LUBLIN-POLONIA

Instytut Matomatyli UMCS

A. LECKO , D. PARTYKA

An Alternative Proof of a Result Due to Donady and Earle

Nowy dowód pewnego twierdzenia Douady - Earle'a

Abstract

In this paper we give an alternative aimple proof of a Theorem due so Douady and Earle concerning homsomorphic extension of automorphiam of the unit circle T. Taling into ecoount a result of J. Krzyż wo investigate this extenaion in case of quasisymmetric automarphioms.

0. Introduction. In this paper we associate with any automorphism γ of the unit circle T a mapping F, of the unit disc Δ onto itself. We show that the mapping F_{γ} is a homeomorphiam of Δ onto itself which ias a continuous extension to the automorphism γ^{-1} of T and satisfies the identity (1.3). In the special case when γ is a k-quasisymmetric automorphism of T (see the Definition 2.3 in [5]) F_{γ} is a K-quasiconformal automorphism of Δ and the constant K depends an k only. In fact $F_{\gamma}^{-1}=E(\gamma)$, where $E(\gamma)$ is the mapping introduced by A. Douady and C. J. Earle in [2]. However our definition of F_{7} is formally different and simpler that of $E(\gamma)$. This way we get alternative proofs of Theorems 1 and 2 established in [2].
1. We denote by Δ the unit disc. For each $z \in \Delta$ the Möbius transformation h_{z} of the closed diac $\bar{\Delta}$ is given by the following formula

$$
h_{z}(\xi)=\frac{\xi-z}{1-\Sigma \xi}, \quad \xi \in \bar{\Delta} .
$$

We also consider the class M of all Möbius transformations of $\bar{\Delta}$ and this class Autr of all automorphisms (i.e. sense-preserving homeomorphic self-mappings) of the anit circle $T=\boldsymbol{\sigma} \Delta$. Evidently

$$
M=\left\{e^{\bullet \bullet} h_{z}: \varphi \in \mathbf{R}, z \in \Delta\right\}
$$

Por any automorphism $\gamma \in$ Autr we define

$$
\begin{equation*}
\phi(z, w ; \gamma)=\frac{1}{2 \pi} \int_{T}\left(h_{z} \circ \gamma\right)(\xi) \operatorname{Re} \frac{\xi+w}{\xi-w}|d \xi|, \quad z, \in \in د . \tag{1.1}
\end{equation*}
$$

As shown by Choquet [1] the mapping

$$
\Delta \ni \varpi \rightarrow \phi(z, w ; \gamma) \in \Delta
$$

is an automorphism of Δ for any fixed $z \in \Delta$ and consequently there exists the function $u=F_{\gamma}(x)$ defined implicitly by the equation

$$
\begin{equation*}
\phi(x, \infty ; \gamma)=0 . \tag{1.2}
\end{equation*}
$$

This way we obtain the mapping F_{7} of Δ into itself. Mareover, the following theorem holds :

Theorem 1.1. For any automorphism $\gamma \in$ Aut T_{T} the mapping F_{γ} is an automorphism of Δ which has a continuous extension to the automorphism γ^{-1} of T. Moreover

$$
\begin{equation*}
F_{\eta_{1}} \circ \gamma \circ \eta_{2}=\eta_{2}^{-1} \circ F_{7} \circ \eta_{1}^{-1} \tag{1.3}
\end{equation*}
$$

for all Möbius transformation $\eta_{1}, \eta_{7} \in M$.
Proof. Let $\gamma \in$ Ant. We first prove that F_{γ} is a cotinuous extension of the automorphism $\boldsymbol{\gamma}^{-1}$ of T on Δ. Let $z_{n} \in \Delta, n=1,2, \ldots$ be a sequence which converges to the point $z \in \bar{\Delta}$ and let $F_{\gamma}\left(z_{n_{\beta}}\right) \in \Delta, k=1,2, \ldots$ be an arbitrary subeequence of the sequence $F_{\gamma}\left(z_{n}\right) \in \Delta, n=1,2, \ldots$. There exists a subsequence $F_{7}\left(z_{n n_{1}}\right)$, $l=1,2, \ldots$ which converges to a certain point $w \in \bar{\Delta}$. Assume that $z \in \Delta$. Then

$$
\begin{equation*}
\cdot \max _{\xi \in T}\left|h_{z_{0}} \circ \gamma(\xi)-h_{z} \circ \gamma(\xi)\right| \rightarrow 0 \text { as } n \rightarrow \infty \tag{1.4}
\end{equation*}
$$

