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Bounded Functions with Symmetric Normalization 

Funkcje ograniczone z symetryczną, normalizacją

Abstract. Let X(B) denote the class of functions regular and univalent in the open unit disk 
A which satisfy the conditions f(~a) — -a, /(a) = 0 and |/(z)| < B, where 0 < « < 1, 
a < B. The authors obtain several covering theorems for the clast X(B) and its subclasses.

1. Introduction. A function f(z), regular and univalent in the open unit disk 
A, A = {« : |i| < 1} is in class S if

(1.1) /(0) = 0 and /' (0) = 1 .

If, on the other hand,

(1.2) /(0) = 0 and /(«) = «,

for some a, 0 < a < 1, then it is said to have Montel’s normalization, [8], and is 
in class M. Furthermore, we will let S(B) and M(B) be subclasses of S and M, 
respectively, whose members satisfy the additional condition that |/(z)| < B for 
z € A. This additional hypothesis makes the study of these subclasses both difficult 
and interesting, (1,2).

The transformation o/(r)//(«) carries members of S into M, consequently M 
inherits some properties directly from S. However, the effectiveness of this relation
ship breaks down between S(B) and M(B). The normalizations for S and M play a 
significant role in the study of these classes (see [5], [6], [7], for example).

In our present work, we look at functions f(z), regular and univalent in A, nor
malized so that

(1.3) /(—a) = —a and /(a) = a ,

for a fixed a, 0 < a < 1. We call this class X. X(B) is the subclass of fuctions 
bounded by B. The class X is compact. Its normalization renders the subclasses
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X(B), S(B), and M(2?) quite independent. Consequently, X(B) has properties not 
shared by other classes.

We will establish covering properties for X(B) and some of its subclasses. Our 
methods make use of circular symmetrization [10] and a lemma established by
J.Krzyz and ElZlotkiewicz [5].

2. Covering properties. The Koebe constant for a subset A of either S or M 
is the radius of the largest disk centered at the origin contained in /(A) for each f 
in A. Since members of X may omit the origin, the classical Koebe constant for X 
is zero. However, it is meaningful to ask for its Koebe constants relative to o or —a. 
The symmetric normalization of X guarantees that if /(«) is in X, then -/(—x) is 
also, hence the Koebe constants relative to a and —a are the same.

Theorem 1. Lei R = R(a, B) be given by the formula R = |d - a|, where

(2-1)
1-

and k denote» the inverae of the Koebe function k(z) = z/(l - z)3. Then

(2.2) (w : |w — <x| < /?} U {w : |w + a| < J?} C /(A)

for each f(z) in X(B). Thia reault ia the beat poaaible.

Proof. Let/(z) beinX(P) and D = /(A). The compactness of X (6) guarantees 
that there be a function in the class for which dist{a, dD} = R, R > 0.

Let g(z,zo;D) be Green’s function of D and let D* be the domain obtained from 
D under circular symmetrization with respect to the ray (—oo, a]. Then

(2.3) g(a, -a; A) = j(a, -a; D) £ g(o, -a; D*) ,

as Green’s function increases under circular symmetrization [4],
Denote by Kg the domain obtained from the disk |w| < B slit along the segment

(2? — R, 2?], then

(2.4) g(a, -a; D*) < g(a, -a; Kg) ,

because D* C Kg. Now, if K» is a domain like Kg, but slit along [2? — d,2?], with 
d chosen so that g (a, - a; Kd) = y(a, —a; A), then, in view of (2.3) and (2.4), d < R. 
Tb conclude, it suffides to find the mapping of A onto Kd which satisfies (1.3) and 
(2.1). This is done by the function W(z) defined by

where q is a constant determined by (2.1).
Since both /(*) and —/(—z) are always in our class, the proof is concluded.

The Koebe set for the class X(B) is the set common to all regions /[A], /(*) in 
X(27), hence, it is K = f) /[A].

/(s)6X(S,
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K may not be simply-connected for suitable choices of a. The function IV = W (x) 
normalized by (1.3) and defined by the equation

iWB _ [ is 1]
(M - iW)1 ~‘1(1-is)’ + 4J

is in X(B) ; and W(s) maps A onto the disk gjven by |W| < B furnished with a cut 
covering the segment [0,iP], providing a > ao, with

4 Arctan ao = 2 Arctan(^) + .

Since W(s) and W(s) are simultaneously in X(B), the corresponding Koebe set is 
separated by the imaginary axis. This observation is consistent with the analogous 
result for the class of M of functions with Montel’s normalization [5].

Our methods are not sufficient at this time to enable us to find the Koebe set 
of X(B). However, we are able to give the analog of Theorem 1 for the subclass of 
X(B) whose members map A onto a convex domain. We call this class Xe (B).

