LUBLIN-POLONIA

SECTIO A

Dopartment of Matherntical Sáences University of Delaware, Newark
 Instyiut Matematylo UMCS

R.J.LIBERA, E.J.ZLOTKIEWICZ

 Bounded Functions with Symmetric Normalization

 Bounded Functions with Symmetric Normalization
 Funkcje ograniczone z symetryczną normalizacją

Abstract

Let $X(B)$ denote the dass of functione regular and univalent in the open unit disk Δ which sativify the conditions $f(-a)=-a, f(a)=a$ and $|f(z)|<B$, where $0<a<1$, $a<B$. The authom obtain several covering thoorerm for the dan $X(B)$ and its subclanses.

1. Introduction. A function $f(z)$, regular and univalent in the open unit disk $\Delta, \Delta=\{z:|z|<1\}$ is in class S if

$$
\begin{equation*}
f(0)=0 \quad \text { and } \quad f^{\prime}(0)=1 \tag{1.1}
\end{equation*}
$$

If, on the other hand,

$$
\begin{equation*}
f(0)=0 \text { and } f(a)=a, \tag{1.2}
\end{equation*}
$$

for some $a, 0<a<1$, then it is said to have Montel's normalization, [8], and is in class M. Furthermore, we will let $S(B)$ and $M(B)$ be subclasses of S and M, respectively, whose members satisfy the additional condition that $|f(z)|<B$ for $z \in \Delta$. This additional hypothesis makes the study of these subclasses both difficult and interesting, $[1,2]$.

The transformation of $(z) / f(a)$ carries members of S into M, consequently M inherits snme properties directly from S. However, the effectiveness of this rciationship breates down between $S(B)$ and $M(B)$. The normalizations for S and M play a significant role in the study of these classes (see [5], [6], [7], for example).

In our present work, we look at functions $f(z)$, regular and univalent in Δ, normalized so that

$$
\begin{equation*}
f(-a)=-a \quad \text { and } \quad f(a)=a \tag{1.3}
\end{equation*}
$$

for a fixed $a, 0<a<1$. We call this class $X . X(B)$ is the subclass of fuctions bounded by B. The class X is compact. Its normalization renders the subclasses
$X(B), S(B)$, and $M(B)$ quite independent. Consequently, $X(B)$ has properties not shared by other classes.

We will establish covering properties for $X(B)$ and some of its subclasses. Our methods make use of circular symmetrization [10] and a lemma established by J. Krzyí and E.Złotkjewicz [5].
2. Covering properties. The Koebe constant for a subset \mathbf{A} of either \mathbf{S} or \mathbf{M} is the radius of the largest disk centered at the origin contained in $f(\Delta)$ for each f in A. Since members of X may omit the origin, the classical Koebe constant for X is zera. However, it is meaningful to ask for its Koebe constants relative to a or -a. The symmetric normalization of X guarantees that if $f(x)$ is in X, then $-f(-x)$ is also, hence the Koebe constants relative to a and $-a$ are the same.

Theorem 1. Let $R=R(a, B)$ be given by the formula $R=|d-a|$, where

$$
\begin{equation*}
d=\hat{k}\left[\frac{k\left(\frac{a}{b}\right)-q k\left(-\frac{a}{b}\right)}{1-q}\right], \quad q=\left(\frac{1-a}{1+a}\right)^{4} \tag{2.1}
\end{equation*}
$$

and \hat{k} denotes the inverse of the Koebe function $k(z)=z /(1-z)^{2}$. Then

$$
\begin{equation*}
\{\omega:|\infty-a|<R\} \cup\{\infty:|\infty+a|<R\} \subset f(\Delta) \tag{2.2}
\end{equation*}
$$

for each $f(z)$ in $X(B)$. This result is the best possible.
Proof. Let $f(z)$ be in $X(B)$ and $D=f(\Delta)$. The compactness of $X(b)$ guarantees that there be a function in the class for which $\operatorname{dist}\{a, \partial D\}=R, R>0$.