If $w \in T$ then by (1.1), (1.4) and the properties of Poisson integral we have

$$
\begin{aligned}
& \left|\phi\left(z_{n_{1},}, F_{\gamma}^{\prime}\left(z_{n_{1}}\right) ; \gamma\right)-h_{s} \circ \gamma(w)\right| \leq \\
& \leq \frac{1}{2 \pi} \int_{T}\left|h_{z_{0 s_{8}}} \circ \gamma(\xi)-h_{z} \circ \gamma(\xi)\right| \operatorname{Re} \frac{\xi+F_{\gamma}\left(z_{n_{i_{1}}}\right)}{\xi-F_{\gamma}\left(z_{n_{i_{1}}}\right)}|d \xi|+ \\
& +\mid \phi\left(z, F_{\gamma}\left(z_{n_{1}}\right) ; \gamma\left|-h_{8} \circ \gamma(w)\right| \rightarrow 0 \text { as } l \rightarrow \infty\right. \text {. }
\end{aligned}
$$

Therefore by (1.2) we get $h_{z} \circ \gamma(w)=0$ which is impossible in view of $h_{z} \circ \gamma(w) \in$ T. Thus $\in \Delta$ and in the limiting case we obtain

$$
0=\lim _{i \rightarrow \infty} \phi\left(z_{n_{i j}}, F_{\gamma}\left(z_{n_{1}}\right) ; \gamma\right)=\phi(z, \infty ; \gamma) .
$$

Hence so $=F_{\gamma}(x)$ and this means that

$$
\lim _{n \rightarrow \infty} F_{\gamma}\left(z_{n}\right)=F_{7}(z) .
$$

Now we assume that $z \in T$. Then

$$
\begin{equation*}
\xi \in T \backslash \max _{\varepsilon}(z)\left|h_{z_{\sigma}} \circ \gamma(\xi)+x\right| \rightarrow 0 \text { as } n \rightarrow \infty \tag{1.5}
\end{equation*}
$$

where $J_{s}(z)=\left\{\xi \in T:\left|\xi-\gamma^{-1}(z)\right|<e\right\}$ for all $c, 0<e<2$. If $\omega \in \Delta$ then by the bounded convergence theorem and the properties of Poisson integral we get

$$
0=\lim _{1 \rightarrow \infty} \phi\left(z_{n_{4}}, F_{7}\left(z_{n_{1-1}}\right) ; \gamma\right)=-2
$$

because of (1.5). This is a contradiction if $z \in T$, whence $ш \in T . \mathbb{K} \propto \neq \gamma^{-1}(z)$ then setling $=\frac{\left|v-\gamma^{-1}(z)\right|}{2}$ we obtain analogously by (1.1) and (1.5)

$$
\begin{aligned}
& \phi\left(z_{n_{1},}, F_{\gamma}^{\prime}\left(z_{n_{1}}\right) ; \gamma\right)= \\
& =\frac{1}{2 \pi} \int_{I_{6}(z)}\left(h_{z_{z_{z_{i}}}} \circ \gamma(\xi)+z\right) \operatorname{Re} \frac{\xi+F_{7}\left(z_{n_{z_{1}}}\right)}{\xi-F_{7}\left(z_{n_{z_{1}}}\right)}|d \xi|+ \\
& +\frac{1}{2 \pi} \int_{T \backslash I_{0}(z)}\left(h_{z_{0 z_{q}}} \circ \gamma(\xi)+z\right) \operatorname{Re} \frac{\xi+F_{7}\left(z_{m_{\nu_{1}}}\right)}{\xi-F_{7}\left(z_{m_{s_{1}}}\right)}|d \xi|- \\
& -z \frac{1}{2 \pi} \int_{T} \text { Re } \frac{\xi+F_{7}\left(z_{n_{\beta_{1}}}\right)}{\xi-F_{7}\left(z_{n_{\delta_{4}}}\right)}|d \xi| \rightarrow-s \text { as } \quad i \rightarrow \infty \text {. }
\end{aligned}
$$

