ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

> LUBLIN-POLONIA

SECTIO A

Department of Mathernatics
 Indian Institute of Technology

S. PONNUSAMY, O.P.JUNEJA

Some Applications to Briot-Bouquet Differential Subordinations

Kilka zastorowar podporządkowania róziniczkowego Briota-Bonqueta

Abstract

Some applications of Briot-Bouquet differential subordination are obtained which improve and sharpen a number of classical results in the univalent functions theory. These also lead to sharp resules for Libera and Bernardi sransforms.

1. Introduction. Let B denote the class of functions $f(z)$ of the form $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ which are analytic in $U=\{z:|z|<1\}$. Let $S, S^{\bullet}(\beta)$ and $K(\beta) \quad(0 \leq \beta<1)$ denote the subclasses of functions in B which are respectively anivalent, starlike of order β and convex of order β in U. We denote $S^{\circ}(0) \equiv S^{\circ}$, $K^{\prime}(0) \equiv K$. For given arbitrary numbers A, B satisfying $-1 \leq B<A \leq 1$, we denote by $P(A, B)$, the class of functions of the form

$$
\begin{equation*}
p(z)=1+p_{1} z+\cdots \tag{1}
\end{equation*}
$$

which are analytic in U and satisfy the condition

$$
p(z)<\frac{1+A z}{1+B z}, \quad z \in U
$$

(Here " $<$ " stands for subordination). The class $P(A, B)$ was investigated by Janowski [10]. By $S^{\bullet}(A, B)$, we mean the class of functions $f \in \mathbb{B}$ such that $z f^{\prime}(z) / f(z) \in P(A, B)$.

Similarly, by $K(A, B)$ is meant the class of function $\delta \in B$ satisfying $\left(z f^{\prime}(z)\right)^{\prime} / f^{\prime}(z) \in P(A, B)$. It is clear that $S^{\bullet}(1-2 \beta,-1) \equiv S^{\bullet}(\beta), K(1-2 \beta,-1) \equiv$ $K(\beta),(0 \leq \beta<1)$, and that for $0<\beta<1, S^{\bullet}(\beta) \subset S^{\bullet}, K^{\circ}(\beta) \subset K$.

In [22], Ruscheweyh introduced the class K_{n} of functions $f \in \mathbb{B}$ satisfying

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}\right\}>1 / 2, \quad z \in U, \quad n \in N_{0} \equiv N \cup\{0\} \equiv\{0,1,2, \ldots\} \tag{2}
\end{equation*}
$$

where $D^{n} f(z)=\left(z /(1-z)^{n+1}\right) \cdot f(z)$. (Here - stands for the Hadamand product or convolution of two analytic functions.) In [1], A1-A miri investigated the classes
$K_{n}(a)$ of fanctions $f \in E, f(z) f^{\prime}(z) \neq 0$ in $0<|z|<1$ satisfying,

$$
\begin{equation*}
\operatorname{Re}\left\{J_{n}(f ; \alpha)\right\}>1 / 2, \quad z \in U \tag{3}
\end{equation*}
$$

for came $\alpha \geq 0$, where

$$
\begin{equation*}
J_{n}(f ; a)=(1-a) \frac{D^{n+1} f(z)}{D^{n} f(x)}+\alpha \frac{D^{n+2} f(z)}{D^{n+1} f(z)} \tag{4}
\end{equation*}
$$

and showed that for each $n \in N_{0}$, and $\alpha \geq 0$

$$
\begin{equation*}
K_{n+1}(\alpha) \subset K_{n}(0) \tag{5}
\end{equation*}
$$

The case $\alpha=1$ in (5) is due to Rescheweyh [22].
Goel and Sohi [8] further generalized the class $K_{n}(a)$ by introducing the class $T_{n, p}(\alpha)$. Thus a fupction $\delta \in B$ is said to be in $T_{n, \beta}(\alpha)$ if for $0 \leq \beta \leq 1 / 2$, and $\alpha \geq 0$ the condition

$$
\begin{equation*}
\operatorname{Re}\left\{J_{n}(f ; \alpha)\right\}>\beta, \quad z \in U \tag{6}
\end{equation*}
$$

hodds, where $J_{n}(f ; a)$ is given by (4). It was also claimed in [8, Thearem 1 and Theorem 5] that

$$
\begin{equation*}
T_{n+1, \beta}(\alpha) \subset T_{n, \beta}(0) \text { for all } n \in N_{0}, 0 \leq \beta \leq 1 / 2 \text { and } \alpha \geq 0 \text {. } \tag{7}
\end{equation*}
$$

However, as shown by the anthors [12], the containment relation (7) is not in general valid. In fact, a rectified version of (7) is shown to be tree in [12].

Recently, many of the classical results in univalent function theary have been improved and sharpened by the powerful technique of Briot-Bouquet differential sub--ordination (see eg. [6], [18], [19] etc.). Recall that a function $p(z)$ analytic in U with a power series of the form (1) is said to satisfy Briot-Bouquet differential subordination if
(8).

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma}<h(z), \quad z \in U
$$

for β and γ complex constants and $h(z)$ a convex function with $h(0)=1$ and $\operatorname{Re}\{\beta h(z)+\gamma\}>0$ in U.

The onivalent function $q(z)$ is said to be a dominant of the Briot-Borquet differential subordination (8) if $p(z)<q(z)$ for all $p(z)$ satisfying (8). If $\bar{q}(z)$ is a dominant of (8) and $g(z)<q(z)$ for all other dominants $q(z)$ of (8), then $\bar{q}(z)$ is said to be the best dominant.

In the present paper, we propose to give some applications of Briot-Bouquet differential subordination which would not only improve and sharpen many of the earlier results for the classes $S^{\circ}(A, B), K(A, B), K_{n}(\alpha), T_{n, A}(\alpha)$ etc, but would also give rise to a number of new results for other subclasses as well. This is accomplished by introducing and studying a very wide class $T_{6,0}(A, B)$. Further use of Briot-Bouquet differential subordination to the inveotigation of Libera and Bernandi transforme of this class leads, perhaps for the first time, to sharp results in this direction. Finally,
nsing differential subordination, we improve and generalize results of Singh and Singh [25], and Mocani [20].
2. We introduce the class $T_{b, C}(A, B)$ as follows.