Let $g\left(z, z_{0} ; D\right)$ be Green's function of D and let D^{*} be the domain obtained from D under circular symmetrization with respect to the ray $(-\infty, a)$. Then

$$
\begin{equation*}
g(a,-a ; \Delta)=g(a,-a ; D) \leq g\left(a,-a ; D^{\bullet}\right), \tag{2.3}
\end{equation*}
$$

as Green's function increases ander circular symmetrization [4].
Denote by K_{R} the domain obtained from the disk $|\propto|<B$ slit along the segment $[B-R, B]$, then

$$
\begin{equation*}
g\left(a,-a ; D^{\bullet}\right) \leq g\left(a,-a ; K_{R}\right), \tag{2.4}
\end{equation*}
$$

because $D^{\bullet} \subset K_{R}$. Now, if K_{d} is a domain like K_{R}, but slit along $|B-d, B|$, with d chosen so that $g\left(a,-a ; K_{d}\right)=g(a,-a ; \Delta)$, then, in view of (2.3) and $(2.4), d \leq R$. To conclude, it sufficies to find the mapping of Δ onto K_{d} which satisfies (1.3) and (2.1). This is done by the function $W(z)$ defined by

$$
k\left(\frac{W(z)}{B}\right)-k\left(\frac{d}{B}\right)=q\left[k(z)-\frac{1}{4}\right],
$$

where q is a constant determined by (2.1).
Since both $f(x)$ and $-f(-z)$ are always in our class, the proot is conclurted.
The Koebe set for the class $X(B)$ is the set common to all regions $f(\Delta], f(x)$ in $X(B)$, hence, it is $K=\bigcap_{f(s) \in X(B)} f(\Delta)$.

K may not be simply-connected for suitable choices of a. The fonction $W=W(z)$ normalized by (1.3) and defined by the equation

$$
\frac{i W B}{(M-i W)^{2}}=c\left[\frac{i z}{(1-i z)^{2}}+\frac{1}{4}\right]
$$

is in $X(B)$; and $W(z)$ maps Δ onto the disk given by $|W|<B$ fornished with a cut covering the segment $\left\{0, i B \mid\right.$, proviling $a \geq a_{0}$, with

$$
4 \operatorname{Arctan} a_{0}=2 \operatorname{Arctan}\left(\frac{a_{0}}{B}\right)+\frac{\pi}{2}
$$

Since $W(z)$ and $\overline{W(\bar{z})}$ are simultaneonsly in $X(B)$, the corresponding Koebe set is separated by the imaginary axis. This observation is consistent with the analogous result for the class of M of functions with Montel's normalization [5].

Our methods are not sufficient at this time to enable us to find the Koebe set of $X(B)$. However, we are able to give the analog of Theorem 1 for the subclass of $X(B)$ whose members map Δ anto a convex domain. We call this class $X^{c}(B)$.

Theorem 2. For each $f(z)$ in $X^{c}(B)$,

$$
\begin{equation*}
\{\infty||\infty-a|<R\} \cup\{\infty||w+a|<R\} \subset f[\Delta] \text {, } \tag{2.5}
\end{equation*}
$$

if $R=B \cos a-a, 0<a<\cos ^{-1}\left(\frac{9}{b}\right)$, a being a solution of the equation

$$
\begin{equation*}
\left|\sin \frac{\beta-\gamma}{2}\right|=\frac{2 a}{1+a^{2}}\left|\sin \left(\frac{\pi^{2}}{\alpha}+\frac{1}{2}(\beta+\gamma)\right)\right| \tag{2.6}
\end{equation*}
$$

with

$$
\begin{aligned}
& \beta=\frac{2 \pi}{a} \tan ^{-1} \frac{a \sin \alpha}{B-a \cos \alpha} \text { and } \\
& \bar{\gamma}=-\frac{2 \pi}{a} \tan ^{-1} \frac{a \sin \alpha}{B+a \cos a} .
\end{aligned}
$$

Proof. As symmetrization does not generally preserve convexity of domains we must modify the technique noed for Theorem 1.