On the other hand due to (1.2) we have

$$
\lim _{1 \rightarrow \infty} \phi\left(z_{n_{1},}, F_{y}\left(z_{m_{1}}\right) ; y\right)=0
$$

which is impossible because of $z \in T$. This means that $w=\gamma^{-1}(z)$ and

$$
\lim _{n \rightarrow \infty} F_{7}\left(z_{n}\right)=\gamma^{-1}(x)
$$

Now we show that (1.3) holds. Let $\eta \in M$ be any Möbius transformation and $z \in \Delta$ be fixed. By (1.1) the functions

$$
\Delta \ni \oplus \rightarrow(z, \omega ; \gamma \circ \eta) \in \Delta
$$

and with respect wo the conformal inveriance

$$
\Delta \ni \bullet \rightarrow \varnothing(2, \eta(\infty): \gamma) \in د
$$

are the solution of Dirichlet problem for Δ with the boundary values $h, \gamma \circ$ on T. Hence and from (1.2) it follows that

$$
0=\varnothing\left(z, F_{7 \circ \eta}(z) ; \gamma \circ \eta\right)=\varnothing\left(z, \eta \circ F_{709}(z) ; \gamma\right)
$$

and

$$
0=\phi\left(z, F_{\gamma}(z) ; \gamma\right) .
$$

This implies due w the Choquet theorem $F_{\gamma}(s)=\eta \circ F_{y \text { pq }}(z)$. Therefore

$$
\begin{equation*}
F_{7 \circ \eta}=\eta^{-1} \circ F_{7} . \tag{1.0}
\end{equation*}
$$

Since $h_{z} \circ \eta \in \mathcal{M}$, there exist $\varphi \in \mathbf{R}$ and $z^{\prime} \in \Delta$ such that

$$
\begin{equation*}
h_{s} \circ \eta=e^{i p} h_{5} \tag{1.7}
\end{equation*}
$$

From (1.1) and (1.7) it follows that for any $w \in \Delta$

$$
\begin{equation*}
\phi(z, \infty ; \eta \circ \gamma)=e^{i \oplus} \phi\left(z^{\prime}, \infty ; \gamma\right) \tag{1.8}
\end{equation*}
$$

Setting $\omega=F_{\text {nof }}(z)$ in (1.8) we obtain

$$
0=\phi\left(z, F_{\eta \circ \gamma}(z) ; \eta \circ \gamma\right)=e^{i \varphi} \phi\left(z^{\prime}, F_{\eta \circ \gamma}(z) ; \gamma\right)
$$

and by (1.2)

$$
0=\phi\left(x^{\prime}, F_{\gamma}\left(z^{\prime}\right) ; \gamma\right) .
$$

This gives by virtue of the Choquet theorem that

$$
\begin{equation*}
F_{9 \circ 7}(z)=F_{\gamma}\left(z^{\prime}\right) \tag{1.9}
\end{equation*}
$$

From (1.7) we have

$$
h_{z} \circ g\left(z^{\prime}\right)=e^{i p} h_{z^{\prime}}\left(z^{\prime}\right)=0 .
$$

Hence $q\left(s^{\prime}\right)=8$ and by (1.9)

$$
F_{\eta \circ \gamma}(z)=F_{\gamma}^{\prime} \circ \eta^{-1}(z)
$$

Thus

$$
F_{\eta \circ \gamma}=F_{\gamma} \circ \eta^{-1}
$$

-and this together with (1.6) implies (1.3).
Now we will ahow that $F_{\gamma}: \Delta \rightarrow \Delta$ is a sense-preserving local diffeomorphiam. Let us fix $\emptyset \dot{\in} \Delta$. We set $\gamma_{\bullet}=A_{0} \circ \gamma \circ h_{F_{7}(ш)}^{-1} \in$ Arts. By (1.3) we get

$$
\begin{equation*}
F_{\gamma-}(0)=h_{F_{\gamma}(\emptyset)} \circ F_{\gamma} \circ h_{w}^{-2}(0)=0 . \tag{1.10}
\end{equation*}
$$

