LUBLIN-POLONIA

Depertment of Mathematica
Indian Institute of Technology

S. PONNUSAMY

Integrals of Certain n-valent Functions

Calki pewnych funkeji n-listnych

Abstract

Abstrect. Some applications of Briot-Bouquet differential subordination are obtained which improve and sharpen a nurbber of reaults of Libera and others.

1. Introduction. Let $B(n)$ denote the class of functions
$f(z)=z^{n}+a_{n+1} z^{n+1}+\cdots, n$ a positive integer which are regular in the unit disc $U=\{z:|z|<1\}$. Let F and G be regular in U. Then the function F is subordinate to G, written $F<G$ or $F(z)<G(z)$, if G is univalent in $U, F(0)=G(0)$ and $F(U) \subset G(U)$. A function $f \in B(n)$ is said to be in $S_{n}^{*}(A, B)$ if

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}<n\left(\frac{1+A z}{1+B z}\right), \quad(z \in U ;-1 \leq B<1 \text { and } B<A) . \tag{1}
\end{equation*}
$$

and is said to be in $K_{n}(A, B)$ if

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}<n\left(\frac{1+A z}{1+B z}\right), \quad(z \in U ;-1 \leq B<1 \text { and } B<A) . \tag{2}
\end{equation*}
$$

We denote by $S_{1}^{0}(A, B)=S^{\bullet}(A, B), S^{\bullet}(1-2 \alpha,-1)=S^{\bullet}(\alpha), S_{n}^{\bullet}(1-2 \alpha,-1)=S_{n}^{0}(\alpha)$; $K_{1}(A, B)=K(A, B), K(1-2 \alpha,-1)=K^{\prime}(\alpha)$ and $K_{n}(1-2 a,-1)=K_{n}(a)(\alpha<1)$.

The function $h(z)$ regular in U, with $h^{\prime}(0) \neq 0$, is convex (univalent) if and only if $\operatorname{Re}\left\{1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right\}>0$ in U.

Let β, γ, A and B be real numbers and suppose that $\beta>0, \beta n+\gamma>0$, $-1 \leq B<1$ and $B<A \leq 1+\gamma(1-B) n^{-1} \beta^{-1}$. After a little manjpulation from the more general result on Briot-Bouquet differential subordination [5], it is easy to deduce that the integral operator $I_{n, 9}^{n}$ defined by $g=I_{3,7}^{n}|f|$, where

$$
\begin{equation*}
g(z)=\left[\frac{n \beta+\gamma}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} f^{\prime}(z) d t\right]^{1 / \theta}, z \in U, f \in S_{n}^{0}(A, B) \tag{3}
\end{equation*}
$$

maps $S_{n}^{\bullet}(A, B)$ into $S_{n}^{\bullet}(A, B)$, i.e., $\mathcal{I}_{\beta, \gamma}^{n}: S_{n}^{0}(A, B) \rightarrow S_{n}^{\bullet}(A, B)$ (Here each power takes principal value).

For given real numbers A, B with $-1 \leq B<1$ and $B<A \leq 1+\gamma(1-B) n^{-1} \beta^{-1}$, we define the order of starlikeness of the class $I_{\beta_{i}, \gamma}^{n}\left[S_{n}^{\bullet}(A, B)\right]$ by the largest number $\delta=\delta(n, A ; \beta, \gamma)$ such that

$$
I_{\beta, \gamma}^{n}\left[S_{n}^{*}(A, B)\right] \subset S_{n}^{*}(\delta) .
$$

Recently many of the classical results in univalent function theory have been improved and sharpened by the powerful technique of differential subordination, e.g. $[1],[5],[8],[9]$, etc. Recall that a function $p(z)$ regular in U is said to satisfy BriotBouquet differential subordination if

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\hat{\beta} p(z)+\gamma}<h(z), \quad i \in U,(p(0)=h(0)=n) \tag{4}
\end{equation*}
$$

for β and γ complex constants and $h(z)$, a convex (univalent) in U with $\operatorname{Re}[\beta h(z)+\gamma]>0$ in U. The univalent function $q(z)$ is said to be a dominant of the Briot-Bonquet differential subordination (4) if $p(z)<q(z)$ for all $p(z)$ satisfying (4). If $\tilde{q}(z)$ is a dominant of (4) and $\tilde{q}(z)<q(z)$ for all other dominants $q(z)$ of (4), then $\dot{q}(z)$ is said to be the best dominant.