Definition 1. Let A, B, a and δ be arbitrary fixed real numbers such that $-1 \leq B<A \leq 1, \alpha \geq 0$ and $\delta \geq-1$. A function $f \in \mathbb{F}$ is said to be in the class $T_{B_{j}}(A, B)$ if it satisfies

$$
\begin{equation*}
J_{6}(f ; \alpha)<\frac{1+A z}{1+B z}, \quad z \in D \tag{9}
\end{equation*}
$$

where
$J_{6}(f ; \alpha)=(1-\alpha) \frac{D^{\delta+1} f(z)}{D^{6} f(z)}+\alpha \frac{D^{6+2} f(x)}{D^{\delta+1} f(z)}$, and $D^{6} f(z)=\left(z /(1-z)^{\delta+1}\right) \cdot f(z)$.
It is readily seen that $T_{0,0}(A, B) \equiv S^{\bullet}(A, B), T_{0,1}\left(\frac{A+B}{2}, B\right) \equiv K(A, B)$. Purther it is clear that $T_{n, 0}(0,-1)$, $n \in N_{0}$ is the class K_{n} defined by Ras cheveyh [22], whereas the class $T_{n, 0}\left(\frac{1-n}{1+n},-1\right) \equiv R_{n}$ has been studied by S ingh and Singh [24], the class $T_{n, 0}(1-2 \beta,-1) \quad(0 \leq \beta \leq 1 / 2)$ is the class considered by Goel and Sohi $\{8\}$. The classes $T_{n, 0}(0,-1)$ and $T_{0,0}(0,-1)$ were considered by A1-Amiri $[1,2]$ and $T_{6,0}(1-2 \beta,-1) \quad(\beta<1)$ has been recently studied by the authors [12]. Further taling $\delta=0, \alpha=2 \beta /(\beta+1)(\beta \geq 0)$, $A=1-2(\beta /(\mu+1)), B=-1$, it is seen that the class $T_{6,0}(A, B)$ reduces to the well known class of β-convex functions [16] which is a subclass of S^{\bullet} if $\beta \geq 0$ and of K if $\beta \geq 1$.

In ander to prove the main theorems we will need the following lemmas.
Lemma 1. $[18$, Corollary 3.2] If $-1 \leq B<A \leq 1, \beta>0$ and complex number γ satisfy Re $\gamma \geq-(1-A) \beta /(1-B)$, then the differential equation

$$
q(z)+\frac{s q^{\prime}(s)}{\beta q(z)+\gamma}=\frac{1+A s}{1+B z}
$$

has a univalent solution in U given by

$$
\begin{aligned}
& \frac{x^{\beta+\gamma}(1+B z)^{\beta((A-B) / B)}}{\beta \int_{0}^{x} t^{\beta+\gamma-1}(1+B t)^{\beta((1-B) / B) d t}}-\frac{\gamma}{\beta} \text { if } B \neq 0 \\
& q(x)=\frac{z^{\beta+\gamma} \exp \{\beta A z\}}{\beta \int_{0}^{\tau}(\beta+\gamma-1 \cdot \exp \{\beta A b\} d t}-\frac{\gamma}{\beta} \text { if } B=0
\end{aligned}
$$

If $P(s)$ is analytic in U and satisfies

$$
p(z)+\frac{s p^{\prime}(z)}{\beta p(z)+\gamma}<\frac{1+A z}{1+B z}
$$

then $p(z)<q(z)<\frac{1+A z}{1+B z}$ and $g(z)$ is the best dominant.
Lemma 2. [28, Lemma 2] Let μ be a positive measure on the unit interval $I=[0,1]$. Let $g(t, z)$ be a function analytic in U for each $t \in[0,1]$, and integrable in t for each $z \in U$ and for almost all $t \in[0,1]$, and suppose that $\operatorname{Re}\{g(l, z)\}>0$ on U $g(t,-r)$ is real for r real and $\operatorname{Re}\left\{\frac{1}{g(t, z)}\right\} \geq \frac{1}{g(t,-r)}$ for $|z| \leq r$ and $t \in[0,1]$. If $g(z)=\int_{I} g(t, z) d \mu(l)$, then $\operatorname{Re}\left\{\frac{1}{g(z)}\right\} \geq \frac{1}{g(-r)}$ for $|z| \leq r$.

For a, b, c real numbers other than $0,-1,-2 \ldots$, the hypergeometric series

$$
\begin{equation*}
F(a, b ; c ; z)=1+\frac{a \cdot c}{1 \cdot c} z+\frac{a(a+1) b(b+1)}{1 \cdot 2 c(c+1)} z^{2}+\cdots \tag{11}
\end{equation*}
$$

represents an analytic function in U [27, p.281]. The following identities are well known.

Lemma 3. [27, Chapter XIV]. For a, b, e real numbers other than $0,-1,-2, \ldots$, and $c>b>0$ we have

$$
\begin{equation*}
\int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-t-z)^{-c} d t=\frac{\Gamma(b) \Gamma(c-b)}{\Gamma(c)} F(a, b ; c ; z) \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
F(a, b ; c ; z)=F(b, a ; c ; z) \tag{13}
\end{equation*}
$$

$$
\begin{align*}
& F(a, b ; c ; z)=(1-z)^{-a} F(a, c-b ; c ; z /(1-z)) \tag{14}\\
& F\left(a, b ; \frac{a+b+1}{2} ; 1 / 2\right)=\frac{\Gamma(1 / 2) \Gamma((a+b+1) / 2)}{\Gamma\left(\frac{a+1}{2}\right) \cdot \Gamma\left(\frac{b+1}{2}\right)} \tag{15}
\end{align*}
$$

3. Containment relations.

Theorem 1. Let $-1 \leq B<A \leq 1, \delta>-1$ and $0<\alpha<\delta+2$ satisfy

$$
\begin{equation*}
(\delta+2)(1-A)-\alpha(1-B) \geq 0 \tag{16}
\end{equation*}
$$

(a) Then

$$
\begin{equation*}
T_{\delta, a}(A, B) \subset T_{\delta, 0}\left(A^{\prime} . B\right) \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
A^{\prime}=1-\frac{1}{\delta+2-\alpha}((\delta+2)(1-A)-\alpha(1-B)) \tag{18}
\end{equation*}
$$