Theorem 2. For eaeh f(t) in Xe(B),

(2.5) (w| |w - a| < B) U (w| |w + a) < R} C /(A) ,

if R = Beoso — a, 0 < a < cos-I(y), a being a solution of the equation

(2.6)

with

sin -

2x .-I a sin a
0=— tan"

a B — a cos or
2x a sin ar

7 - B + acoso

and

a

Proof. As symmetrization does not generally preserve convexity of domains we 
must modify the technique used for Theorem 1.

Suppose D — /[A] and wo € dD with |»o| < B. Because D is jonvex, there is a 
supporting segment of D, through wo, which together with a properly chosen arc of 
the circle |w| = B form the boundary of a convex domain G, with DcG. Then, the 
conformal invariance of Green's function and the above inclusion give

(2.7) f(«, A) = g(a, -a; D) < g(at -a; G) .

The circular symmetrization of G with respect to the ray (x € R.: x < a) gives the 
convex domain G*. Then, as in Theorem 1,

(2.8' f(a,-a;G) £ ?(a,-a;G*) .
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Now, suppose

(2:9) Pfc = (w : |w| < B and Re tr < A} ,
%

for a < h < B. We know that g(a, —a; Dh) — j(a, —a; A), consequently

(2.10) h < d ,

for d = dist{0,<X?*}. Furthermore, equality holds in (2.10) if and only if Dh = G*. 
This means that h is the Koebe constant for Xe(B) with respect to a and -a.

lb find the explicit form for h, h = R, as given in the theorem, we use the 
condition

(2.11) ?(«,—a; A) = j(a, -a; Dh) .

If Be’° and Be~,a are the end points of the segment satisfying Re w = h and | w| < B, 
then

(2.12)

f
with CZ(O) = e ’ maps 2? a onto the lower half-plane, H.

Now, f^,zo;A) = -log|L(i,zo)|. where L(z,«o) = e’“4:—*o 6 A, and 
«o — 1

g{x,X;H) = — logjr(r,A)|, forT(i,A) — «’*(-—=), ImA < 0 and suitable#. Letting 

t = if(w) in T(»,A) and evaluating constants appropriately reduces (2.11) to

(2.13)
| 17(a) - I7(-a) I _ 2a 
IU(a) - '(((-«)' “ 1+«’ ’

Then, setting (3 = Arg (B — ae~,a) and 7 = Arg (B + ae-*“), yields the form

|sin —— I 2a
214)

which is equivalent to (2.6).

S. An extremal problem. Let l{woi^] be the ray issuing from ®o with incli
nation Le.,

(3.1) i[wo, d] = {» : w = wo + re’* , r > 0} .

If /(z) is univalent in A, then let

(3.2) B(Z(z),^l = /[Aln/[w0,b|
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and let p(E\f(z), <>j) be the Lebesgue measure of (3.2), (it may be +oo).
Suppose now, that A is a suitably defined family of functions univalent in A and 

with wo in /[A]. Then one may po6e the problem of finding

(3.3) f(^) = infp(£?|/(s),«)),

for 0 < <t> < 2jt.
This extremal problem is the radial analog of the omitted-arc problem resolved 

for S by Jenkins [3], The solution to (3.3) for starlike or convex subclasses of S, 
with Wo = 0, gives the Koebe set for those classes. But it is not so in general.

We have no solution to (3.3) for X or X(B). It seems plausible that the solution 
for X coincides with that for X* and for X(B) it coincides with X*(B). (X* and 
X*(J?) denote the subfamilies of functions starlike with respect to the origin.) It 
would be useful to determine (3.3) for X and its subclasses with wo = «. However, 
at this time, we are able to handle the problem only for Xe(B) and for odd members 
of X*(B) with wo = 0 ; and, we resolve it by finding the Koebe set for each class.

The Koebe set for Xc (B) is Kc = Q /| A). It is a closed convex set containing 
X«(B)

a and —a. If w = pe'* is in 9Ke, then f(^) = |w| = p, when wo = 0 in (3.1).
Our method depends on properties of Green’s function which were established 

by J.Krzyz and E.Zlotkiewicz (5). They found Koebe sets for functions f(z) 
univalent in A for which /(0) = a and /(r9) = 6, (a,b and io axe fixed). Their work 
depended on the following lemma which we will use here.