In this paper we find $\delta(n, A, B ; \beta, \gamma)$ for appropriate choices of A, B, β and γ, by using the sharp subordination result recently obtained in [5]. Our general result includes some particular ones obtained by several authors $[4,6,7,3]$. Onr result gives improve and sharp form of the recent result obtained in [2,10].

2. Preliminaries.

Lemma 1. Let $n \in N=\{1,2,3, \ldots\}, A, B, \beta, \gamma \in \mathbf{R}$ with $\beta>0$ and $n \beta+\gamma>0$. Suppose that these constants satisfy

$$
\begin{equation*}
-1 \leq B<1 \text { and } B<A \leq 1+\gamma(1-B) n^{-1} \beta^{-1} \text {. } \tag{5}
\end{equation*}
$$

Then the differential equation

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{\beta q(z)+\gamma}=n\left(\frac{1+A z}{1+B z}\right) \tag{6}
\end{equation*}
$$

has a univalent solution given by

$$
\begin{equation*}
q(z)=\frac{1}{\beta Q(z)}-\frac{\gamma}{\beta}, \tag{7}
\end{equation*}
$$

where

$$
Q(z)= \begin{cases}\int_{0}^{1}\left(\frac{1+B z t}{1+B z}\right)^{n A((A-B) / B)} t^{n \beta+\gamma-1} d t & \text { if } B . \neq 0 \tag{8}\\ \int_{0}^{1} t^{n \beta+\gamma-1} \exp (n \beta A z(t-1)) d t & \text { if } B=0 .\end{cases}
$$

and

$$
\begin{equation*}
q(z)=\frac{n \beta-\gamma B z}{\beta(1+B z)} \text { when } A=-\frac{(\gamma+1) B}{n \beta}, \quad B \neq 0 . \tag{9}
\end{equation*}
$$

If $P(s)$ is regular in U and satisfies

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma}<n\left(\frac{1+A z}{1+B z}\right), \tag{10}
\end{equation*}
$$

then $p(z)<q(z)<n\left(\frac{1+A z}{1+B z}\right)$ and $q(z)$ is the best dominant.
More general form of this lemma may be found in [5].
Lenma 2. Let $\mu(l)$ be a positive measure on the unit interval $I=[0,1]$. Let $g(l, z)$ be a complex valued function defined on $U \times[0,1]$, and integrable in t for each $z \in U$ and for almost all $t \in[0,1]$, and suppose that $\operatorname{Re}\{g(l, z)\}>0$ on U and $g(z)=\int_{l} g(t, z) d \mu(l)$. If, for fixed $\lambda(0 \leq \lambda<2 \pi), g\left(l, r e^{i \lambda}\right)$ is real for real and $\operatorname{Re}\left\{\frac{1}{g(l, z)}\right\} \geq \frac{1}{g\left(l, r e^{3 \lambda}\right)}$, for $|z| \leq r$ and $t \in\{0,1]$ then $\operatorname{Re}\left\{\frac{1}{g(z)}\right\} \geq \frac{1}{g\left(r e^{i \lambda}\right)}$ for $|z| \leq r$ and $0 \leq \lambda<2 \pi$.

The Lemma 2 can be proved in a similar manner as that of Lemma 2 of Wil ken and Feng [12]. So we omit its proof.

3. Main result.

Theorem. Let $\beta>0, n \beta+\gamma>0$ and consider the integral operator defined by (3).
(a) If $-1 \leq B<1$ and $B<A \leq 1+\gamma(1-B) n^{-1} \beta^{-1}$, then the order of n-valent starlikeness of the class $I_{\beta, 7}^{n}\left[S_{n}^{*}(A, B)\right]$ is given by

$$
\begin{equation*}
\delta(n, A, B ; \beta, \gamma)=\frac{1}{n}\left[\inf _{|z|<1} \operatorname{Re} g(z)\right] . \tag{11}
\end{equation*}
$$