Further for $f(z) \in T_{\delta, a}(A, B)$ we also have

$$
\begin{equation*}
\frac{D^{\delta+1} f(z)}{D^{\delta} f(z)}<\frac{\alpha}{\delta+2-\alpha}\left(\frac{1}{Q(z)}\right) \equiv \tilde{q}(z), \quad z \in U \tag{19}
\end{equation*}
$$

where

$$
Z(z)= \begin{cases}\int_{0}^{1}\left(\frac{1+\bar{B} t z}{1+B z}\right)^{\frac{b+2}{\alpha}\left(\frac{A-B}{B}\right)} t^{\frac{\delta+2}{\alpha}-2} d t & \text { if } B \neq 0 \tag{20}\\ \int_{0}^{1} \exp \left\{\frac{\delta+2}{\alpha}(l-1) A z\right\} t^{\frac{\delta+3}{\alpha}-2} d t & \text { if } B=0\end{cases}
$$

(b) If in addition to (16) one has $-1 \leq B<A<0$, then

$$
\begin{equation*}
T_{6, a}(A, B) \subset T_{6,0}\left(1-2 \rho^{\prime},-1\right) \tag{21}
\end{equation*}
$$

where $\rho^{\prime}=\left[F\left(1, \frac{\delta+2}{\alpha}\left(\frac{B-A}{B}, \frac{\delta+2}{\alpha} ; \frac{-B}{1-B}\right)\right]^{-1}\right.$.
The result is sharp.
Proof. We follow the method similar to that of Mocan it et al. [19]. Since, for $\delta>-1, D^{\delta} f(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+\delta) a_{n} z^{n}}{(n-1)!\Gamma(\delta+1)}$, it can be easily verified that

$$
\begin{equation*}
z\left(D^{\delta} f(z)\right)^{\prime}=(\delta+1) D^{\delta+1} f(z)-\delta D^{\delta} f(z) \tag{22}
\end{equation*}
$$

Let $f(z) \in T_{\delta, a}(A, B)$ where $\delta>-1, \alpha>0$ and $-1 \leq B<A \leq 1$. Set $g(z)=z\left|D^{\delta} f(z) / z\right|^{1 /(\delta+1)}$ and $n_{1}=\sup \{r: g(z) \neq 0,0<|z|<r<1\}$. Using (22) it follows that

$$
\begin{equation*}
p(z)=\frac{z g^{\prime}(z)}{g(z)}=\frac{D^{\delta+1} f(z)}{D^{\delta} f(z)} \tag{23}
\end{equation*}
$$

is analytic in $|z|<r_{1}$ and $p(0)=1$. Since $f(z) \in T_{6, c}(A, B)$, (9) coupled with (22) easily leads to

$$
\begin{equation*}
P(z)+\frac{z P^{\prime}(z)}{\beta P(z)+\gamma}<\frac{1+A z}{1+B z}, \quad|z|<r_{1} \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
P(z)=\left(1-\frac{1}{\beta}\right) P(z)+\frac{1}{\beta}, \quad \text { with } \beta=\frac{\delta+2}{\alpha} \text { and } \gamma=-1 . \tag{25}
\end{equation*}
$$

Using Lemma 1 we deduce that

$$
\begin{equation*}
P(z)<q(z)<\frac{1+A z}{1+B z}, \quad|z|<r, \tag{26}
\end{equation*}
$$

where $g(8)$ is the best dominant of (24) and is given by (10). Again by (19) we get

$$
\begin{equation*}
P(z)<\frac{\alpha}{\delta+2-a}\left[\frac{1}{Q(z)}\right] \equiv \dot{q}(z), \quad|z|<r_{1} \tag{27}
\end{equation*}
$$

where $Q(z)$ is given by (20).
By (25) and (26), we see from (23) that $g(z)$ is starlike (univalent) in $|z|<r_{1}$. Thus it is not possible that $g(z)$ vanishes in $|z|<r_{1}$ if $r_{1}<1$. So we conclude that $r_{1}=1$. Therefore $p(z)$ is analytic in U. However (27) implies that $p(z)<\bar{q}(z)$ in U.
Hence by (23), $f(z) \in T_{\delta, a}(A, B)$ implies $\frac{D^{d+1} f(z)}{D^{s} f(z)}<\dot{\Phi}(z)$ provided δ, α, A and B satisfy (16). This proves (17) and (19).
(b) Next we show that

$$
\begin{equation*}
\operatorname{Inf}_{|z|<1}\{\operatorname{Re} q(z)\}=\tilde{q}(-1) . \tag{28}
\end{equation*}
$$

II we set $c=\beta\left(\frac{B-A}{B}\right), b=\beta+\gamma, c=\beta+\gamma+1 \quad\left(\beta=\frac{\theta+2}{\alpha}, \gamma=-1\right)$ then $c>b>0$. From (20) by aring (12), (13) and (14) see that for $B \neq 0$

$$
\begin{align*}
Q(z) & =(1+B z)^{\bullet} \int_{0}^{1}\left(1+B(z)^{-0} z^{b-s} d l=\right. \\
& z(1+B z)^{\bullet} \frac{\Gamma(b) \Gamma(c-b)}{\Gamma(c)}(1+B z)^{-\bullet} F\left(a, c-b ; c ; \frac{B z}{B z+1}\right)= \tag{29}\\
& =\frac{\Gamma(b) \Gamma(e-b)}{\Gamma(c)} F(1, c ; c ; B z /(B z+1)) .
\end{align*}
$$