A simple calculation gives

$$
\partial_{u} \phi\left(x, v_{i} \gamma_{v}\right)=\frac{1}{4 \pi} \partial_{u}\left(\int_{\tau} \frac{\gamma_{\omega}(\xi)-\varepsilon}{1-\bar{z} \gamma_{v}(\xi)}\left(\frac{\xi+\varepsilon}{\xi-\varepsilon}+\frac{\bar{\xi}+\bar{z}}{\bar{\xi}-\bar{z}}\right)|d \xi|\right)
$$

Hence

$$
\partial_{n} \phi\left(0,0_{i} \gamma_{\omega}\right)=\frac{1}{2 \pi} \int_{T} \bar{\xi} \gamma_{\omega}(\xi)|d \xi|=e
$$

and similady

$$
\operatorname{dos}_{\omega}\left(0,0 ; \gamma_{\omega}\right)=\frac{1}{2 \pi} \int_{T} \xi \gamma_{\omega}(\xi)|d \xi|=b
$$

It has been shown (see [4], [1] and also [2]) that

$$
\begin{equation*}
|a|^{2}-|b|^{2}>0 \tag{1.11}
\end{equation*}
$$

The implicit function theorem, (1.2) and (1.10) imply that there exists a neighbourbood U of 0 and exactly ane continuously differentiable function $U \ni z \rightarrow z(z) \in$ Δ such that $\phi\left(z, z(z) ; \gamma_{0}\right)=0$, for $z \in U$ and $\varepsilon(0)=0$. From Choquet theorem, (1.2) and (1.10) it follows that $F_{7_{0}}(z)=u(z)$ for $z \in U$. Thus the mapping F_{70} is continuously differentiable in U and differentiating with respect z and $\bar{\Sigma}$ at the point $s=0$ both sides of the equation

$$
\phi\left(x, F_{\gamma_{\theta}}(z) ; \gamma_{\omega}\right)=0
$$

we ubtain

$$
\begin{aligned}
& a \partial_{s}\left(F_{\gamma_{\Delta}}\right)(0)+b \overline{\partial_{\pi}\left(F_{\gamma_{\Delta}}\right)(0)}=1 \\
& a \partial_{T}\left(F_{\gamma_{\Delta}}\right)(0)+b \overline{\partial_{s}\left(F_{\gamma_{-}}\right)(0)}=-\frac{1}{2 \pi} \int_{T} \gamma^{2}(\xi)|d \xi|=c
\end{aligned}
$$

whence

$$
\begin{equation*}
\partial_{s}\left(F_{\tau_{v}}\right)(0)=\frac{\bar{a}-\bar{c} b}{|a|^{2}-|b|^{2}} \quad, \quad \partial_{\tau}\left(F_{\gamma_{0}}\right)(0)=\frac{\bar{c} c-b}{|a|^{2}-|b|^{2}} . \tag{1.12}
\end{equation*}
$$

If $\varphi \in \mathbf{R}$ satiafies $c=|e| e^{i p}$ then $\operatorname{Re}\left(-e^{-i p} \gamma_{p}^{2}(\xi)\right) \leq 1$ for any $\xi \in T$ and we have

$$
|c|=\frac{1}{2 \pi} \int_{T} \operatorname{Re}\left(-e^{-i \varphi} \gamma_{\phi}^{2}(\xi)\right)|d \xi| \leq \frac{1}{2 \pi} \int_{T}|d \xi|=1
$$

If $|c|=1$ then $\gamma_{\oplus}(\xi)=i e^{6 p / 2}$ for every $\xi \in T$, but this is impossible. Therefore $|c|<1$ and from (1.11) and (1.12) it follows that the Jacobian of the mapping $F_{7 \text { o }}$ at $s=0$ is positive, i.e.

