

$$
\begin{equation*}
1-c_{n}(c) \leq(n-1)\left(1-c_{9}(c)\right), \quad n=3,4, \cdots \tag{10}
\end{equation*}
$$

hold, where the equatity holds only for the function (5).
Proof. Under the conditions of Theorem 2 let as set

$$
\begin{equation*}
n-1=(m-1) g \quad(g=2,3, \ldots) \tag{11}
\end{equation*}
$$

In addition, by aid of (2) we obtain the identity

$$
\begin{equation*}
(m-1)\left(1-c_{n}(a)\right)-(n-1)\left(1-c_{m}(a)\right)=\int_{a}^{1} G(c) d p(l) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
G(t) \equiv(m-1)\left(1-t^{n-1}\right)-(n-1)\left(1-t^{m-1}\right) . \tag{13}
\end{equation*}
$$

Now from (11) and (13) it follows that

$$
\begin{equation*}
G(l)=(m-1)\left(1-8^{m-1}\right)\left(1+8^{m-1}+\cdots+8^{(m-1)(q-1)}-q\right) \leq 0 \tag{14}
\end{equation*}
$$

for $\epsilon \leq \ell \leq 1$ where the equality holds only for $t=1$ and, if $c=-1$ and $m-1$ is an even number, for $t=-1$ as well. Thus from (14) we conclude that the right-hand side of (12) is nonpositive and it is equal to zero if and only if $\beta(l)$ is a step-function with one jump 1 at the point $\ell=1$ and if $s=-1$ and $m-1$ is an even number with two jumps $A_{1,2} \geq 0$ with sum 1 at the points $t=-1$ and $t=1$, respectively. Therefore, from (12) and the representation formula (3) we obtain the sharp inequalities (9) and (10) and the unique extremal functions (5), (6) and (7), respectively.

2. Let $S_{1}(C)$ denote the class of Schwerz analytic functions

$$
\begin{equation*}
f(z)=\int_{0}^{2 \pi} \frac{d \mu(t)}{z-e^{i t}}=\sum_{k=1}^{\infty} \frac{c_{k}}{z^{k}},|z|>1, \tag{15}
\end{equation*}
$$

where $\mu(l)$ is a probability measure on $[0,2 \pi]$ and

$$
\begin{equation*}
c_{k}=\int_{0}^{2 \pi} e^{i(k-1) t} d \mu(l), \quad k=1,2, \ldots \quad\left(e_{s}=1\right) . \tag{16}
\end{equation*}
$$

Let $S_{7}(C)$ denote the class of associated analytic functions

$$
\begin{equation*}
p(z) \equiv f\left(\frac{1}{z}\right)=\int_{0}^{2 r} \frac{z d \mu(t)}{1-z e^{i t}}=\sum_{k=1}^{\infty} c_{k} z^{k}, \quad|z|<1, \tag{17}
\end{equation*}
$$

where the coefficients c_{k} are given by (16). Certain geometric characteristics of the clases $S_{1,2}(C)$ were examined in [8]-[13], where, in particular, it was noted that the functions (15) and (17) are univalent and starlike for $|z| \geq \sqrt{2}$ and $|z| \leq 1 / \sqrt{2}$,
respectively. Now we shall solve analogous problems for the coefficients (16). Further, we shall indicate the class $S_{2}(O)$ only.

Theorem 3. The n-th coefficient (16) satisfies the sharp inequality.

$$
\begin{equation*}
\left|e_{n}\right| \leq 1 \quad(n=2,3, \ldots), \tag{18}
\end{equation*}
$$

where the equality holds only for the rational functions of the form

$$
\begin{align*}
\varphi(z) & =\sum_{\nu=0}^{n-2} \frac{z A_{\nu}}{1-z \exp i\left(\alpha+\frac{2 \nu \pi}{n-1}\right)}= \tag{19}\\
& =\sum_{k=1}^{\infty} z^{k} \sum_{\nu=0}^{n-2} A_{\nu} \exp i(k-1)\left(\alpha+\frac{2 \nu \pi}{n-1}\right) \in S_{2}(C)
\end{align*}
$$

for some real α and $A_{0} \geq 0, \ldots, A_{n-2} \geq 0$ with $A_{0}+\cdots+A_{n-2}=1$.
Proof. From (16) it is obvious that

$$
\begin{equation*}
\left|c_{n}\right|=\left|\int_{0}^{2 \pi} e^{i(n-1) t} d \mu(l)\right| \leq \int_{0}^{2 \pi} d \mu(l)=1 \quad(n \geq 2), \tag{20}
\end{equation*}
$$

where the equality holds if and only if $\mu(l)$ is a step-function with n jumps $A_{\nu} \geq 0$ with sum 1 at the points of the form $\alpha+2 \nu \pi /(n-1)$ for some real α. Thus from (20) and the representation formula (17) we obtain the sharp inequality (18) and the onique extremal functions (19).