To prove (28) we show that Re $\left\{\frac{1}{Q(z)}\right\} \geq \frac{1}{Q(-1)}, z \in U$. Again (20), by (29) for $-1 \leq B<A<0$ (so that $c>c>0$), can be rewritten as

$$
Q(z)=\int_{0}^{1} g(t, z) d \mu(t)
$$

where

$$
g(t, z)=\frac{1+B z}{1+(1-t) B_{z}}
$$

and

$$
d \mu(t)=\frac{\Gamma(b)}{\Gamma(a) \Gamma(c-a)} t^{\sigma-1}(1-t)^{e-a-1} d t
$$

is a positive measure on $\{0,1]$.
For $-1 \leq B<A<0$ it may be noted that Re $\{g(6, z)\}>0, g(l,-r)$ is real for $0 \leq r<1, \ell \in[0,1]$ and

$$
\operatorname{Re}\left\{\frac{1}{g(l, z)}\right\}=\operatorname{Re}\left\{\frac{1+(1-l) B_{z}}{1+B_{z}}\right\} \geq \frac{1-\left(1-() B_{r}\right.}{1-B_{r}}=\frac{1}{g(l, r)}
$$

for $|z| \leq r<1$ and $\ell \in[0,1]$. Therefore by asing Lemma 2 we dedice that $\left\{\operatorname{Re} \frac{1}{Q(z)}\right\} \geq \frac{1}{Q(-r)},|z| \leq r<1$ and by letting $r-1^{-}$we obtain Re $\left\{\frac{1}{Q(z)}\right\} \geq$ $\frac{1}{Q(-1)}, z \in U$. This by (27) leads to (21). Hence the theorem

Putting $A=0$ in the above theorem and using (23), (13) and (14) we obtain
Conollary 1. For $f \in B$ and $1-\left(\frac{\delta+2}{a}\right) \leq B<0,(|B| \leq 1)$ we have the sharp result

$$
(1-\alpha) \frac{D^{\delta+1} f(z)}{D^{6} f(z)}+\alpha \frac{D^{\delta+2} f(z)}{D^{\delta+1} f(z)}<\frac{1}{1+B_{z}}
$$

implies

$$
\frac{D^{\delta+1} f(z)}{D^{6} f(z)}<\frac{1}{1+B z}, \quad z \in U .
$$

The case $\delta=n \in N_{0}, B=-1$ was obtained by Al-Amiri [1] and by Ruscheweyh $[22]$ for $a=1$. Taling $a=1, A=1-2, B=-1$ in the above theorem we obtain

Corollary 2. For all $\delta>-1$ and $\max \left\{\frac{1}{\delta+2}, \frac{1}{2}\right\} \leq \rho<1$ we have $T_{0,1}\left(1-2 \rho_{0}-1\right) \subset T_{0,0}\left(1-2 \rho^{\prime \prime},-1\right)$ where $\rho^{\prime \prime}=|F(1,2(\delta+2)(1-\rho) ;(\delta+2) ; 1 / 2)|^{-1}$.

If we take $p=(\delta+1) /(\delta+2)$ in Corollary 2 it follows that for $f \in B$ and $\delta \geq 0$ we have the sharp result Re $\frac{D^{\delta+2} f(z)}{D^{\delta+1} f(z)}>\frac{\delta+1}{\delta+2}$ implies Re $\frac{D^{\delta+1} f(z)}{D^{\delta} f(z)}>$ $\frac{1}{F\left(1,2 ; \delta+2 ; \frac{1}{\delta}\right)}>\frac{\delta}{\delta+1}, z \in U$. This improves Singh and Singh'e result [24] obtained for $\delta=\pi \in N_{0}$.

Taking $A=1-2 \rho$ and $B=-1$ in Theorem 1, the following Corollary not only gives the correct form of the containment relation (7) but also shows thas it is not possible to improve it further.

Corollary 3. Let $\delta>-1,0<\alpha<\delta+2$ and $\frac{\alpha}{\delta+2} \leq p<1$. Then

$$
\begin{equation*}
T_{6.0}(1-2 \rho,-1) \subset T_{\Delta .0}\left(1-2 \frac{(\delta+2) \rho-\alpha}{\delta+2-\alpha},-1\right) \tag{30}
\end{equation*}
$$

Further if $f(z) \in T_{6.0}(1-2 \rho,-1)$ then

$$
\begin{equation*}
\frac{D^{\delta+1} f(z)}{D^{\delta} f(z)}<\frac{\alpha}{\delta+2-\alpha}\left[\int_{0}^{1}\left(\frac{1-t z}{1-z}\right)^{\frac{-2(6+2)}{\alpha}(1-\alpha)} t^{\frac{\sigma+2}{\alpha}-z} d t\right]^{-1} \tag{31}
\end{equation*}
$$

Further more if $\operatorname{man}\left\{\frac{a}{\partial+2}, \frac{1}{2}\right\} \leq \rho<1$ then

$$
\begin{equation*}
T_{b, 0}(1-2 p .-1) \subset T_{6,0}\left(1-2 p^{\prime \prime \prime} .-1\right) \tag{32}
\end{equation*}
$$

where $\rho^{\prime \prime \prime}=\left[F\left(1,2\left(\frac{\delta+2}{\alpha}\right)(1-\rho), \frac{\delta+2}{\alpha} ; \frac{1}{2}\right)\right]^{-1}$.
The result is sharp.
Taking $\delta=0, \alpha=2 \mu /(\beta+1)$ and $\rho=\beta /(\mu+1)$ in Corollary 3 we, by (15), find that if f is μ-convex $(\mu \geq 1)$, then $f \in S^{\bullet}\left(\Gamma((2+\mu) / 2 \mu) /\left(\pi^{1 / 2} \Gamma(\mu+1) / \mu\right)\right)$ which in turn implies that $f \in K^{0}\left(((\mu-1) / \beta) \Gamma((\mu+2) / 2 \mu) / \pi^{1 / 8} \Gamma((\mu+1) / \mu)\right)$. This is due to Miller et. al. [17].

Similarly if we take $\delta=0, \alpha=1$ and $\rho=(1+\lambda) / 2$ we obtain from Corollary 3 that for $0 \leq \lambda<1, f \in \mathbb{K}(\lambda)$ implies $f \in S^{\bullet}(\beta(\lambda))$ where

$$
\beta(\lambda)= \begin{cases}\frac{1-2 \lambda}{2^{2-2 \lambda}\left[1-2^{2 \lambda-1}\right]} & \text { if } \lambda \neq 1 / 2 \\ \frac{1}{2 \log 2} & \text { if } \lambda=1 / 2\end{cases}
$$

The above expression for $\beta(\lambda)$ can be obtained by expanding $F(1,2(1-\lambda) ; 2 ; 1 / 2)$. This is due to Goel [1] and MacGregor [15].