Suppose $D=\int|\Delta|$ and $\omega_{0} \in \partial D$ with $\left|\omega_{0}\right|<B$. Becanse D is jonvex, there is a supparting segment of D, through w_{0}, which rogether with a properly chooen arc of the circle $|\infty|=B$ form the boundary of a convex domain G, with $D \subset G$. Then, the conformal invariance of Green's function and the above inclusion give

$$
\begin{equation*}
g(a,-a ; \Delta)=g(a,-a ; D) \leq g(a,-a ; G) \tag{2.7}
\end{equation*}
$$

The circular symmetrization of G with respect to the ray $\{x \in \mathbb{R}: x \leq 0\}$ gives the convex domain G°. Then, as in 'Theorem 1,

$$
\begin{equation*}
g(a,-a ; G) \leq g\left(a,-a ; G^{\bullet}\right) . \tag{2.8}
\end{equation*}
$$

Now, suppose

$$
\begin{equation*}
D_{h}=\{\infty:|x|<B \text { and } \operatorname{Re} \infty<h\} \text {, } \tag{2.9}
\end{equation*}
$$

for $a<h \leq B$. We know that $g\left(a,-a ; D_{h}\right)=g(a,-a ; \Delta)$, consequently

$$
\begin{equation*}
h \leq d \tag{2.10}
\end{equation*}
$$

for $d=\operatorname{dist}\left\{0, \partial G^{\bullet}\right\}$. Furthermore, equality holds in (2.10) if and only if $D_{h}=G^{\circ}$. This means that h is the Koebe constant for $X^{c}(B)$ with respect to a and -a.

To find the explicit form for $h, h=R$, as given in the theorem, we use the condition

$$
\begin{equation*}
g(a,-a ; \Delta)=g\left(a,-a ; D_{h}\right) . \tag{2.11}
\end{equation*}
$$

If $B e^{i \alpha}$ and $B e^{-i \alpha}$ are the end points of the segment satisfying Re $w=h$ and $|w| \leq B$, then

$$
\begin{equation*}
U(w)=\left(\frac{B e^{i \alpha}-w}{w-B e^{-i \alpha}}\right)^{\pi / \alpha} \tag{2.12}
\end{equation*}
$$

with $U(0)=e^{i \frac{y^{2}}{2}}$ maps D_{h} onto the lower half-plane, B.
Now, $g\left(z, z_{0} ; \Delta\right)=-\log \left|L\left(z, z_{0}\right)\right|$, where $L\left(z, z_{0}\right)=e^{i a} \frac{z-z_{0}}{z \bar{z}_{0}-1}, z_{0} \in \Delta$, and $g(z, \lambda ; E)=-\log |T(z, \lambda)|$, for $T(z, \lambda)=e^{i \theta}\left(\frac{z-\lambda}{z-\bar{\lambda}}\right), \operatorname{Im} \lambda<0$ and suitable θ. Letting $z=\boldsymbol{U}(\infty)$ in $T(z, \lambda)$ and evaluating constants appropriately reduces (2.11) to

$$
\begin{equation*}
\left|\frac{U(a)-U(-a)}{U(a)-\tilde{U(-a)}}\right|=\frac{2 a}{1+a^{2}} \tag{2.13}
\end{equation*}
$$

Then, setting $\beta=\frac{3 \pi}{\alpha} \operatorname{Arg}\left(B-a e^{-i \alpha}\right)$ and $\gamma=\frac{3 \pi}{\alpha} \operatorname{Arg}\left(B+a e^{-i \alpha}\right)$, yjelds the form

$$
\begin{equation*}
\frac{\left|\sin \frac{\beta-\gamma}{2}\right|}{\left|\sin \left[\frac{\pi^{2}}{\alpha}+\frac{(\beta+\gamma)}{2}\right]\right|}=\frac{2 a}{1+a^{2}} \tag{2.14}
\end{equation*}
$$

which is equivalent to (2.6).
3. An extremal problem. Let $\mid\left(\omega_{0}, \phi \mid\right.$ be the ray issuing from ω_{0} with incliuation ϕ, i.e,

$$
\begin{equation*}
l\left|w_{0}, \phi\right|=\left\{\infty_{0}: \infty_{0}+r e^{i \phi}, r \geq 0\right\} . \tag{3.1}
\end{equation*}
$$

