LUBLIN-POLONIA

VOL. XLII, 12

SECTIO A

1988

Instytut Matematyki UMCS Zakład Zastosowań Matematyki UMCS

J.MIAZGA, A.WESOŁOWSKI

An Extension of a Sufficient Condition for |p| - valence of Analytic Functions

O rozszerzeniu warunku dostatecznego polistności funkcji analitycznych

Abstract. In this paper a sufficient condition for |p|-valence (p being an integer) of functions f analytic in the punctured unit disk $E \setminus \{0\}$ and satisfying $\lim_{s\to 0} s^{-p} f(s) = 1$ has been established (Theorem 1).

Using this condition we show that for a positive integer p the function $F(z) = p \int_0^z t^{p-1} (f(t))^{\alpha} dt$ is p-valent in E, if $|\alpha| \le p/(6p-2)$.

1. Introduction. Let $E = \{z : |z| < 1\}$ and let Ω denote the class of analytic functions ω such that : $\omega(0) = 0$, $|\omega(z)| < 1$ for $z \in E$.

We denote by S the class of functions f of the form: $f(z) = z + a_2 z^2 + \cdots$ analytic and univalent in E and by P the class of analytic functions h in E such that: Re h(z) > 0 for $z \in E$, h(0) = 1.

Let f, F be analytic functions in E and f(0) = F(0). We say that the function f is subordinate to the function F in E if there exists a function ω in Ω such that $f(z) = F(\omega(z))$ in E. This relation shall be denoted $f \prec F$.

Definition [3]. Let $I = [0, \infty)$. A family of functions f(z, t), $z \in E$, $t \in I$ is called a p-subordination chain on I if

(1.1) f(z,t) is analytic in E for each fixed $t \in I$

(1.2) $f^{(k)}(0,t) = 0$, k = 1,...,p-1, and $f^{(p)}(0,t) \neq 0$,

(1.3) $f(z, o) \prec f(z, t), o \leq t, o, t \in I, z \in E.$

The p-subordinaton chain is said to be normalized if f(0,t) = 0 and $f^{(p)}(0,t) = ple^{pt}$ for each $t \in I$.

Following Pommerenke [5], Hallenbeck and Livingston [3] proved:

Lemma 1. Let $f(z,t) = e^{pt}z^p + \cdots$ be analytic in E for each $t \in I$. Then f(z,t) is a normalized p-subordination chain on I if and only if f(z,t) is locally absolutely continuous in I, locally uniformly in E and there exists a function h(z,t) measurable in t and analytic in z with Re h(z,t) > 0, h(0,t) = 1 such that for each $z \in E$ and

almost all $t \in I$

(1.4)
$$f(z,t) = zf'(z,t) h(z,t) , \qquad (f = \frac{\partial f}{\partial t}, f' = \frac{\partial f}{\partial z})$$

Lemma 2. Let 0 < r < 1 and $f(z,t) = a_p(t)z^p + \sum_{n=p+1}^{\infty} a_n(t)z^p$, $a_p(t) \neq 0$ for each $t \in I$ be analytic in $E_r = \{z : |z| < r\}$ and locally absolutely cotinuous in I, locally uniformly in E_r . For almost all $t \in I$ suppose

$$f(z,t) = z f'(z,t) h(z,t), \quad z \in E_r$$

where h(z,t) is analytic in E and satisfies $\operatorname{Re} h(z,t) > 0$ for $z \in E$.

If

(1.5)
$$\lim_{n\to\infty} |a_n(t)| \left| \frac{a_p(t)}{a_p(0)} \right|^{-n/p} = 0$$

then for each $t \in I$, f(z,t) is the p-th power of a univalent function.

2. |p| - valence criterion.

Theorem 1. Let $f(z) = z^p + a_{p+1} z^{p+1} + \cdots$, p is an integer, be an analytic function different from zero in $E \setminus \{0\}$, and $\lim_{z \to 0} z^{-p} f(z) = 1$. Moreover, let s be any complex number such that $\operatorname{Re} s = \alpha > 0$. If there exists an analytic function g, $g(z) \neq 0$ in E satisfying the inequality

$$\left|\frac{g(0)}{g(z)} \cdot \frac{zf'(z)}{f(z)} - p \frac{s+1}{2\alpha}\right| \le |p| \frac{|s+1|}{2\alpha}$$

and such that

$$(2.2) \qquad \left| |z|^{a} \frac{g(0)}{g(z)} \cdot \frac{zf'(z)}{f(z)} + (1 - |z|^{a}) \left(\frac{zf'(z)}{f(z)} + e^{\frac{zg'(z)}{g(z)}} \right) - p^{\frac{e+1}{2\alpha}} \right| \leq \\ \leq |p| \frac{|e+1|}{2\alpha}, \quad z \in E, \quad a = \frac{e+1}{\alpha e} \cdot p$$

holds, then f is the p-th power of a univalent function in E.

