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An Alternative Proof of a Result Due to Douady and Earle

Nowy dowéd pewnego twierdzenia Douady — Earle’a

Abstract. In this paper we give an alternative simple proof of a Theorern due to Douady
and Barle concerning homeomorphic extension of automorphisms of the unit arcle T. Taking into
account a result of J. Krzyz we investigate this extension in case of quasisymmetric automorphisms.

0. Introduction. In this paper we associate with any automorphism 7y of
the unit drcle T a mapping F, of the unit disc A onto itselfl. We show that the
mapping F, is a homeomorphiam of A onto itself which has a continuous extension
to the automorphism 7~ of T and satisfies the identity (1.3). In the spedal case
when 7 is a k—quasisymmetric automorphiem of T (see the Definition 2.3 in [5]) F,
is a K—quasiconformal automorphism of A and the constant K depends on k only.
In fact F;‘ = E(5), where E(v) is the mapping introduced by A. Douady and
C. J. Earle in [2]. However our definition of F, is formally different and smpler
that of E(7). This way we get alternative proofs of Theorems 1 and 2 established in

(2.

1. We denote by A the unit disc. For each z € A the M&bius transformation A,
of the closed diac & is given by the following fornmla

MO =15 €€B.

We also consider the cdass M of all M&bius transformations of A and this class
Auty of all automorphisms (i.e. sense—preserving homeomorphic self-mappings) of
the unit drcle T = 0A. Evidently

M= (N, :p€R, z€4}.
For any automorphism v € Autr we define

{+w
E_"lrl{l, 3 w€A.

(1.1) ols,0i7) = 5= / (he 0 7€) Re
T
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As shown by Choquet [1] the mapping
Adw — ¢(s,w;7) €A

is an automorphism of A for any fixed s € A and consequently there exists the
function w = Fy(z) defined implicitly by the equation

(1.2) #(z,0;9) =0,

This way we obtain the mapping Fy of A into itself. Moreover, the following
theorem holds :

Theorem 1.1.  For any automorphism 4 € Auty the mapping F, is an au-
tomorphism of A which has a continuous extension to the automorphism v~ of T.
Moreover

(1.3) F'“ ovom:q;|oﬂ,oqr'
Jor all Mgbius transformation 5,12 € M.

Proof. Let 4 € Auty. We first prove that F, is a cotinuous extension of the
automorphism ™! of T on A. Let z, € A, n = 1,2,... be a sequence which converges
to the paint 5 € & and let F,;(2n,) € A, k = 1,2,... be an arbitrary subsequence
of the sequence Fy(zn) € 4, n = 1,2,... . There exists a subsequence Fy(sn,, ),
I =1,2,... which converges to a certain point w € A. Assume that 3 € A. Then

(1.4) TR s 09(€) =As09(€)] =0 as n—o0.

If w € T then by (1.1), (1.4) and the properties of Poisson integral we have
l¢(3n.‘ )F‘x(zna, )i '7) —hs0 ‘7("’)' <

F. (2,
< 2 [ e, 07(6) = by 02(6)] Re Sp)
T

E -y F'r(‘n.,)
+ [¢(2,Fa(3n,, ;7] —hs o (w)| =0 asl— oo,

|d€1+

Therefore by (1.2) we get h, o4(w) = 0 which is impossible in view of b, 04(w) €
T. Thus w € A and in the limiting case we obtain

0= ll_lglo ¢(‘n~ np-y('n., )3‘7) = ¢(z,9;7) .
Hence w = F,(z) and this means that
nl-}_'%o Fy(zn) = Fa(a) .
Now we assume that s € T. Then

(1.5) hs,04(€) +3| =0 as »n— o0

€eT\1L,(2)
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where I,(s) = (€ €T : |- v"'(2)| < ¢} foralle,0 < e < 2. If €A then by the
bounded convergence theorem and the propertiea of Poisson integral we get

0= Jim o(any Fyfony o) = =
because of (1.5). This is a contradiction if s € T, whence w € T. H «© # 77! (z) then

— -
setting ¢ = l—.’—%—(ﬂl we obtain analogousaly by (1.1) and (1.5)