The classes $T_{\delta, a}(A, B)$ have been defined for $\delta \geq-1$. However, in Theorem 1, δ has been taken to satisfy $\delta>-1$. The following theorem shows that it is possible to obtain an extension of Theorem 1 for the case $\delta=-1$ and a - real with $a>0$.

Theorem 2. Let $f \in B, \delta \geq-1, h$ be a convex univalent function in U with $h(0)=1$. Then for a complex number a satisfying Re $a>0$,

$$
\begin{equation*}
(1-\alpha) \frac{D^{\delta+1} f(z)}{z}+\alpha \frac{D^{\delta+2} f(z)}{z}<h(z), \quad z \in U \tag{33}
\end{equation*}
$$

implies

$$
\begin{equation*}
\frac{D^{\delta+1} f(z)}{z}<\left(\frac{\delta+2}{\alpha}\right) z^{-\left(\frac{\delta+2}{\alpha}\right)} \int_{0}^{z} h(l) t^{\frac{\delta+2}{\alpha}-1} d t<h(z), \quad z \in U \tag{34}
\end{equation*}
$$

The above theorem can be proved on the same lines as those of Theorem 1 using, in place of Lemma 1 the following well known result due to Hallenbeck and Ruscheweyh [9].

Lemma 4. If $p(z)=1+p_{1} z+\cdots$ is analytic in U and h is a conver univalent function in U witt $h(0)=1$ and γ is a complex number such that Re $\gamma>0$, then

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\gamma}<h(z) \tag{35}
\end{equation*}
$$

implies

$$
p(z)<q(z)=\gamma z^{-7} \int_{0}^{z} h(l) l^{\gamma-1} d l<h(z)
$$

and $g(z)$ is the best dominant.

By giving different values to the parameters δ, α and choosing suitable convex function h in the above theorem we get the improved form of the results obtained by the authors [11], Chichra [5], Owa and Obradovic [211. Singh and Singh [26] and others.
4. Integral transforms. For a function $f \in B$, Libera [14] defined the integral transform $F_{1}(z)$ by

$$
\begin{equation*}
F_{1}(z)=\frac{2}{z} \int_{0}^{z} f(t) d t \tag{36}
\end{equation*}
$$

and showed that

$$
\begin{equation*}
f \in S^{\bullet} \text { or } K \text { implies that } F_{1} \in S^{\bullet} \text { or } K \tag{37}
\end{equation*}
$$

respectively. Bernardi [4] showed that the above result (37) continues to hold for the more general integral transform

$$
\begin{equation*}
F_{e}(z)=\frac{1+e}{z^{e}} \int_{0}^{z} t^{c-1} f(t) d t \tag{38}
\end{equation*}
$$

where $c \in N$. Bajpai and Srivastava [3] extended the result of Bernardi to $S^{\bullet}(\beta)$ and $K(\beta)(0 \leq \beta<1)$. From Lewandowski et. aL [13] it follows that (37) continues to hold for $F_{c}(z)$ if c in (38) is taken to be a complex number satisfying $\operatorname{Re} e \geq 0$.

Ruscheweyh [22] considered the Bernardi transform of functions in K_{n} defined by (38) and showed that $f \in K_{n}$ implies $F_{e}(z) \in K_{n}$ provided Re $e>\frac{n-1}{2}$. Goel and Sohi [8] attempted to extend this result for $T_{n}(1-2 \beta,-1)$ for Rec $\geq(1-\beta)_{n-\beta} \quad\left(n \in N_{0}, 0 \leq \beta \leq 1 / 2\right)$. A1-Amiri [2] showed that $f \in T_{6}(0,-1)$ implies $F_{c}(x) \in T_{6}(0,-1)$ provided Re $e>\frac{\delta-1}{2}$ whereas Singh and Singh [24] showed that $f \in T_{n}\left(\frac{2-n}{1+n},-1\right)$ implies $F_{1}(z) \in T_{n}\left(\frac{1-n}{1+n},-1\right)$.

In our next theorem by showing that the class $T_{6,0}(A, B)$ is preserved under the Bernandi Transform (38) we not only get refinements of aforesaid results but also show that it is not possible to improve them further.

Theorem 3. Let $\delta>-1,-1 \leq B<A \leq 1$ and e be a complex number satisfying

$$
\begin{equation*}
\text { Re e } \geq \frac{\delta(A-B)+A-1}{1-B} \tag{39}
\end{equation*}
$$

(a) If $f \in T_{b, 0}(A, B)$ then the function $F_{c}(x)$ defined by (38) satisfies $F_{c} \in T_{\delta, 0}(A, B)$. Furthermore we have

$$
\begin{equation*}
\frac{D^{\delta+1} F_{0}(z)}{D^{\delta} F_{c}(z)}<\frac{1}{\delta+1}\left[\frac{1}{Q(z)}-(c-\delta)\right] \equiv \tilde{q}(z), \quad z \in U \tag{40}
\end{equation*}
$$

where

$$
Q(z)= \begin{cases}\int_{0}^{1}\left(\frac{1+B t z}{1+B z}\right)^{(\delta+1) \frac{(A-B)}{B}} t^{e} d t & \text { if } B \neq 0 \tag{41}\\ \int_{0}^{1} \exp \{(1+\delta) A(l-1) z\} \ell^{c} d t & \text { if } B=0 .\end{cases}
$$

(b) If in addition to (39), c is real and $\frac{A}{B}>\frac{\delta-(c+1)}{1+\delta}$ with $B<0$, then for $f \in T_{\delta, 0}(A, B)$ we have

$$
\operatorname{Re} \frac{D^{\delta+1} F_{c}(z)}{D^{\delta} F_{c}(z)}>\frac{1}{\delta+1}\left[\frac{c+1}{F(1,(1+\delta)((B-A) / B ; c+2 ;-R /(1-B))}-(c-\delta)\right],
$$

the bound is sharp.
Proof. Since $F_{c}(z)=\left(\sum_{j=1}^{\infty} \frac{i+c}{c+j} z^{j}\right) \cdot f(z) \equiv F(z)$, say, and
$D^{\delta} f(z)=\frac{z}{(1-z)^{\delta+1}} \cdot f(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+\delta)}{(n-1) I \Gamma(\delta+1)} a_{n} z^{n}$, it can be easily seen from (38) that

$$
\begin{equation*}
z\left(D^{6} F(z)\right)^{\prime}=(c+1) D^{6} f(z)-C D^{6} F(z) \tag{42}
\end{equation*}
$$