Proof. We consider two cases 1°. p is a positive integer.

We put

(2.3)
$$f(z,t) = f(ze^{-\sigma t}) \left[1 + \left(e^{\frac{\sigma+1}{\sigma} pt} - 1 \right) \frac{g(ze^{-\sigma t})}{g(0)} \right]^{\sigma} = e^{pt} z^{p} + \cdots$$
$$z \in E, \quad t \in I, \quad 1^{\sigma} = 1,$$

where g is the function which satisfies in E the assumptions of theorem for some $t \in I$.

For each t in I f(z,t) is an analytic function for $|z| < e^{\alpha t}$, $\alpha = \text{Re } s$. It follows from Lemma 1 that f(z,t) is a normalized p-subordination chain on I if and only if

(2.4)
$$\frac{\dot{f}(z,t)}{zf'(z,t)} = \frac{1+\omega(z,t)}{1-\omega(z,t)}, \quad z \in E, \quad t \in I$$

where

$$\frac{1+\omega(z,t)}{1-\omega(z,t)}=h(z,t)\;,\quad z\in E\;,\;\text{for each fixed}\;t\in I\;,$$

is a well-known relationship between the functions ω and h of the class Ω and P, respectively.

From (2.4) and (2.3) after long but simple calculations we obtain:

(2.5)
$$\omega(z,t) = \frac{\dot{f}(z,t) - zf'(z,t)}{\dot{f}(z,t) + zf'(z,t)} = \frac{s+1}{s-1} \frac{w}{w - \frac{2p}{s-1}}$$

where

(2.6)
$$w = g(0) \frac{ze^{-st}f'(ze^{-st})}{f(ze^{-st})g(ze^{-st})} e^{-bt} + (1 - e^{-bt}) \left(\frac{ze^{-st}f'(ze^{-st})}{f(ze^{-st})} + \frac{ze^{-st}g'(ze^{-st})}{g(ze^{-st})}\right) - p, \quad b = \frac{s+1}{s}p.$$

It follows from Lemma 1 and Lemma 2 that f(z) = f(z,0) is the p-th power of univalent function if

$$\operatorname{Re}\left\{\frac{\dot{f}(z,t)}{zf'(z,t)}\right\}>0\;,\quad z\in E\;,\quad t\in I\;,$$

thus for each $t \in I$ the function ω given by (2.5) will satisfy in \overline{E} (\overline{E} is the closure of E) the inequality: $|\omega(z,t)| \le 1$.

The inequality (2.2) implies that for $z \in \overline{E}$ $\omega(z,t)$ given by (2.5) satisfies the inequality $|\omega(z,t)| \le 1$ because it is enough to put $ze^{-st} = c$ in (2.6), $e^{-bt} = |c|^{b/\alpha} = |c|^{\alpha}$ for |z| = 1, $\alpha = \text{Re } s$ and apply the inequality (2.2) exchanging z for c there.

2°. The proof of theorem for p being a negative integer is analogous. It is enough to consider the chain

$$f(z,t) = [f(ze^{-st})]^{-1} \left[1 + (e^{\frac{s+1}{s}} pt - 1) \frac{g(ze^{-st})}{g(0)} \right]^{-s} = e^{-pt} z^{-p} + \cdots$$

The proof is complete.

Corollary 1. If we put a=1 in the Theorem 1, and $g(z)=k(z)\frac{zf'(z)}{f(z)}$, Re $k(z)\geq \frac{1}{2}$, $z\in E$, k(0)=1 and

$$(2.7) \left| |z|^{2p} \left(\frac{p}{k(z)} - 1 \right) + (1 - |z|^{2p}) \left(\frac{z'(z)}{k(z)} + \frac{zf''(z)}{f(z)} \right) - p + 1 \right| \le |p|$$

then the function f is the |p|-th power of a univalent function in E.

This result for p=1 and a suitably chosen k was obtained by the present authors in [4]. The assumption k(0)=1 can be dropped (see [5] Corollary 3).

Corollary 2. If in Corollary 1 we put additionally $\frac{p}{k(z)} - 1 = e = \infty nst.$, $|e - p + 1| \le |p|$ and

$$\left|c|z|^{2p} + (1-|z|^{2p})\frac{zf''(z)}{f'(z)} - p + 1\right| \le |p|$$

then the function f is the p-th power of a univalent function in E.

Putting c = p - 1 in the inequality (2.8) we obtain Theorem 21, 4, 1° given by Avkhadiev [2].

For p = 1 the condition (2.8) is a well-known sufficient condition of univalence given by Ahlfors [1].