If $f(z)$ is univalent in Δ, then let

$$
\begin{equation*}
\left.E[f(z), \phi]=f|\Delta| \cap| | \infty_{0}, \phi\right] \tag{3.2}
\end{equation*}
$$

and let $\mu(E|f(z), \phi|)$ be the Lebesgue measure of (3.2), (it may be $+\infty$).
Suppose now, that \boldsymbol{A} is a suitably defined family of functions univalent in Δ and with $w 0$ in $f[\Delta]$. Then one may pose the problem of finding

$$
\begin{equation*}
l(\phi)=\inf _{\lambda} \mu(E[f(z), \phi]) \tag{3.3}
\end{equation*}
$$

for $0 \leq \leq 2 \pi$.
This extremal problem is the radial analog of the omitted-arc problem resolved for S by Jenkins [3]. The solution to (3.3) for startike or convex subclasses of S , with $\omega_{0}=0$, gives the Koebe set for those classes. But it is not so in general.

We have no solation to (3.3) for X or $X(B)$. It seems plausible that the solution for X coincides with that for X^{\bullet} and for $X(B)$ it coincides with $X^{\bullet}(B)$. (X^{\bullet} and $X^{*}(B)$ denote the subfamilies of functions starlike with respect to the origin.) It would be useful to determine (3.3) for X and its subclasses with wo $=a$. However, at this time, we are able to handle the problem only for $X^{c}(B)$ and for odd members of $X^{\bullet}(B)$ with $w_{0}=0$; and, we resolve it by finding the Koebe set for each class.

The Koebe set for $X^{c}(B)$ is $K^{c}=\bigcap_{X^{0}(B)} \int\lfloor\Delta\rfloor$. It is a closed convex set containing a and -a. If $w=\rho e^{i \phi}$ is in ∂K^{c}, then $l(\phi)=|w|=\rho$, when $w_{0}=0$ in (3.1).

Our method depends on properties of Green's function which were established by J. Krzyz and En Zlotkiexicz [5]. They found Koebe sets for functions $f(z)$ onivalent in Δ for which $f(0)=a$ and $f\left(z_{0}\right)=b,\left(a, b\right.$ and z_{0} are fixed). Their work depended on the following lemma which we will use here.

Lemma [5]. suppose G is a class of simply connected domains in \mathbf{C} each containing the fired, distinct points a and b. let \mathbf{G}_{∞} be the subclass of \mathbf{G} whose members omit zo. Furthermore, if
(i) there is Ω_{ω} in \mathbf{G} such that for all Ω in \mathbf{G}_{ω},

$$
g(a, b ; \Omega) \leq g\left(a, b ; \Omega_{\infty}\right) \mp G(w ; G) ;
$$

(ii) $\left\{z: g\left(a, z ; \Omega_{\bullet}\right)>\delta\right\} \in G$ for all δ.

$$
0<\delta<g\left(a, b ; \Omega_{\hookleftarrow}\right) ;
$$

and
(iii) $\mathbf{G}_{\boldsymbol{\gamma}} \equiv\{\Omega \in \mathbf{G}: g(a, b ; \Omega)=\gamma\}$, for $\gamma>0$; then

$$
\bigcap \Omega=\{\infty: G(w ; G)<\gamma\}
$$

Now, let $\mathcal{F}\left(a,-a ; w_{0}\right)$ be the family of all convex domains D, each contained entirely in the disk $\{\infty:|\infty|<B\}$, including a and $-a$ but omitting the value w_{0}, with $\left|\infty_{0}\right|<B$. Because of the convexity, each member of the set is contained in a subdomain $D\left(\omega_{0}\right)$ bounded by an are satisifying $|\infty|=B$ and a segment through ω_{0} with end points on the anc. Consequently,

$$
\begin{equation*}
g\left(a_{1}-a_{i} D\right) \leq g\left(a_{1}-a_{i} D\left(\omega_{0}\right)\right) . \tag{3.4}
\end{equation*}
$$

Then to find the supremm of the right side of (3.4), we confine ourselves to domains of type $D\left(\infty_{0}\right)$ and apply the lemma

If w_{0} is a boundary point of K^{c}, it follows from the compactness of $X^{c}(B)$ that the corresponding domain $D\left(w_{0}\right)$ is the image of Δ under a function in the class and we may write

$$
\begin{equation*}
g(a,-a ; \Delta)=g\left(a,-a ; D\left(w_{0}\right)\right) . \tag{3.5}
\end{equation*}
$$

Now, because of the conformal invariance of Green's function, we may reatrict our search for extremal functions and extremal domains to like $D\left(w_{0}\right)$, in some optimal position, and to their images in the lower half-plane, (as was done in Theorem 2).