(b) Moreover if $-1 \leq B<0, B<A \leq \min \left\{1+\gamma(1-B) n^{-1} \beta^{-1},-(\gamma+1) B n^{-1} \beta^{-1}\right\}$ then for $f \in S_{n}^{\circ}(A, B)$, we have

$$
\begin{equation*}
\delta(n, A, B ; \beta, \gamma)=\frac{1}{n}[q(-1)]=\frac{1}{n \beta}\left[\frac{n \beta+\gamma}{F\left(1, n \beta\left(\frac{B-\lambda}{B}\right) ; n \beta+\gamma+1 ; \frac{-B}{1-B}\right)}-\gamma\right] \tag{12}
\end{equation*}
$$

(c) Furthermore if $0<B<1, B<A \leq \min \left\{1+\gamma(1-B) n^{-1} \beta^{-1}\right.$,
$\left.(2 n \beta+\gamma+1) B n^{-1} \beta^{-1}\right\}$ then for $f \in S_{n}^{\bullet}(A, B)$, we have

$$
\begin{equation*}
\delta(n, A, B ; \beta, \gamma)=\frac{1}{n}[q(1)]=\frac{1}{n \beta}\left[\frac{n \beta+\gamma}{F\left(1, n \beta\left(\frac{\Delta-\beta}{B}\right) ; n \beta+\gamma+1 ; \frac{\beta}{1+B}\right)}-\gamma\right] \tag{13}
\end{equation*}
$$

where q is given by (7) and $F(a, b ; c ; z)$ is the hyper geometric function. The results are all sharp.

Proof. Prooeding as in [5], we see that the condition $f \in S_{n}^{\bullet}(A, B)(-1 \leq B:<1$, $B<A \leq 1+\gamma(1-B) n^{-1} \beta^{-1}$) wgether with $f(0)=0$ (n-times) implies that $f(z) \neq 0$
in $0<|z|<1$. Now the function p, defined by $p(z)=z q^{\prime}(z) / g(z)$ is regular in U and from (3) it can be easily shown that

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma}=\frac{z f^{\prime}(z)}{f(z)}, \quad z \in U \tag{14}
\end{equation*}
$$

Since $f \in S_{n}^{*}(A, B)$ is equivalent to $\frac{z f^{\prime}(z)}{f(z)}<n\left(\frac{1+A z}{1+B z}\right), z \in U$, we deduce that $p(z)$ satisfies the differential subordination (10) and hence, by Lemma $1, p(z)<q(z)$ which implies (11).

Next we shall use the following well known formulae for the proof of (12), (13) and (14).

For a, b, c real numbers other than $0,-1,-2$ and $c>b>0$

$$
\begin{align*}
& \int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-t z)^{-a} d t=\frac{\Gamma(b) \Gamma(c-b)}{\Gamma(c)} F(a, b ; c ; z), \tag{15}\\
& F(a, b ; c ; z)=F(b, a ; c ; z), \tag{16}\\
& F(a, b ; c ; z)=(1-z)^{-1} F(a, c-b ; c ; z /(1-z)) . \tag{17}
\end{align*}
$$

where $F(a, b ; c ; z)=1+\frac{a \cdot b}{1 \cdot c} z+\frac{a(a+1) \cdot b(b+1)}{1 \cdot 2 \cdot c(c+1)} z^{2}+\cdots$ is the hypergeometric series, which holds for $z \in C \backslash(1, \infty)$.

Suppose $-1 \leq B<0$, and $B<A<\min \left\{1+\frac{\gamma(1-B)}{n \beta}, \frac{-(\gamma+1) B}{n \beta}\right\}$ and denote $a=n \beta\left(\frac{B-A}{B}\right), \dot{b}=n \beta+\gamma$ and $c=n \beta+\gamma+1=b+1$. Since $c>b>0$, from (8), by using (15), (16) and (17) we deduce
$Q(z)=(1+B z)^{0} \int_{0}^{1}(1+B t z)^{-a} t^{b-1} d t=$

$$
\begin{align*}
& =(1+B z)^{a} \frac{\Gamma(b) \Gamma(c-b)}{\Gamma(c)}\left[(1-B z)^{-a} F\left(c, c-b ; c ; B_{z} /(1+B z)\right)\right]= \tag{18}\\
& =\frac{1}{n \beta+\gamma}[F(1, a ; c ; B z /(1+B z))] .
\end{align*}
$$