Theorem 4. Let $m-1 \quad(m=2,3, \ldots)$ be a divisor of $n-1 \quad(n=3,4, \ldots)$, where $m<n$. Then the $n-t h$ and the $m-t h$ coefficients (16) satisfy the sharp inequality

$$
\begin{equation*}
\operatorname{Re}\left(1-c_{n}\right) \leq\left(\frac{n-1}{m-1}\right)^{2} \operatorname{Re}\left(1-c_{m}\right) \tag{21}
\end{equation*}
$$

where the equality holds only for the rational functions of the form

$$
\begin{align*}
\varphi(z) & =\sum_{\nu=0}^{m-2} \frac{z A_{\nu}}{1-z \exp \frac{3 \nu \pi i}{m-i}}= \tag{22}\\
& =\sum_{k=1}^{\infty} z^{k} \sum_{\nu=0}^{m-2} A_{\nu} \exp \frac{2 \nu(k-1) \pi i}{m-1} \in S_{3}(C)
\end{align*}
$$

for some $A_{0} \geq 0, \ldots, A_{m-2} \geq 0$ with $A_{0}+\cdots+A_{m-2}=1$.
Corollary. In particular, for $m=2$, the sharp inequalities

$$
\begin{equation*}
\operatorname{Re}\left(1-c_{n}\right) \leq(n-1)^{2} \operatorname{Re}\left(1-e_{9}\right), \quad n=3,4, \ldots \tag{23}
\end{equation*}
$$

hold, where the equality holds only for the function (5) which belongs to the elass $S_{9}(C)$ as well.

Proof. Under the conditions of Theorem 4 we have the equation (11). In addition, by aid of (16) we obtain the identity

$$
\begin{equation*}
(m-1)^{2} \operatorname{Re}\left(1-c_{n}\right)-(n-1)^{2} \operatorname{Re}\left(1-c_{m}\right)=\int_{0}^{2 \pi} G(\imath) d \mu(t) \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
G(l) \equiv(m-1)^{2}(1-\cos (n-1) l)-(n-1)^{2}(1-\cos (m-1) l) \tag{25}
\end{equation*}
$$

Now from (11) and (25) it follows that

$$
\begin{equation*}
G(t)=2(m-1)^{2} \sin ^{2} \frac{(m-1) t}{2}\left[\left(\frac{\sin \frac{(m-1) t}{2}}{\sin \frac{(m-1) t}{2}}\right)^{2}-q^{2}\right] \leq 0 \tag{26}
\end{equation*}
$$

for $0 \leq t \leq 2 \pi$, where the equality holds only for $t=2 \nu \pi /(m-1), \nu=0,1, \ldots, m-1$. Thus from (26) we conclude that the right-hand side of (24) is nonpositive and it is equal to zero if and only if $\mu(t)$ is a step-fonction with n jumps $A_{\nu} \geq 0$ with sum 1 at the points $2 \nu \pi /(m-1), \nu=0,1, \ldots, m$. 1 . Therefore, from (24) and the representation formula (17) we obtain the sharp inequalities (21) and (23) and the unique extremal functions (22).
3. Let P denote the class of analytic functions

$$
\begin{equation*}
p(z)=\int_{0}^{2 \pi} \frac{e^{i t}+z}{e^{i l}-z} d \mu(l)=1+\sum_{k=1}^{\infty} p z^{k} \tag{27}
\end{equation*}
$$

with positive real part in the disc $|z|<1$ where $\mu(l)$ is a probability measure on $[0,2 \pi]$ and

$$
\begin{equation*}
p_{k}=2 \int_{0}^{2 \pi} e^{-i k \ell} d \mu(l), \quad k=1,2, \ldots \tag{28}
\end{equation*}
$$

The well-known characterization of the coefficients (28) that $\left|p_{k}\right| \leq 2, k=1,2, \ldots$, is given by Caratheodory (see details, for example, in [14], pp. 39-42 and in [15], Chapter 7, pp. $77-106$). Another result for the coefficients (28) in our modification is the following Ruscheweyh theorem (see in [16], Satz 4, p.22) : Let m ($n=1,2, \ldots$) be a divisor of $n(n=2,3, \ldots)$, where $m<n$. Then the $n-t h$ and the m-th coefficients (28) satisfy the sharp inequality

$$
\begin{equation*}
\operatorname{Re}\left(2-p_{n}\right) \leq\left(\frac{n}{m}\right)^{2} \operatorname{Re}\left(2-p_{m}\right) \tag{29}
\end{equation*}
$$