$$
\begin{equation*}
\left|\partial_{\Sigma}\left(F_{\gamma_{0}}\right)(0)\right|^{2}-\left|\partial_{\bar{z}}\left(F_{\gamma_{0}}\right)(0)\right|^{2}=\frac{1-|e|^{2}}{|a|^{2}-|b|^{2}}>0 \tag{1.13}
\end{equation*}
$$

By (1.3), (1.10) and (1.13) we see that the mapping $F_{7}=h_{F_{7}(0)}^{-1} \circ F_{7_{0}} \circ h_{0}$ is a sense-preserving diffeomorphism in the neighbourhood $h_{\infty}^{-1}(U)$ of ω. Farthermore, as proved earlier, the mapping F_{7} has a continuous extension on the circle T to the antomorphism $\boldsymbol{\gamma}^{-1} \in$ Autr. Applying the argament principle we state that F_{γ} is a diffeomorphism of Δ onto itself. In fact F_{γ} is real analytic because of regularity of the function $\Delta \times \Delta \ni(x, \infty) \rightarrow \phi(z, \varphi ; \gamma) \in \Delta$ and this ends the proof.

Corollary 1.2. For any automorphism $\gamma \in$ Aatr the mapping F_{γ}^{-1} is a realanalytic diffeomorphism of the unit dise Δ onso itself which is a continuous extension of γ on Δ and for any Möbius transformations $\eta_{1}, \eta_{2} \in M$ the following equality holds

$$
F_{\eta_{1} \circ 7 \circ \eta_{2}}^{-1}=\eta_{1} \circ F_{7}^{-1} \circ \eta_{2} .
$$

Remark. As a metter of fact the mapping F_{7}^{-1} coincides with the mapping $E(\gamma)$ found by Douady and Earle in [2]. In such a way we get an alternative proof of the Theorem 1 from [2].
2. Lemma 2.1. If an automorphism $\gamma \in A u t_{T}$ is normalized by the equatity

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{T} \gamma(\xi)|d \xi|=\phi(0,0 ; \gamma)=0 \tag{2.1}
\end{equation*}
$$

then for every open are $I \subset T$ of length $|I| \leq \frac{?}{3}$ we have

$$
\begin{equation*}
|\gamma(I)| \leq \frac{1}{2} \pi . \tag{2.2}
\end{equation*}
$$

Proof. Let $I \subset T$ be an arbitrary open arc of length $|I|=\frac{2}{3} \pi$. Without loss of generality we may assume that $-1 \in T \backslash \gamma(I)$ and the are $\gamma(I)$ is symmetric with respect to the real axis. Suppose that $|\gamma(I)|>\frac{1}{3} \pi$. Then

$$
\begin{aligned}
\left|\frac{1}{2 \pi} \int_{T V} \gamma(\xi)\right| d \xi|\mid & \geq \frac{1}{2 \pi} \int_{\pi V}|\operatorname{Re} \gamma(\xi)||d \xi| \geq-\left(1-\frac{|I|}{2 \pi}\right) \cos \frac{|\gamma(J)|}{2}> \\
& >\frac{1}{3} \geq\left|\frac{1}{2 \pi} \int_{1} \gamma(\xi)\right| d \xi| |
\end{aligned}
$$

and this contradices (2.1). This proves the inequality (2.2).
Lemma 2.2. If an automorphism $\gamma \in$ Auts normalized by (2.1) has a K quasiconformal (k-ge) extension p on the unit disc $\Delta, 1 \leq K<\infty$, then

$$
\begin{equation*}
|\varphi(0)| \leq \delta(K)=\frac{1}{2}+\frac{\sqrt{3}}{2} \cos \left(\frac{\pi}{3}+\arccos \Phi_{K}\left(\frac{\sqrt{3}}{2}\right)\right) \tag{2.3}
\end{equation*}
$$

where $\Phi_{K}=\mu^{-1}\left(\frac{1}{K} \mu\right)$ and $\mu(r), 0<r<1$, is the module of the ring domain $\Delta \backslash[0, r]$, (see [7]).