Since $A<-\frac{(\gamma+1) B}{n \beta}$ implies $c>a$, by using (15), (18) yields,

$$
\begin{equation*}
Q(z)=\int_{0}^{1} g(t, z) d \mu(l), \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
g(l, z)=\frac{1+B z}{1+(1-l) B z}, \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
d \mu(t)=\frac{\Gamma(b)}{\Gamma(a) \Gamma(c-a)} t^{a-1}(1-t)^{c-a-1} d t: \tag{21}
\end{equation*}
$$

For $-1 \leq B<0$, it may be noted that $\operatorname{Re}\{g(l, z)\}>0$, for $|z| \leq r<1, g(t,-r)$ is real for $0 \leq r<1, \ell \in\{0,1 \mid$ and

$$
\operatorname{Re}\left\{\frac{1}{g(z, t)}\right\} \geq \operatorname{Re}\left\{\frac{1+(1-t) B z}{1+B_{z}}\right\} \geq \frac{1-(1-t) B_{r}}{1-B_{r}}=\frac{1}{g(t,-r)}
$$

for $|z| \leq r<1$ and $\ell \in|0,1|$. Therefore, by using Lemma 2 we deduce that $\operatorname{Re}\left\{\frac{1}{\partial(\pi)}\right\} \geq \frac{1}{\sigma(-r)},|z| \leq r<1$, and by letting $r \rightarrow 1^{-}$we obtain
$\operatorname{Re}\left\{\frac{1}{\sigma(1)}\right\} \geq \frac{1}{\partial(-1)}, z \in U$. Thus by letting $A \rightarrow\left(-\frac{(\gamma+1) B}{n \beta}\right)^{+}$for the case $A=-\frac{(\gamma+1) B}{n \hat{\rho}}$, and using (7) we obtain (12).

To prove the third part we proceed as follows:
Suppose that $0<B<1$ with $B<A<\min \left\{1+\frac{\gamma(1-B)}{n \hat{\rho}},\left(\frac{2 n \beta+\gamma+1}{n \hat{\rho}}\right) B\right\}$ and if we set $a=n \beta \frac{(A-B)}{B}, b=n \beta+\gamma$ and $c=n \beta+\gamma+1$, then $c>b>0$ as well as $c>c>0$. As in the second part

$$
Q(z)=\int_{0}^{1} g(t, z) d \mu(t),
$$

where $g(l, z)$ and $d \mu(l)$ are respectively given by (20) and (21).
For $0<B<1$, it may be noted that $\operatorname{Re}\{g(t, z)\}>0$ in $U, g(l, r)$ is real for $0 \leq r<1, t \in[0,1]$ and

$$
\operatorname{Re}\left\{\frac{1}{g(t, z)}\right\} \geq \frac{1+(1-\ell) B_{r}}{1+B_{r}}=\frac{1}{g(\ell, r)}
$$

for $|z| \leq r<1$ and $\ell \in[0,1]$. Therefore by using Lemma 2 (with $\lambda=0$), we deduce that $\operatorname{Re}\left\{\frac{1}{\partial(z)}\right\} \geq \bar{\sigma}(r),|z| \leq r<1$ and by letting $r \rightarrow 1^{-}$we obtain $\operatorname{Re}\left\{\frac{1}{\phi}(\mathrm{~s}\}\right\} \geq \frac{1}{\sigma(\lambda)}, z \in U$. In the case $A=\left(\frac{2 n \beta+\gamma+1}{n \beta}\right) B$, we obtain (13) by letting $A \rightarrow\left[\frac{(2 n \beta+\gamma+1) B}{n \beta}\right]^{+}$. This by (7) leads to (13). The sharpness follows from the best dominant property.

Remark. In the case of $\beta=1$, we see that the method of proof yields the same differential equation namely

$$
p(z)+\frac{z p^{\prime}(z)}{p(z)+\gamma}=1+\frac{z f^{\prime \prime}(z)}{f(z)}, \quad z \in U
$$

where $p(z)=1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}$. So an analogue problem for functions in $K_{n}(A, B)$ can be proved in a manner similar to that of the above theorem and the reavits are the same. We next give some particular cases of our results.