With the help of our method in the proof of Theorem 4 used to the equations (28) we can prove the inequality (29) simpler. In addition, by aid of the representation formula (27) we find all extremal functions for the inequality (29) namely :

$$
\begin{align*}
P(z) & =\sum_{v=0}^{m-1} A_{v} \frac{\exp \frac{2 \nu z i}{m}+z}{\exp }= \tag{30}\\
& =1+2 \sum_{k=1}^{\infty} z^{k} \sum_{v=0}^{m-1} A_{v} \exp \left(-\frac{2 \nu k \pi i}{m}\right) \in P
\end{align*}
$$

for some $A_{0} \geq 0, \ldots, A_{m-1} \geq 0$ with $A_{0}+\cdots+A_{m-1}=1$. Thas oer extremal functions (30) supplement the Ruscheweyh theorem for the class P.

REFERENCES

[1] Todosov, P. G. , Convesity and rtartikenem radii of order one-half of $\mathrm{N}_{1}(\mathrm{c})$ and N_{2} (c) claces of Naraatinne amalytic functions , C. R. Aced. Bulgare Sá., 37 (1984), No. 9, $1155-$ 1158.
[2] Todosov, P. G. , Condineation of our paper "The radil of convectity and the redis of olan likeness of onder one haly of the clagses $N_{1}(a)$ and $N_{2}(c)$ of Nevantinna analytic fenctione". Plovdiv. Univ. Navén. Trud. Mat., 22 (1854), No. 1,93-96.
[3] Todoprov, P.G. Reade, M.O. , The Koebe domoin of the claseses $N_{1}(a)$ and $N_{2}(a)$ of Nevonimne anojytic fractions, Complex Variables Theory Appl., 7(1987), 343-348.
[t] Reade, M. O. Todosov, P.G. . The reder of marikeness and converty of certans Nevarlinnd andytic functions, Proc. Amer. Math. Soc., 83 (1981), No. 2, 259-295.
[3] Todosov.P.G. The redio of elartheness and converny of order alpha of cerlam Nevandinna andigtic fanctions , J. U'niv. Kumit Sá., 14 (1987), 25-33.
[G] Todosov,P.G. , The radien of tericheness of order alpha of the Lotally monotonic fonctions, Acad. Roy. Bdg. Bull. Cl. Sa., 5^{6} atrie - Tome LXVII (1983), No. 3, 228-236.
[7] Wisthe, K.J. , Über tolalmonolone Zahlenfolgen, Anch. Math., 26 (1975), No. 3, 508-517.
[8] Reade, MO. , Todosov, P. G. , The redie of slaribleness of onder dipha of certann Schwerz andylic feactions, Plovdiv. Univ. Neutn. Trud. Mas., 21 (1983), No. 1, 87-92
[9] Todorov, P.G. . On the radiv of tartikenese of order alphe of oertan Schware anajytic fractions, C. R. Acad. Bulgare Sá., 37 (1984), No. 8, 1007-1010.
[10] Todosov, P.G. , Continmation of our paper "On the radie of starikeness of onder apphe of artain Schworz andelfic functions". Plovdiv. Univ. Naucr. Trud Mas., 22 (1984), No. 1, 87-91.
[11] Todorov, P. G. The radio of consesity of onder alpha of certain Schwarz analytic functions, Complex Variablee Theory Appl., 6 (1966). 159-170.
[12] Todoro V.P. G. , The Koebe domain of the clasper S_{1} and S_{2} of Schwarz analytic fonctione, C. R. Acad. Bulgare Sai., 39 (1986), No. ס. 19-20.
[13] Todorov, P.C. A A simple proof of the theorems for the maswal domaons of envoalence of $S_{1}(C)$ and $S_{2}(C)$ closese of Schwarz andyitc functions. C. R Acad. Bulare So.. 40 (1887), No. 10, 2-10.
[14] Pommerenke, Chr. , Univalent Punctions, Vandenhood and Ruprecht, Göttingen 1975.
[15] Goodman. A. W. , Univalent Punctions, Val. L, Mariner Publishing Company, Inc., Tampa, Ma. 1983
[16] Ruscheweyh, S. . Nichelineare Desremalpobleme fir holomorphe Stielsjesindegrake, Mhih 2, 142 (1973), 19-23.

STRESZCZENIE

W tej pracy roaviqzujemy pewne problemy dle wipotczyaników klas Nevanlinny $N_{1,2}$ (a) funkcji analitycanych, Has funkcji Schwara $S_{1,2}(C)$ i klany P funkcji o dodatniej czoda rroczywistej $-|z|<1$.