We put

$$
\begin{equation*}
g(z)=z\left(\frac{D^{6} F(z)}{z}\right)^{1 /(1+6)} \tag{43}
\end{equation*}
$$

and $r_{1}=\operatorname{sep}\{r: g(z) \neq 0,0<|z|<r\}$.
Then $g(z)$ is single valued and analytic in $|z|<r_{1}$ and

$$
\begin{equation*}
p(z)=\frac{z g^{\prime}(z)}{g(z)}=\frac{D^{\delta+1} F(z)}{D^{\delta} F(z)} \tag{44}
\end{equation*}
$$

is analytic in $|z|<r_{1}, p(0)=1$. (22) and (42) easily lead to

$$
\begin{equation*}
(1+\delta) \frac{D^{\delta+1} F(z)}{D^{\delta} F(z)}+c-\delta=(1+c) \frac{D^{\delta+1} f(z)}{D^{\delta} F(z)} . \tag{45}
\end{equation*}
$$

If $f \in T_{8,0}(A, B)$ then it is clear that $D^{\delta} f(z) \neq 0$ in $0<|z|<1$. So (44) and (45) give

$$
\begin{equation*}
\frac{D^{\delta} F(z)}{D^{\delta} \int(z)}=\frac{1+c}{c-\delta+(1+\delta) p(z)} . \tag{46}
\end{equation*}
$$

Differentiating (44) and using (42) and (46), we get

$$
\begin{equation*}
\frac{D^{\delta+1} f(z)}{D^{\delta} f(z)}=p(z)+\frac{z p^{\prime}(z)}{c-\delta+(1+\delta) p(z)}, \quad|z|<r_{1} \tag{47}
\end{equation*}
$$

Since $f \in T_{\delta, 0}(A, B)$, we have by (47) that

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma}<\frac{1+A z}{1+B z}, \quad \beta=\delta+1, \quad \gamma=c-\delta . \tag{48}
\end{equation*}
$$

Using Lemma 1, we deduce that

$$
p(z)<\tilde{\Phi}(z)=\frac{1}{\beta Q(z)}-\frac{\gamma}{\beta}<\frac{1+A z}{1+B z}, \quad|z|<\pi
$$

where $Q(z)$ is given by (41) and $\bar{q}(z)$ is the best dominant. Since for $-1 \leq B<A \leq 1$ it is easy to see that $\operatorname{Re}\{(1+A z) /(1+B z)\}>0$ in U, we have $\operatorname{Re} p(z)>0$ in $|z|<r_{1}$. Now (44) gives that $g(z)$ is univalent in $|z|<r_{1}$. Thus it is not possible that $g(z)$ vanishes on $|z|=r_{1}$ if $r_{1}<1$. So we conclude that $r_{1}=1$. Therefore $p(z)$ is analytic in U and hence by (44) and (48) we obtain the first part of the theorem.

Proceeding as in Theorem 1 the second part follows. Putting $A=1-2 \rho, B=-1$ in Theorem 3, we obtain

Corollary 4. Let δ and ρ be real numbers satisfying $\delta>-1$ and $0 \leq \rho<1$.
(a) If $f \in T_{6,0}(1-2 \rho,-1)$ and c is a complex number satisfying Re $c \geq \delta-(1+\delta) p$ then $F_{c}(z)$ defined by (38) satisfies $F_{c} \in T_{6,0}(1-2 \rho,-1)$. Furthermore we have

$$
\frac{D^{\delta+1} F_{c}(z)}{D^{6} F_{c}(z)}<\frac{1}{\delta+1}\left[\frac{1}{Q(z)}-i c-\delta\right]=\delta(z), \quad z \in U
$$

where $Q(z)$ is obtained from (41) with $A=1-2 p$ and $B=-1$.
(b) If c is a real number satisfying $c \geq \max \{\delta-(1+\delta) \rho, 2[\delta-(1+\delta) \rho]\}$ and $f \in$ $T_{\delta, 0}(1-2 \rho,-1)$, then $F_{c} \in T_{\delta, 0}\left(1-2 \rho^{\prime},-1\right)$ with $\rho^{\prime}=\frac{1}{\delta+1}\left[\frac{c+1}{F(1,2(1+\delta)(1-\rho) ; c+2 ; 1 / 2)}\right.$ $(c-p)]$. The result is sharp.

Remarks: (i) Substituting $\delta=0$, in part (b) of Corollary 4 we see that $f \in S^{\bullet}(\rho) \quad(0 \leq \rho<1)$ implies $F_{e} \in S^{\bullet}\left(\frac{c+1}{F(1,2(1-p) ; c+2,1 / 2)}-c\right)$ provided $c \geq-\rho$, which is the improvement of a result of Bajpai and Srivastava [3] and Bernardi [4] for $e=1,2, \ldots$
(ii) Conollary 4 includes an improvement of the recent result of the authors \{12, Thoorem 3] including the Singh and Singh's [24] result. That is for $f \in \boldsymbol{B}$, $p=\frac{2 n-1}{2(n+1)}, \delta=n \in N$ and $c=1$ it follows that

$$
\operatorname{Re} \frac{D^{n+1} f(z)}{D^{n} f(z)}>\frac{2 n-1}{2(n+1)} \text { implies Re } \frac{D^{n+1} F_{1}(z)}{D^{n} F_{1}(z)}>\frac{n}{n+1}, \quad z \in U
$$

where $F_{1}(z)$ is defined by (36). This for $n=1$ extends the results of Libera [14].
(iii) It can be easily seen that by giving different values to the parameters δ, A, B and c, the results obtained in this direction by Al-Amiri [2], Ruscheweyh and Singh [23], Goel and Sohi [8], etc. get improved considerably in many cases.

In the case where c in Bernardi transform (38) is taken to be δ. Theorem 3 gets improved as follows and can be proved on the same line as that of Theorem 3 (see also [24]). So we omit its proof.