4. Particular cases.

i. Taking $\beta-1$, consider the integral transform

$$
I_{1, \gamma}^{n}[f(z)]=\frac{1+\gamma}{x^{7}} \int_{0}^{x} t^{\gamma-1} f(t) d t, \quad \gamma>-n,
$$

then from the above theorem and the above remark, we have the following: if $-1 \leq B<0$ with $B<A \leq \min \left\{1+\frac{\gamma(1-B)}{n}, \frac{-(\gamma+1)}{n} B\right\}$, we have

$$
\begin{equation*}
I_{1,7}^{n}\left[S_{n}^{\bullet}(A, B)\right] \subset S_{n}^{\bullet}\left(\rho_{1}\right) \quad ; \quad I_{1,7}^{n}\left[K_{n}(A, B)\right] \subset K_{n}\left(\rho_{1}\right) \tag{22}
\end{equation*}
$$

Furthermore if $0<B<1$ with $B<A \leq \min \left\{1+\frac{\gamma(1-B)}{n},\left(\frac{2 n+\gamma+1}{n}\right) B\right\}$, we have

$$
\begin{equation*}
I_{1.7}^{n}\left[S_{n}^{\bullet}(A, B)\right] \subset S_{n}^{\bullet}\left(\rho_{2}\right) ; I_{1,7}^{n}\left[K_{n}(A, B)\right] \subset K_{n}\left(\rho_{2}\right) \tag{23}
\end{equation*}
$$

where $p_{1}=\delta(n, A, B ; 1, \gamma)$ and $\rho_{z}=\delta(n, A, B ; 1, \gamma)$ obtained reapectively from (12) and (13).
ii. For $-1 \leq B<0, A=-B, \beta=1, \gamma=1$, with $n=1$ or 2 , we see that

$$
\begin{aligned}
& I_{1,1}^{n}\left[S_{n}^{\bullet}(-B, B)\right] \subset S_{n}^{\bullet}(\delta(n,-B, B ; 1,1)) ; \\
& I_{1,1}^{n}\left[K_{n}(-B, B)\right] \subset K_{n}(\delta(n,-B, B ; 1,1)),
\end{aligned}
$$

where

$$
\delta(n,-B, B ; 1,1)=\frac{1}{n}\left[\frac{n+1}{F(1,2 n ; n+2 ; /(1-B))}-1\right] .
$$

For instance $\Omega=1$, it follows that if $f \in S^{\circ}(-B, B)$ or $K(-B, B)$ with $-1 \leq B<0$, then the Libere operator [3]

$$
\begin{equation*}
I_{1,1}^{1}[f(x)]=\frac{2}{z} \int_{0}^{2} f(t) d t \tag{24}
\end{equation*}
$$

is in $S^{\bullet}(\delta(1,-B, B ; 1,1))$ or $K(\delta(1,-B, B ; 1,1)$ respectively, where

$$
\delta(1,-B, B ; 1,1)=\frac{2}{F(1,2 ; 8 ;-B /(1-B))}-1
$$

Here $\delta(1,1,-1 ; 1,1)=\frac{1}{2(2 \ln 2-1)}-1$ is the order of atardikeness (or convexity resp.) of the class $I_{1,1}^{1}\left[S^{\oplus}(0)\right]$ (or $I_{1,1}^{1}(K(0))$ resp.).

Similary for $n=2$, it follows that if $f \in S_{2}^{0}(-B, B)$ (or $K_{2}(-B, B)$ resp.) with $-1 \leq B<0$, then $\left.\Gamma_{1,1} \mid f(s)\right]=\frac{8}{2} \int_{0}^{\pi} f(t) d t$ is in $S_{2}^{3}\left(\frac{1+(B / 2)}{1-B}\right)\left(\right.$ or $K_{2}\left(\frac{1+(B / 2)}{1-B}\right)$ reap.). In particular

$I_{1,1}^{2}\left[S_{2}^{\prime}(0)\right] \subset S_{2}^{\prime}\left(\frac{1}{4}\right) ; \quad I_{1,1}^{2}\left[K_{2}(0)\right] \subset K_{2}\left(\frac{1}{4}\right)$.