Lemma [5]. Suppose G is a class of simp Ip connected domains in C each 
containing the fixed, distinct points a and b. let Gw be the subclass of G whose 
members omit w. Furthermore, if
(i) there is in G such that for all fl in Gw,

tt(a,b-,(l) <, ff(a,6-,n„) s G(w;G) ;

(ii) {z : g(a,z-, fiw) > 6} € G for all 6 ,

0 < 6 < j(a,6;0„) ;

and
(Hi) G-, s {0 € G : fl(a,t;O) = for 7 > 0 ; then

P| fi= {w:G(w;G)<7} . 
nec,

Now, let P(a ,-a;w0) be the family of all convex domains D, each contained 
entirely in the disk {w : |w| < B}, including a and —a but omitting the value wo, 
with |w0| < B. Because of the convexity, each member of the set is contained in a 
subdomain P(wo) bounded by an arc satisfying |w| = B and a segment through wo 
with end points on the arc. Consequently,

(3.4) g(a, -«;£) < jr(a,-a;£>(w0)) .
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Then to find the supremum of the right ride of (3.4), we confine ourselves to domains 
of type P(«o) and apply the lemma.

If vo is a boundary point of Kc, it follows from the compactness of Xe(B) that 
the corresponding domain £(w0) is the image of A under a function in the class and 
we may write

(3.5) j(a, —a; A) = g(a, -a; D(w0)) .

Now, because of the conformal invariance of Green’s function, we may restrict our 
search for extremal functions and extremal domains to like JD(wo), in some optimal 
position, and to their images in the lower half-plane, (as was done in Theorem 2).

Let us assume that the extremal domain appears as in Figure 1. Then a rotation 
through the angle (-a) gives a domain of the type P(vo), as shown in Figure 2 ; we 
call it D(vo).

From Figure 2, we can see that

3 = c<„-(fe2k2^).

Then, the function mapping P(»o) onto the lower half-plane H is 

,3,, '
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The invariance of Green’s function guarantees that

(3.7) f(-«,a;D(wo)) = ?(-«.«?-D (wo)) =
= f(i7(-fle-“),i7(ac-“);Æ) =«(<.,B,w0,o) ,

where

(3.8) 9(a,B,w0,a) \U(ae~ia) — U(—ae~ia)\
' f/(a«-'“) - [/(-ae-*“) I ’

We have used properties of mapping and Green’s functions discussed in the proof of 
Theorem 2.

Finally, the extremal value for the problem corresponds to the choioe oo» of a 
for which

(3.9) i(a,B,w0,a) = —.

wo is fixed in these computations, however, a vanes as the segment [Po,Pi] through 
wo, (see Fîg.l), is allowed to vary. We summarize our conclusion as the following 
theorem.

Theorem 3. The Koebe set for the family of eonvex functions in X(B) is

(3.10) K° = {«:»(«, B, w, o) < .

If w0 €. 9Ke , |w0| = p < B, then the corresponding extremal function maps A onto 
a domain bounded by an are of |w| — B whose endpoints are joined by a segment 
through wq.

Tb conclude, we look at the analogous problem for bounded, odd starlike func
tions in X.

Theorem 4. The Koebe set for the class of odd functions in X*(B) is given by

(3.H)
|BJw + «’w lB’w + a’w

& + IwP
£ 1 + a’- a + + «

Furthermore, !(♦) = |w| whenever |w|«’* gives equality in (3.11).

Proof. Let G(a, -a; w0) be the family of domains bounded by B, rtariike and 
symmetric with respect to the origin (“odd" could be used to describe the latter), 
and omitting wo , |w0| < B. If D 6 G(a, —a; wo), then the ray (w = pe‘o|p |w0|) 
and its reflection in the origin, (w = pe'*o+,)|p > |w0|) , a — Arg wo, are in the 
complement of D. Now, if D(w0) is the disk |w| < B slit along these rays, then

(3.12) f(-a,«;P) < i(-«,«;JP(w0)) .

lb complete our proof, it suffices to find 0(-a,a;.D(wo)).
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FSret, we rotate and dilate the domain jD(tr0) by the transformation (
Sfi, the image of -D(wo) is the unit disk cut along the segments [—1, — p) and [p, 1), 
p = 1^1 and we let b = . Then, with U = .the transformation

Z = maps Ap onto A. A computation shows that

(3.13) ;(6,0;Ap) = log
1- y/1

1 + v/l-417^(6) 
217(6)

Finally, an application of the lemma, gives the Koebe set for our class as

(3-14) 2CZ(^) I-;/

which is equivalent to (3.11). The second statement of Theorem 4 fellows from the 
special character of the domains under consideration.
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STRESZCZENIE

Niech X(B) oznacza klasa funkcji regularnych i jednolistnych w kole jednostkowym A, speł
niających warunki : /(—o) = —a, /(a) = O oraz |/('t)| < B dla Z € A, gdzie 0 < a < 1 , 
a < B W pracy tej autorzy otrzymują kilka twierdzeń o Dokryciu dla klasy X[B) i jej podldas.
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