‘('a.‘. ;Ety(‘n.,);") =

=, 1 §+ 'I(hu,
- f (s, °1(E)+8lﬂtml‘€l+
I(z)
1 €+ F,(2n,,)
v [ ey a0+ 0) Re T -
T\ IL(s)
l D £+F1(l".‘ »
-8 o= | Re :K::Idﬂ—'—' as { — oo.
T

On the other hand due to (1.2) we have
JSim 6(zn,,, Fy(2n,,)i7) = 0
which is impossible because of 3 € T. This means that w = 77'(z) and
Tim_ Fy(sn) = 97 (2)

Now we show that (1.3) holds. Let n € M be any M3bius transformation and
z € A be fixed. By (1.1) the functions

A3 w—¢(z,0;709) €A
and with respect to the conformal invariance
Adw —ofz,n(wr)iy)EA

are the solution of Dirichlet problem for A with the boundary values A, 0o yog on T.
Hence and from (1.2) it follows that

0= 9(3- F-,..,(l):'] ° .) = 0(3." °quq('); 1)

and
0=ofs,Fy(z)i) .

This implies due to the Choquet theorem F,(3) = g 0 Feqts). Therefore

(1.6) F700=!-'°P7-



62 A. Lecko , D. Partyka

Since A, o‘q € M, there exist p € R and 3’ € A such that
(1.7) hion=¢"Ph, .
From (1.1) and (1.7) it follows that for any v € A
(1.8) #(z,03n07) = €¥¢(z', 0;9) .
Setting w = F,q,(2) in (1.8) we obtain
0= $(2, Faun(3);1 1) = €P$(6', Fyar (41

d by (1.2
e 0= ¢(z',Fy(2');7) -

This gives by virtue of the Choquet theorem that
(1.9) Foeq(2) = Fy(+') .

From (1.7) we have
hyon(s’) =®Phu(s') =0.

Hence g(s’) = z and by (1.9)
Faeq(z) = Fyon~2(2).

Thus
Frey=Fyo97™!

-and this together with (1.6) implies (1.3).

Now we will show that F,; : A — Auase.nse—pmerwng local diffeomorphiam.
Let us fix v € A. Weaetq.-k.o-yoh,.{.,eAubr By (1.3) we get

11.10) F, (0)=hp (g0 F,0 A} 0)=0

A aimple calculation gjves

T TN § a ([ Tol€) -2 /£+- ?+r)m|)

1-57e(6) \E—

Hence L f
8n$(0,0;v9) = '2';] Eve(£)ldE| =«
T

and similady
8u6(0,0:10) = 5= [ Ere(Oldel = 5.
T
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It has been shown (see [4], [1] and also [2]) that
(2.11) a2 =82 >0. '

The implicit fanction theorem, (1.2) and (1.10) imply that there exists a neigh-
bourhood U of 0 and exactly one continuously differentiable function U 3 z — u(2) €
A such that ¢(z,%(z);9«) = 0, for z € U and u(0) = 0. From Choquet theorem,
(2.2) and (1.10) it follows that F,_(z) = u(s) for + € U. Thus the mapping F,_ is
coatinuously differentiable in U and differentiating with respect z and ¥ at the point
3 = 0 both sides of the equation

(s, F, (2)i7e) =0
we obtain
58,(}'1.)(0} +58,{j 1.)(0) =1,
a0r(F1.)(0) + 0, TF00) = 5 [ (e)ldel =
T
whenoe
(1.12) O 77 P SR T L e

loP = 1P

faf = JopF -
I p € R eatisfies ¢ = |¢[¢*? then Re (—e™*?+3(€)) < 1 for any € € T and we have

= rj Re (~¢=* 3 (6))ld€] < 2= T/ jdel=1.

H |e| = 1 then vu(€) = ie*?/? for every £ € T, but this is impcesible Therefore
le] <1 and from (1.11) and (1.12) it {ollows that the Jacobian of the mapping F,_ at
3 =0 is positive, i.e.

(113) (1) O - 1or{F ) O)F = i > 0.

By (1.3), (1.10) and (1.13) we see that the mapping F; = l;:(_,} oF, ohyis
a sense—preferving diffeomorphism in the neighbourhood AZ'(U) of w. Furthermore,
as proved easlier, the mapping F, has a continuous extension an the circle T to the
antomorphism 4~ € Autr. Applying the argument principle we state that F, is a
diffeomorphism of A onto itsell. In fact F, is real analytic because of regularity of
the function A x A 3 (z,w) — ¢(2,w;9) € A and this ends the proof.