For $0<B<1$ with $B<A \leq \min \{2-B, 4 B\}$, it follows that if $f \in S^{\circ}(A, B)$ (or $\mathbb{K}(A, B)$ resp.) then the Libera operator $\left.I_{1,1}^{1} \mid f(z)\right]$ defined by (24) is in $S^{\bullet}(\delta(1, A, B ; 1,1))$ (or $K(\delta(1, A, B ; 1,1))$ resp.), where $\delta(1, A, B ; 1,1)$ is obtained from (13).
iii. Talong $B=-1$ and $A=1-2 \alpha$ with $\alpha \in\left[\alpha_{0}, 1\right)$, and $\alpha_{0}=\max \left\{\frac{1}{n \beta}, \frac{n \beta-\gamma-1}{2 n \beta}\right\}$ then we have

$$
\begin{equation*}
I_{\beta, 7}^{n}\left[S_{n}^{\bullet}(\alpha)\right] \subset S_{n}^{0}(\delta(n, 1-2 \alpha,-1 ; \beta ; \gamma)), \tag{25}
\end{equation*}
$$

where $\delta(n, 1-2 \alpha,-1 ; \beta, \gamma)$ is obtained from (12). For $n=1$ this is due to Mocan is et, al. [8].

Substituting $\beta=1$ and $\gamma=n-1$ in (25) and using the remark, we see that if $f \in S_{n}^{\circ}(\alpha)$ or $K_{n}(\alpha)(0 \leq \alpha<1)$, then

$$
I_{1, n-1}^{n}[f(x)]=\frac{2 n-1}{2^{n-1}} \int_{0}^{2} t^{n-2} f(t) d t
$$

belongs to $S_{n}^{*}\left(\delta\left(n, 1-2 \alpha_{n}-1 ; 1, n-1\right)\right)$ or $K_{n}\left(\delta\left(n, 1-2 \alpha_{1}-1 ; 1, n-1\right)\right)$ respectively. Here

$$
\delta(n, 1-2 \alpha,-1 ; 1, n-1)=\frac{1}{n}\left[\frac{2 n-1}{F(1, n(1-\alpha), 2 n, 1 / 2)}-(n-1)\right] .
$$

This for $n=1$ reduces to a result of MacGregor [4].
iv. Let $\beta>0, n \beta+\gamma+B \geq 0$ and $-1 \leq B<0$. In this case

$$
\min \left\{1+\frac{\gamma(1-B)}{n \beta}, \frac{-(\gamma+1) B}{n \beta}\right\}=\frac{-(\gamma+1) B}{n \beta}
$$

and if we take $B<A=\frac{-(\gamma+1) B}{\beta \beta}$; we get

$$
g(z)=\frac{n \beta-\gamma B z}{\beta(1+B z)}, \quad z \in U .
$$

Therefore for $B=-1$, Re $g(x)>\frac{n \beta-\gamma}{2 \beta}$. This shows that if $\beta n \geq \gamma \geq 1-n \beta$, the integral operator $I_{\beta, 7}^{n}$ mape $S_{n}^{\bullet}\left(\frac{n \beta-\gamma-1}{2 n \beta}\right)$ into $S_{n}^{e}\left(\frac{n \beta-\gamma}{2 \beta}\right)$.

Por instance

$$
I_{n, 1}\left|s_{n}^{n}\left(-\frac{\xi}{1}\right)\right| c S_{n}^{2}(0) ;
$$

v. Let $\beta>0$ and $n \beta+\gamma+B \leq 0$ and $-1 \leq B<0$. In this case $\min \left\{1+\frac{\gamma(1-B)}{n \hat{\beta}}, \frac{-(\gamma+1) B}{n \hat{\beta}}\right\}=1+\frac{\gamma(1-B)}{n \hat{\beta}}$ and so we have for $B=-1$ (with $n \beta+\gamma \leq 1$ and $\beta>0$),

$$
\delta\left(n, 1-\frac{2 \gamma}{n \beta},-1 ; \beta, \gamma\right)=\frac{1}{n \beta}\left[\frac{n \beta+\gamma}{F\left(1,2(n \beta+\gamma) ; n \beta+\gamma+1 ; \frac{1}{2}\right)}-\gamma\right] .
$$