Theorem 4. Let $\delta>-1$ and $-1 \leq B<A \leq 1$. If $f \in T_{6,0}(A, B)$ then the function $F_{\delta}(z)$ defined by

$$
F_{\delta}(z)=\frac{\delta+1}{z^{\delta}} \int_{0}^{x} t^{\delta-1} f(t) d t
$$

belongs to $T_{\sigma, 1}\left(A^{\prime \prime}, B\right)$ where $A^{\prime \prime}=\frac{B+A(\delta+1)}{\delta+2}$
It is to be noted that for $A=1-2 \rho, B=-1$ and $0 \leq \rho<1$ we obtain the earlier result of the authors in [12, Theorem 5]. For $A=I-2\left(\frac{n}{n+1}\right), B=-1$ and $\delta=n \in N_{0}$ Theorem 4 leads to the result of Singh and Singh [24].

The following theorem shows that it is possible to obtain an extension of Theorem 3 , to the case $\delta=-1$ also. Since this can be easily proved using Lemma 4, 80 we omit its proof.

Theorem δ. Let $\delta \geq-1$, $\operatorname{Re}(1+c)>0, h$ be a convex univalent function in 0 with $h(0) \doteq 1$ and $f \in B$. Then we have

$$
\frac{D^{\delta+1} f(z)}{z}<h(z) \text { implies } \frac{D^{\delta+1} F_{e}(z)}{z}<q(z)=(1+c) z^{-(1+c)} \int_{0}^{z} h(f) c^{e} d t
$$

where F_{c} is defined by (38).
The above theorem generalizes and improves the earlier results obtained in [11]. For the case $\delta=0$ and $c=1$. Theorem 5 not only generalizes an earlier results of Libera [14] but also shows the result obtained is sharp. Farther, Theorem 5 extends the result of Singh and Singh [26, Theorem 4] for suitably chosen $\boldsymbol{h}(\mathbf{z})$.
4. Recently, Mocanu [20] showed that for $f \in E$

$$
\begin{equation*}
\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<\frac{3}{2} \text { implies }\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1, \quad z \in U \tag{49}
\end{equation*}
$$

and in [25] Singh and Singh proved that if for some $\boldsymbol{\gamma} \geq 0$,

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|^{1-\gamma}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<\left(\frac{3}{2}\right)^{\gamma}, \quad z \in U \tag{50}
\end{equation*}
$$

holds then $f \in S^{\bullet}$. The results (49) and an improved form of (50) can be obtained from the following more general theorem.

Theorem 6. If $\delta \geq-1$ and $f \in E$ satisfies the condition

$$
\begin{equation*}
\left|\frac{D^{\delta+1} f(z)}{D^{\delta} f(z)}-1\right|^{1-\gamma}\left|\frac{D^{\delta+2} f(z)}{D^{\delta+1} f(z)}-M\right|^{\gamma}<\beta(M, \delta, \gamma), \quad z \in U \tag{51}
\end{equation*}
$$

for some $\gamma \geq 0$ and $M \leq 1$, where $\beta(M, \gamma) \equiv\left[\frac{2 M(\delta+2)-3)^{2}+8(\delta+1)}{4(\delta+2)^{2}}\right]^{\gamma / 3}$, then

$$
\begin{equation*}
\left|\frac{D^{6+1} f(z)}{D^{6} f(z)}-1\right|<1, \quad z \in U \tag{52}
\end{equation*}
$$

For the proof of the thearem we need the following lemms.
Lemma 5 [20]. Let Ω be a set in the complex plane C. Suppose that the function - $: \mathrm{O}^{2} \rightarrow \mathrm{O}$ satiafies the condition

$$
\Psi\left(i r_{2}, v_{1}\right) \notin \Omega
$$

for all real r_{2} and $r_{1} \leq-\frac{\left(1+r_{2}^{2}\right)}{2}$. $f p(z)=1+p_{1} s+\cdots$ is analytic in U and $\Psi\left(p(z), s p^{\prime}(x)\right) \in \Omega$ for $z \in U$, then Re $p(z)>0$ in U.

Proof of Theorem 6. Set $p(z)=2 \frac{D^{\delta} f(z)}{D^{6+1} f(z)}-1$, then $p(z)$ is regular in U with $p(0)=1$. A simple calculation shows that

$$
\begin{align*}
& {\left[\frac{D^{\delta+1} f(z)}{D^{6} f(z)}-1\right]^{1-\gamma}\left[\frac{D^{\delta+2} f(z)}{D^{\delta+1} f(z)}-M\right]^{\gamma}=} \\
& =\left[\frac{1-p(z)}{1+p(z)}\right]^{1-\gamma}\left[\frac{1}{\delta+2}\left\{(\delta+1)\left(\frac{1-p(z)}{1+p(z)}\right)-\frac{z p^{\prime}(z)}{p(z)+1}\right\}+1-M\right]^{\top} \equiv \tag{58}\\
& \equiv \Psi\left(p(z), z p^{\prime}(z)\right),
\end{align*}
$$

where

$$
\Phi(r, \theta)=\left[\frac{1-r}{1+r}\right]^{1-\gamma}\left[\frac{1}{\delta+2}\left\{\frac{\delta+1+(\delta+2)(1-M)-\theta-r(M(\delta+2)-1)}{1+r}\right\}\right]^{\gamma}
$$

with $r=P(s)$ and $\theta=3 p^{\prime}(s)$.
By (53), we have to prove that $\left|\mathrm{s}\left(p(z), 3 p^{\prime}(z)\right)\right|<\beta(M, \delta, \gamma), z \in U$ implies that Re $P(z)>0$ in U which is equivalent to showing (52). Now for all real rz, and
$0_{1} \leq-\left(1+r_{2}^{2}\right) / 2$, we have

$$
\begin{aligned}
\left|\Psi\left(i r_{2}, o_{1}\right)\right|^{2} & =\left[\frac{\left((\delta+1)+(\delta+2)(1-M)-g_{1}\right)^{2}+r_{2}^{2}(M(\delta+2)-1)^{2}}{1+r_{2}^{2}}\right]^{\gamma}= \\
& =\frac{1}{(\delta+2)^{2 \gamma}}\left[\frac{\varepsilon_{1}^{2}-2\{(\delta+1)+(\delta+2)(1-M)\} \sigma_{1}}{1+r_{2}^{2}}+\right. \\
& \left.+\frac{4(\delta+1)(\delta+2)(1-M)}{1+r_{2}^{2}}+(M(\delta+2)-1)^{2}\right]^{\gamma} \geq \\
& \geq \frac{1}{(\delta+2)^{27}}\left[\frac{1}{1}+\{(\delta+1)+(\delta+2)(1-M)\}+(M(\delta+2)-1)^{2}\right]^{7}= \\
& =\left[\frac{(2 M(\delta+2)-3)^{2}+8(\delta+1)}{4(\delta+2)^{2}}\right]^{\gamma} \equiv \\
& \equiv \beta(M, \delta, \gamma)
\end{aligned}
$$

Taking Ω to be the set $\Omega=\{\omega \in O:|\omega|<\beta(M . \delta, \gamma)\}$, we see by lemmas 5 that Re $p(z)>0$ in U. Hence the theorem.