Corollary 1.2. For any automorphism 4 € Auty the mapping F;‘ is a real-
analytic diffeomorphism of the unit disc A onto itself which is a continuous extension
of 4 on A and for any Mdbius transformations g1, 93 € M the following eguality holds

Frtrens =moF om .
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Remark. As a metter of fact the mapping F; ! coincides with the mapping
E(v) found by Douady and Earle in [2]. In such a way we get an alternative proof
of the Theorem 1 from [2].

3. Lemxuma 2.1. [f an automorphism 4 € Auty is normalized by the equahty

(.) 2 [ 014el = 60,00 =0
T

then for every open arc I € T of length |I| < } x we have
(2:2) bl < §x.

Proof. Let I € T be an arbitrary open arc of length || = 3x. Without loss
of generality we may assume that —1 € T \ 7(J) and the arc 4(J) is symmetric with
respect to the real axis. Suppose that |y(f)| > § #. Then

I%,(, eNdel| 2 é,{, IRe ()| €] 2 - (1 - Izl—:l) = h%l g

>3 2 |o [t

1
and this contradicts (2.1). This proves the inequality (2.2).

Lermuma 2.3. If an automorphism 4 € Auty normalized by (2.1) has a K-
quasiconformal (K — ge¢) extension o on the unit disc A, 1 < K < oo, then

(2.3) lp(0)] S 6(K) = -;- + {-3- cot(% + arccos Py (-?))

where &y = p"(* p) and p(r), 0 < r < 1, is the module of the ring domain
a\[0,r], (see [7)).

Proof. Let 4 € Auty be an arbitrary automorphism satisfying the assumption
of the lemma. Without loss of generality we may assume that (0) = —a, where
0 € a < 1. By the Darboux principle there exists an open arc I € T of length
7] = ix such that the arc y([) is symmetric with respect to the real axis and
contains the point 1. Denoting by w(s, J) the harmonic measure in A we have

(2.4) Fl{' #lcos 3w(0,1)) < u(cos Fuw(w(0), (1))

because of the quasi-invariance of the harmonic meusure, (see [3]). Putting in (2.4)
= ¢ x we get
)

(23) con Zu(p(0),7(1)) < x (%
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Since

o(-a,1(D) = w(0.h-a((1))) = E=st

ther applying (2.5) we obtain

(2.6) IA—a(7(1))] 2 darccos ¢K(

}:

~|a

From (2.2) it follows that fora >

i}t i
INET us(—‘—’.“;—

14+ac's”

and the desired formmula (2.3) follows in view of (2.8).

)=-fl+mm2‘_l

Definition 3.3. A sense—preserving automorphism 4 of T is said to be a k-
quasisymmetric (k—qs) automorphiam of T if and only if for any pair },J3 € T of
disjoint adjacent open subarc of T of eqaal lengths |I;| = |I3] the inequality

(2.1) "Y(h)| £ kly(h)]
halds, (see (5])

Theorem 3.4. If an automorphism 4 € Auty is k-¢5,1 S k < 0o, then F, is
K* -gc mapping of A onto itself where the constant K* depends only on k.

Proof. To start with we shall show that for any k—qs automorphism v € Auty,
1 € k < oo the fallowing inequalities hald :

(2.8) le] < cos -(_l%)-’_ '
ﬁ ) i x
(29) laf? — B 2 ( s ,,) ey

For any points z;,23 € T, 3, # 33, (3, 23) stands for the subarc {3 € T:arg 5; <
arg z < wig z3) of T. Let us fix £ € T and let oy = [4(I(i*"¢,¢'€))|, I = 1,2,....
By (2.7) we have for any | = 1,2,3, 4,

]
£

o tajy) S T+ k

Consequently there exists { such that

2x
(1+k&)?

SqySaoys <

x
1+
Therefore g
3 . 2Ax
Ig (s £)| < 2|cos oy| + 2| cos ay43| < dcos (TEY
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for every € € T and this leads to

= 5| [ P@ae| = 7| Z’""""""I-“’(Hk)’'
T

1(1,4)
Now, for any ¢ € R and s € [0, x| we define
Bi(t,®) = |a(I(e", )],
Ba(t, ‘) = I?(I(“('+u}s"¢i'))l )

Ba(tyw) = |y(I(=¢", =),
Balt,w) = h‘(’("‘“l*'}t‘“))l .