Using the wellknown identity [12]

$$
F\left(a, b ; \frac{a+b+1}{2} ; \frac{1}{2}\right)=\frac{\pi^{1 / 2} \Gamma\left(\frac{a+b+1}{2}\right)}{\Gamma\left(\frac{a+1}{2}\right) \Gamma\left(\frac{b+1}{2}\right)},
$$

we find that

$$
\delta\left(n, 1-\frac{27}{n \beta},-1 ; \beta, \gamma\right)=\frac{1}{n \beta}\left[\frac{\Gamma\left(n \beta+\gamma+\frac{1}{2}\right)}{\pi^{1 / 2} \Gamma(n \beta+\gamma)}-\gamma\right] .
$$

If in the last formula, taling $\gamma=0$ and $\beta=\frac{1}{a} \leq \frac{1}{n}$, we have

$$
\delta\left(n, 1,-1 ; \frac{1}{\alpha}, 0\right)=\frac{\Gamma\left(\frac{n}{a}+\frac{1}{3}\right)}{\pi^{1 / 2} \Gamma\left(\frac{n}{a}+1\right)}
$$

for $\alpha \geq n$. This shows that if $g \in E(n)$ satisfies

$$
\operatorname{Re}\left\{(1-\alpha) \frac{z g^{\prime}(z)}{g(z)}+\alpha\left(1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right)\right\}>0, \quad z \in U
$$

for $a \geq n$, then $g \in S_{n}^{\bullet}(\delta(n, 1,-1 ; 1 / \alpha, 0))$.
Acknowiedgements. The author is deeply grateful to Prof. O.P. Junejo for his encouragement, advice and helpiul discussions.

REFERENCES

[1] Eenigenburg, P. , Miller, S. S. , Mocanu, P. T. , Reade, M. O. . On a BriotBonquet differential mbordination, General Inoqualities, 3, International Seriee of Numerical Mathermatica Vd. 61, Birkhäuser Vorlag. Baed 1983, 339-348.
[2] Kumar, V., ShuklaS. L. On P-ralent otarlike fonctions with reference to the Bemardi insegral operator , Bull. Austral. Math. Soc., 30 (1984), 37-43.
[3] Libera R. J. , Some classes of regular univalent functions. Proc. Amser. Math. Soc, 16 (1965), 755-758.
[4] MaeGregor T. H. . A arbordination for conves functions of order a, J. Londan Mash. Soc., 9 (1975), 330-538.
[B] Miller,S.S. MocanuP.T. , Univalend adutions of Briod-Bonquet differential equation,
J. Differential Equations 86 (1985), 297-309.
[6] Miller, S. S. , MocanuP. T. , Roade, M O. , The order of stardkenese of chpha-consex fenctions, Mathemetica (Cluj) 20 (43), (1978), 25-30.
[7] Mocanu, P. T. , ReadeM. O. , Ripeanu D. , The onder of otarikenese of Libere integnal operator, Mhthematica (Cluj), 19 (12), (1977), 67-73.
[8] Mocanu, P. T. , Ripeanu, D. ,Serb, I. The Onder of Stariteness of Certain Integral Operators, Lecture Notes in Math. Vol. 1013, Springer-Verlag, Borlin (1983).
[9] Ponnusemy, S. , Juneja, O. P. , Some applicatione to Briot-Bonquet differential meb ondination (submitted).
[10] Ruschoweyh, S. , Singh, V. , On a Briot-Bowquet equasion relased to snivalent funo tions, Rov. Roumine Math. Pures. Appl. 24 (1979), 285-290.
[11] Whittaker, E. T. Watson, G. N. , A course of modern analypie, sth edition (reprinted), Cambridge Univeraity Prese, Cembridge, 1927.
[12] Wilken, D. R. Feng, J. , A remant on conves and otarike functions, J. London Math. Soc., 21 (1880), 287-280.

Przy pomocy podporzadbowania rósiciczowogo Briota-Bouqueta poprawia ipi mostra licue wynile Libery i innych.