Proof. Let $\gamma \in$ Autr be an arbitrary automorphism satisfying the assumption of the lemma. Without loss of generality we may assume that $f(0)=-a$, where $0 \leq a<1$. By the Darboux principle there exists an open arc $I \subset \mathbf{T}$ of length $|I|=\frac{2}{8} \pi$ such that the arc $\gamma(I)$ is symmetric with respect to the real axis and contains the point l. Denoting by $w(z, J)$ the hamonic measure in Δ we have

$$
\begin{equation*}
\frac{1}{K} \mu\left(\cos \frac{\varphi}{3} \omega(0, I)\right) \leq \mu\left(\cos \frac{\pi}{2} \omega(\varphi(0), \gamma(J))\right) \tag{2.4}
\end{equation*}
$$

because of the quasi-invariance of the hamonic measure, (see [3]). Putting in (2.4) $|I|=\frac{2}{3} \pi$ we get

$$
\begin{equation*}
\cos \frac{\pi}{2} \omega(\varphi(0), \gamma(l)) \leq \Phi_{K}\left(\frac{\sqrt{3}}{2}\right) . \tag{2.5}
\end{equation*}
$$

Since

$$
\omega(-a, \gamma(I))=\omega\left(0, h_{-a}(\gamma(I))\right)=\frac{\left|h_{-a}(\gamma(I))\right|}{2 \pi}
$$

then applying (2.5) we obtain

$$
\begin{equation*}
\left|h_{-a}(\gamma(I))\right| \geq 4 \arccos \Phi_{K}\left(\frac{\sqrt{3}}{2}\right) \tag{2.6}
\end{equation*}
$$

From (2.2) it follows that for $c>\frac{1}{2}$

$$
\left|h_{--}(\gamma(I))\right| \leq 2 \arg \left(\frac{e^{i \frac{2}{3} \pi}+a}{1+a e^{i \frac{2}{3} \pi}}\right)=-\frac{1}{8} \pi+\arctan \frac{\sqrt{3}}{2 a-1}
$$

and the desired formala (2.3) follows in view of (2.6).
Definition 2.3. A sense-preserving antomarphism γ of T is said to be a $k-$ quasisymmetric ($k-q_{s}$) automorphism of T if and only if for any pair $I_{1}, I_{2} \subset T$ of disjoint adjacent open subarc of T of equal lengths $\left|I_{1}\right|=\left|I_{3}\right|$ the inequality

$$
\begin{equation*}
' \gamma\left(I_{1}\right)|\leq k| \gamma\left(I_{2}\right) \mid \tag{2.7}
\end{equation*}
$$

holds, (see [5])
Theorem 2.4. If an outomorphism $\gamma \in$ Auts is $k-q s, 1 \leq k<\infty$, then F_{γ} is K^{\bullet}-ge mapping of Δ onso iself where the constans K^{\bullet} depends only on k.

Proof. To start with we shall show that for any $k-q$ antomarphism $\gamma \in$ Antr, $1 \leq k<\infty$ the following inequalities hald:

$$
\begin{align*}
& |e| \leq \cos \frac{2 \pi}{(1+k)^{2}} \tag{2.8}\\
& |a|^{2}-|b|^{2} \geq \frac{\sqrt{2}}{\pi^{2}}\left(\sin \frac{\pi}{1+k}\right)^{2} \sin \frac{\pi}{(1+k)^{2}} \tag{2.9}
\end{align*}
$$

For any points $z_{1}, z_{2} \in T, z_{1} \neq z_{2}, \Gamma\left(z_{1}, z_{2}\right)$ stands for the subarc $\left\{z_{\in} \in T:\right.$ arg $z_{1}<$ $\left.\arg z<\arg z_{2}\right\}$ of T. Let us fix $\xi \in T$ and let $\alpha_{l}=\left|\gamma\left(I\left(i^{t-1} \xi, i^{t} \xi\right)\right)\right|, l=1,2, \ldots$ By (2.7) we have for any $l=1,2,3,4$,

$$
a_{1}+a_{1+1} \leq \frac{2 \pi k}{1+k} \quad \text { and } \quad a_{i} \geq \frac{2 \pi}{(1+k)^{2}}
$$

Consequently there exists / such that

$$
\frac{2 \pi}{(1+k)^{2}} \leq \alpha_{l} \leq \alpha_{l+3} \leq \frac{\pi k}{1+k}
$$