Fig. 1

Let us assume that the extremal domain appears as in Figure 1. Then a rotation through the angle $(-\alpha)$ gives a domain of the type $D\left(\omega_{0}\right)$, as shown in Figure 2 ; we call it $\bar{D}(100)$.

From Figure 2, we can see that

$$
\beta=\cos ^{-1}\left(\frac{\left|\infty_{0}\right| \cos \alpha}{B}\right) .
$$

Then, the function mapping $D\left(\infty_{0}\right)$ unto the lower half-plane B is

$$
\begin{equation*}
U(w)=\exp \left(i \frac{\pi^{2}}{\beta}\right)\left(\frac{B-e^{-i \beta_{w}}}{B-e^{i \beta} w}\right)^{\pi / \beta} . \tag{3.6}
\end{equation*}
$$

The invariance of Green's function guarantees that

$$
\begin{align*}
g\left(-a, a ; D\left(w_{0}\right)\right) & =g\left(-a, a ; D\left(w_{0}\right)\right)= \tag{3.7}\\
& =g\left(U\left(-a e^{-i \alpha}\right), U\left(a e^{-i o}\right) ; B\right)=\Phi\left(a, B, w_{0}, a\right),
\end{align*}
$$

where

$$
\begin{equation*}
\Phi\left(a, B, \infty_{0}, \alpha\right)=\left|\frac{U\left(a e^{-i \alpha}\right)-U\left(-a e^{-i \alpha}\right)}{U\left(a e^{-i \alpha}\right)-\overline{U\left(-a e^{-i \alpha}\right)} \mid}\right| \tag{3.8}
\end{equation*}
$$

We have nsed properties of mapping and Green's functions discussed in the proof of Theorem 2.

Finally, the extremal value for the problem corresponds to the choice α_{0}, of a for which

$$
\begin{equation*}
\Phi\left(a, B, \infty_{0}, \alpha\right)=\frac{2 a}{1+a^{2}} \tag{3.9}
\end{equation*}
$$

w_{0} is fixed in these compatations, however, a vanes as the segment $\left[P_{0}, P_{1}\right]$ through ω_{0}, (see Fig.1), is allowed to vary. We summarize our conclusion as the following thearem

Theorem 3. The Kocbe set for the family of conver functions in $X(B)$ is

$$
\begin{equation*}
\mathbf{K}^{\circ}=\left\{\infty: \Phi(a, B, \infty, \alpha) \leq \frac{2 a}{1+a^{2}}\right\} \tag{3.10}
\end{equation*}
$$

If $w_{0} \in \partial \mathbf{K}^{c},\left|w_{0}\right|=\rho<B$, then the corresponding extremal function maps Δ onto a domain bounded by an are of $|\varpi|=B$ uhose endpoints are joined by a segment through ω_{0}.

To conclude, we look at the analogous problem for bounded, odd starlike functions in X.

Theorem 4. The Kocbe set for the class of odd functions in $X^{0}(B)$ is given by

$$
\begin{equation*}
\left|\frac{B^{2} v+a^{2} \bar{w}}{B^{2}+|w|^{2}}-a\right|+\left|\frac{B^{2} w+a^{2} \overline{B^{2}}}{B^{2}+|v|^{2}}+a\right| \leq 1+a^{2} \tag{3.11}
\end{equation*}
$$

Purthermore, $l(\Phi)=|\infty|$ whenever $|\odot| e^{i \phi}$ gives equality in (3.11).
Proof. Let $G\left(a,-a ; \vartheta_{0}\right)$ be the family of domains boundsd by B, ptarlike and symmetric with respect to the origin ("odd" could be used to describe the latter), and omitting w_{0}. $\left|w_{0}\right|<B$. If $D \in G\left(a_{1}-a ; \omega_{0}\right)$, then the ray $\left\{\omega_{0}=\rho^{i a}\left|\rho \geq\left|\infty_{0}\right|\right\}\right.$ and its reflection in the origin, $\left\{\infty=p e^{(\alpha+\pi)}\left|p \geq\left|\omega_{0}\right|\right\}, \alpha=A r g \omega_{0}\right.$, are in the complement of D. Now, if $D\left(\varphi_{0}\right)$ is the disk $|\omega| \leq B$ slit along these rays, then

$$
\begin{equation*}
g(-a, a ; D) \leq g\left(-a, a ; \bar{D}\left(\varpi_{0}\right)\right) . \tag{3.12}
\end{equation*}
$$

To complete our proof, it suffices to find of(-a, $\left.a ; D\left(\infty_{0}\right)\right)$.