Remark. Tating $\delta=0$ and $M=1$ in Theorem 6, it folows that for $\gamma \geq 0$ and $f \in B$,

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|^{1-\gamma}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<\left(\frac{8}{2}\right)^{\eta} \text { implies }\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1, \quad z \in U \tag{54}
\end{equation*}
$$

whereas for $\delta=-1$ and $M=0$, Theorem 6 gives

$$
\begin{equation*}
\left|f^{\prime}(z)-1\right|^{1-7}\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|^{7}<\left(\frac{s}{2}\right)^{7} \text { implies }\left|f^{\prime}(s)-1\right|<1, z \in U . \tag{55}
\end{equation*}
$$

(54) improves Theorem 3 in [25] while (55) gives Theorem 4 in [25]. The case $\gamma=1$ in (54) is due to Mocanv [20].

REPERENCES

[1] A1-Amiri, B S. , Cerlain anology of the a-conoes fenctione, Rov. Roumino Math Pures. Appl. 10 (1978), 1149-1154.
[2] Al-Amisi, ILS. . Cetroin gencralieation of prestartik function, J. Aurtal. Math Soc 28 (1979), 325-34.
[3] Bajpai, S.K. , Srivastava, R.S.L. On the redies of convesity and utatitiveise of univalent functions , Proc. Amer. Mash. Soc. 32 (1972), 153-100.
[4] Bernardi, S.D. , Conver and starike enivalent functions, Trass. Armer. Minth Soc. 138 (1968), 129-486.
[S] Chichra, P.N. . New orbelases of the clase of clovero-convers functions, Proce Auror. Math. Soc. 64 (1977), 37-43.
[8] Eenigenburg, P. , Miller, S.S. , Mocenu, P.T. , Reede, MO. On a BriotBowqei Differential Subordination, General inequalitien 3, International eeries of Numerical Mashermation, vol. 64, Birkhauser Vodag, Besed 1983, 339-348.
[7] Goel, RM. Penctions stariliee and conver of onder X, J. London Math. Soc. $9(1971 / 75)$, 128-130.
[8] Goel, R.M, Sohi, N.S. A new criterion for snivalence and ils applications, Glas. Mnt. Ser. III 16 (36) (1981), 39-49.
[9) Hallenbeck, D. J. .Ruscheweyh, S. , Subondination by comver fenctions, Proc. Amar. Math. Soc 52 (1975), 191-195.
[10] Janowski, W. , Some extremal probleme for certain families of analytic functions I, Ann. Polon. Math, 28 (1973), 297-328.
[12] Juneje, O. P. , Ponaneamy,S. , On arriain new subelasees of regulor arivalent functions, (uuberitted).
[12] Juneja, O. P. , Ponareemy, S. , On a new criterion for ensoalence and its applications, (subritted).
[13] Lowandowski, Z , Miller, S.S. , Ztotkiowics, E. Generating functions for some clarges of enivalent functions, Proc. Amer. Math. Soc., 86 (1976), 111-117.
[14] Libere, R J. . Some classe of regular mivelent functiono. Proc. Amer. Mhth Soci, 18 (1965), 756-738.
[18] MacGregor , T. I. . A mbordination for conver function of onder Q , J. Loadon Math Soc., 9 (1975), 530-536
[16] Millor, S.S. , Mocanu, P.T. , Reado, MO. All a-conver functions are univalens and oterlike, Proc Amas. Muth Soc, 37 (1973), 333-554
[17] Miller, S.S. . Mocanu, P.T. , Reade, MO. The onder of starlikeress of ar-onoes functions. Mat beantica (Cluj) 20 (43) (1878), $25-30$.
[18] Miller, S.S. , Mocanu, P.T. . Univalent soletione of Briot-Bonquet difierential aquations, J. differential equations $56(3)$ (1985), 297-300.
[19] Mocanu. P.T., Ripeanu, D. Sorb, I. Onder of Slanticases of Certain Inteoral Operators, Lecturs Noter in Math. 1013, Spoinger-Vedag, Bodin 1983.
[20] Mocenu, P.T., Some insegral operators and starlike functions. Rov. Roumaine Math. Pures Appl. 31 (1886), 231-235.
[21] Owe, S. Obradovic, M . Certain subclacses of Bavilevic function of type O, Laternat. J. Math and Math Sai., 8 (1986), 347-3s0.
[20] Ruscheweyb, S. . New criterion for uncolent functions, Proc. Amer. Math. Soc, is (1975), 100-118.
[23] Ruscheweyh. S. Singh. V. . Conoolation theonem for a clace of bosnded conver functions, Mocky Mountain J. Math 16 (1986), J37-146.
[21] Siagh, R, Siagh, S. , Insegrale of certain enivalent functions, Proc. Arper. Math. Soc, 7 (1979), 336-340.
[23] Singh, R. Singh, S. Some mfficient condition for univalence and starlkences, Coll. Math 47 (1882), 300-314.
[28] Singh, S. . Singh, R. New mbelase of anocalent fanctions, J. Indian Mash. Soc., is (1979), 149-150.
[27] Whitsaker , E. T. Wateon. G. N. , A Conrse of Modern Arolyois, th Bdition (reprinted) Cambridfo Univerrity Press, Cambridfo 1927.
[23] Wilken, D. R. Feng, J. , A remant on conves and atadike fuactione . J. London Math. Soc., 21 (1980), 287-290.

STRESZCZENIE

Otrzyranio pewne zestosowania podporzadhowania rbinichhowno Briota-Bouquota, there ule