By (2.7) we have

2xk

m$3l(‘+')+pl+l(‘+‘)$ l+k' l=l|2

and hence
(2.10) Y sing,(t,9) =
nml
“inﬁ.(t, -)-;p,(t,-) 'hh(l.s)-;-ﬂ:(l,u) in ﬁ.(t.-)zﬁ,(z,-)

v

x
1+k

Bt +Ar(tn) 5 o

2 4(sin )'-in :

Applying again the inequality (2.7) we obtain for any ¢ € R and s € [%, ¥x] the
following inequalities

Bilt,e) + (%) 2A(EE5)+60E)2 m[ﬂ.(t $+40.5)] 2 —k—l;

and similary &
Bat,e) + Ba(tyv) 2 TR
Therefore
(2.11) (T:-‘T); S Bi(t,w)+ Bs(t,u) < 2x il—:'_k)i .
As shown in (1]
3r ¢
3 _ 12 = . sin Bn(t,u) dt) du .
off - P = (5; )/(-me/gm (1 e) 1)
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Hence by (2.10), (2.11) we get the estimate (2.9). Let us consider any k—qs auto-
morphism 4 € Auty, 1 £ k < co. It follows from the Theorem 1.1 that F, is a
sense—preserving diffeomorphism of A onto itself. We shall estimate its complex di-
latatioa in A. Setting 4o = hy 0 05;_:“' € Auty for any w € A we have by
(1.3)

Fro = hpw) o Fy 0 b7

and hence

01Fy,(0)| _ | 91Fy(w)
(2.12) SF0 = aFw|

It fallows from the Theorem 2 [5] that the automorphism 4 admits K—qc extension ¢
on A and the constant K depends on k only. Then the mapping pe = h.opoh;:‘.‘
is a K—qc extension of 40 on A and

2 [ (@ ldel = s(0,0:70) =0,
T

in view of F,_(0) = 0 and (1.2). Thus by the Lemma 2.2 we get
(2.13) lpw(0)] < 6(K) .

Since *p.(D) o e 18 K —qc mapping of A onto itself such that k\"-(ol o pe(0) =0
then by virtue of the Theorem 1 [5] we obtain that ki"-(ﬁ) © Tw 18 the A(K)—gs
automorphism of T where

AE) = [ (5] 7 -

is the distortion function [7]. With regard to (2.13) we derive that 7, is the ky,—qs
automorphism of T where

(Lt leulOly?, g ¢ (148D

ke = \TTleu0)l/ ~3(K)

) A(K) .
Hence by (1.12), (1.13), (2.3), (2.8), (2.9).and (2.12) we get for any w € A

_ | Fy(e) 2 _ (1= feP)(al? - [87)

>
TRl T E-ap C
x . - x
2 1?5(“ (1+k.)’) ('“'H-k ) WOTERp 2
Jz Y 2? 22 64 -
2T UTh) Uk (T+k) P+ k)p 2
L8 k) \*

2o e 0d) -1/
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o 1+ 6(K)\? V3 -1
(Sam) =30 ¢)-1) -
Thus

Dbl el <oy, _BME) ) )

8. F5 (o) = BrF>(e)] = “\"ea\' ¥ oy

= %(1 @ () -1)7") -2=k°

for every v € A so F, is the K°—qc mapping of A onto itself. Following the proof of
the Theorem 2 [5] and applying the estimate from (6] we get K € min{k*/?,2k - 1)
and this means that the constant K* depends only on k. This way we are done.

Remark. It follows from the proof of the above theorem and Corallary 1.2
that the mapping F; ' is a K™ —qc extension of the automorphism 4 € Auty on A if
and only if 4 admits a K —qc extension on A. This way we get an alternative proof of
the Theorem 2 from [2].
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STRESZCZENIE

W pracy podany jest nowy, prasty dowéd twierdaefi 1 i 2 usyslanych praea A- Douady i
C. J. Barle w pracy (2], dotyaacych homeomorficnych romsaersest automorfizméw okregu jednos-
tkowego T.Stosujac wynik J. Krayia [5) badamy te rozesersenia w prsypadku quasisy metrycanych
An'lmﬁnxﬁw okregu T.