First, we rotate and dilate the domnin $\tilde{D}\left(x_{0}\right)$ by the transformation $s=\frac{s^{-i a}}{B}$. $\Delta \rho$, the image of $D\left(w_{0}\right)$ is the unit disk cut along the segments $[-1,-\rho \mid$ and $[\rho, 1]$, $\rho=\frac{\frac{18}{} \mathrm{O}}{B}$ and we let $b=\frac{a e^{-i \theta}}{B}$. Then, with $U=\frac{1+\rho^{2}}{2 \rho} \cdot \frac{f}{1+\rho^{2}}$, the transformation $Z=\frac{1-\sqrt{1-4 U^{2}}}{2 U}$ maps $\Delta \rho$ onto Δ. A compatation shows that

$$
\begin{equation*}
g(b, 0 ; \Delta \rho)=\log \left|\frac{2 U(b)}{1-\sqrt{1-4 U^{2}(b)}}\right|=\log \left|\frac{1+\sqrt{1-4 U^{2}(b)}}{2 U(b)}\right| \tag{3.13}
\end{equation*}
$$

Finally, an application of the lemma, gives the Koebe set for our class as

$$
\begin{equation*}
\left\{w:\left|1+\frac{\sqrt{1-4 U^{2}\left(\frac{c^{-i *} w}{B}\right)}}{2 U\left(\frac{\varepsilon^{-6 \cdot}}{8}\right)}\right| \leq \frac{1}{6}\right\} \tag{3.14}
\end{equation*}
$$

which is equivalent to (3.11). The second statement of Theorem 4 follows from the special character of the domains under consideration.

REFERENCES

[1] Duron, P.L. , Univalent fenctions, Springer-Vorlag, New York 1983.
(2] Goodman., A.W. , Univalent Finctions, I, II, Mariner Publishing Co., Tampa, Florida 1883.
[3] Jenkins, J.A. On oalues omitted by mivalent functions, Amor. J. Math. 75 (1953), 408-408.
[1] Krzys̀, J. G. , Circular symmetrization and Green's function, Bull. R.cad Polon., Sai., Sor. Sci. Math., Astr., of Phys. VII (1959), 327-330.
[S] Krsyi, J. G. , Ztotkiewics, E. J. . Koebe seta for arioclens functions with two preasoigned galses, Ann. Acad Sa. Fean. I. Math, 487 (197).
[B] Libera, R.J. Ztotkiewics, E. J. , Bounded Montel minalent fractions, Colloq. Mash., 86 (1988), 169-177.
[1] Libere, R.J. , Ztotkiewics, E.J. , Bounded savalent fenctions with two gred sathes, Complex Variables Theory Appl. 9 (1987), 1-14.
[8] Moniel, P. , Locons sur les fonctions snivalentes on mabivalentes, Guthior-Villam, Pais 1933.
[9] Notanyahu, E. , Pinchut, B. ,Symmetrisation and estremal bounded snivalent feno siong J. Anlyse Math., 38 (1979), 139-144.
[10] Nevanlinac, R. Aralytic Pinctione, Springor-Velag, Bertia 1970.
Aclanowled fement. Some of this work was done while the seoond aushor was a visitor at the Usivercity of Delawara.

STRESZCZENIE

Niech $X(B)$ osnacza haen funkcji regularnych i jednolistnych $\boldsymbol{\sim}$ kole jednostkowym Δ, spelniajacych warundi : $f(-a)=-a, f(a)=a$ oras $|f(z)|<B$ daz $\in \Delta$, gdrie $0<a<1$. a < B. W precy toj autorzy otrzymuj killa twierdses o doloryciu dla klasy $X(B)$ i jej podides.