A simple corollary of Theorem 1 is:

Theorem 2. Let $f(z) = z + a_2 z^2 + \cdots$ be an analytic function in E and o be any complex number such that $Re \ o = \alpha > 0$. If there exists an analytic function g and $g(z) \neq 0$ in E satisfying the inequality

$$\left|\frac{g(0)}{g(z)}\frac{zf'(z)}{f(z)}-\frac{s+1}{2\alpha}\right|\leq \frac{|s+1|}{2\alpha}$$

and such that for a fixed, positive integer p

(2.10)
$$\left| p|z|^{a} \frac{g(0)}{g(z)} \cdot \frac{zf'(z)}{f(z)} + (1 - |z|^{a}) \left(p \frac{zf'(z)}{f(z)} + s \frac{zg'(z)}{g(z)} \right) - p \frac{s+1}{2\alpha} \right| \leq$$

$$\leq p \frac{|s+1|}{2\alpha} , \quad z \in E , \quad a = \frac{s+1}{2\alpha} , \quad \alpha = \operatorname{Re} s ,$$

holds, then f is a univalent function in E.

Proof. Let $h(z) = [f(z)]^p$, $z \in E$. It is easy to see that h(z) satisfies the assumption of Theorem 1 if f satisfies the assumption of this theorem. Thus f is univalent function in E because h in view of Theorem 1 is the p-th power of a univalent function.

3. An application.

Theorem 3. If $f \in S$ and α is any complex number such that $|\alpha| \le \frac{1}{1-1}$, where p is a positive integer, then the function

(3.1)
$$F(z) = p \int_{0}^{z} t^{p-1} (f'(t))^{\alpha} dt, \quad z \in E$$

is p-valent in E.

Proof. In the proof we use Corollary 2 and a well-known Bieberbach transformation preserving the class of univalent functions S

(3.2)
$$g(z) = \frac{f(\frac{z+z_0}{1+z\overline{z_0}}) - f(z_0)}{f'(z_0)(1-|z_0|^2)}, \quad z \in E, \quad f,g \in S,$$

so is a fixed point of the disk E.

From (3.2) the value of the functional $\frac{-z_0 F''(-z_0)}{F'(-z_0)}$ obtained from (3.1) at the point $-z_0 = z$ is equal to:

$$\frac{zF''(z)}{F'(z)} = p - 1 + \alpha \frac{zf''(z)}{f'(z)} = p - 1 + \alpha \frac{2|z|^2 + 2b_2z}{1 - |z|^2}$$

where b_1 is the second coefficient of the function $g \in S$ in Maclaurin's expansion. Putting e = p - 1 - 2a in (2.8) and using the above equality we have

$$\begin{aligned} \left| (p-1-2\alpha)|z|^{2p} + (1-|z|^{2p}) \frac{zF''(z)}{F'(z)} - p + 1 \right| &= \\ &= \left| (p-1-2\alpha)|z|^{2p} + (1-|z|^{2p})\alpha \frac{2|z|^2 + 2b_2z}{1-|z|^2} - (p-1)|z|^{2p} \right| &= \\ &= 2|\alpha| \left| b_2 z(1+|z|^2 + \dots + |z|^{2(p-1)}) + |z|^2 (1+|z|^2 + \dots + |z|^{2(p-2)}) \right| &\leq \\ &\leq 2|\alpha|(3p-1) \ . \end{aligned}$$

In view of the assumption $|a| \le \frac{p}{6p-2}$ and the Corollary 2 we obtain the assertion of the theorem.

Remark. Using the criterion of p-valence stated in [2] for the function F(s) given by (3.1) we conclude that this function is p-valent if $|a| \le \frac{1}{6}$.

REFERENCES

- [1] Ahlfors, L. V., Sufficient condition for quasiconformal extension, Princeton Ann. of Math. Stud. 79 (1974), 23-29.
- [2] Avkhadiev, F.G., Aksent'ev, L.A., Results and problems concerning sufficient conditions for analytic functions to be of finite valence, (Russian), Isv. Vyel. Ucobn. Zaved., Matematika 10 (1986), 3-16.
- [3] Hallenbeck, D.J., Livingston, A.E., Subordination chains and p-valent functions, Notices Amer. Math. Soc. 23, January 1976, Abstract 731-30-6 p.A-99.
- [4] Miasga, J., Wesolowski, A., A Unwelence Creterion and the structure of Some Subclasses of Univalent Functions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A (1986), 153-161.

[5] Pommerenke, Ch., Uber die Subordination analytischer Punktionen, J. Raine Angew. Math. 218 (1965), 159-173.

STRESZCZENIE

W pracy podano warunek dostateczny p-listności (p liczba całkowita) funkcji analitycznych $f(z) \le E \setminus \{0\}$, $\lim_{z \to p} |z^{-p}f(z)| = 1$ (Twierdzenie 1). Storując ten warunek pokazano, że dla dodatniego i całkowitego p funkcje

$$F(z) = p \int_0^z t^{p-1} (f(t))^{\alpha} dt$$

sa p-listne w kole jednostkowym jesti $|\alpha| \leq \frac{p}{4p-2}$.