Therefore

$$
\left|\sum_{n=1}^{4} \gamma^{2}\left(i^{n} \xi\right)\right| \leq 2\left|\cos a_{1}\right|+2\left|\cos \alpha_{l+2}\right| \leq 4 \cos \frac{2 \pi}{(1+k)^{2}}
$$

for every $\& \in T$ and this leads to

$$
|e|=\frac{1}{2 \pi}\left|\int_{T} \gamma^{2}(\xi)\right| d \xi| |=\frac{1}{2 \pi}\left|\int_{f(i, i)} \sum_{n=1}^{4} \gamma^{2}\left(i^{n} \xi\right)\right| d \xi| | \leq \cos \frac{2 \pi}{(1+k)^{2}}
$$

Now, for any $\ell \in \mathbf{R}$ and $\approx \in[0, x]$ we define

$$
\begin{aligned}
& \beta_{1}(t, s)=\left|\gamma\left(I\left(e^{i t}, e^{i(t+u)}\right)\right)\right|, \\
& \beta_{3}(t, s)=\left|\gamma\left(I\left(e^{i(t+u)},-e^{i t}\right)\right)\right|, \\
& \beta_{3}(t, s)=\left|\gamma\left(I\left(-e^{i t},-e^{i(t+y)}\right)\right)\right|, \\
& \beta_{4}(t, s)=\left|\gamma\left(I\left(-e^{i(t+u)}, e^{i t}\right)\right)\right| .
\end{aligned}
$$

By (27) we have

$$
\frac{2 \pi}{1+k} \leq \beta_{l}(t+\varepsilon)+\beta_{l+1}(\ell+\varepsilon) \leq \frac{2 \pi k}{1+k}, \quad l=1,2
$$

and hence

$$
\begin{align*}
& \sum_{n=1}^{4} \sin \beta_{n}(t, s)= \tag{2.10}\\
& 4 \sin \frac{\beta_{1}(l, s)+\beta_{3}(l, s)}{2} \sin \frac{\beta_{2}(t, u)+\beta_{3}(t, v)}{2} \sin \frac{\beta_{1}(t, s) \beta_{3}(l, \varepsilon)}{2} \geq \\
& \geq 4\left(\sin \frac{\pi}{1+k}\right)^{3} \sin \frac{\beta_{1}(t, \varepsilon)+\beta_{3}(t, s)}{2} \geq 0 .
\end{align*}
$$

Applying again the inequality (2.7) we obtain for any $\ell \in R$ and $\in \in\left[\frac{\pi}{4}, \frac{3}{4} \pi\right]$ the following inequalities

$$
\beta_{1}(l, x)+\beta_{3}(l, x) \geq \beta_{1}\left(l, \frac{\pi}{4}\right)+\beta_{3}\left(l, \frac{\pi}{4}\right) \geq \frac{1}{1+k}\left[\beta_{1}\left(l, \frac{\pi}{2}\right)+\beta_{3}\left(l, \frac{\pi}{8}\right)\right] \geq \frac{2 \pi}{(1+k)^{2}}
$$

and similarly

$$
\beta_{2}(l, s)+\beta_{4}(l, s) \geq \frac{2 \pi}{(1+k)^{2}}
$$

Therefore

$$
\begin{equation*}
\frac{2 \pi}{(1+k)^{2}} \leq \beta_{1}(l, s)+\beta_{3}(t, u) \leq 2 \pi-\frac{2 \pi}{(1+k)^{2}} . \tag{2.11}
\end{equation*}
$$

As shown in [1]

$$
|a|^{2}-|b|^{2}=\left(\frac{1}{2 \pi}\right)^{2} \int_{0}^{\pi}\left(\sin x \int_{0}^{2 \pi} \sum_{n=1}^{1} \sin \beta_{n}(l, x) d l\right) d x .
$$

Hence by (2.10), (2.11) we get the eatimate (2.9). Let us consider any k-qs automorphism $\gamma \in$ AutT, $1 \leq k<\infty$. It follows from the Theorem 1.1 that F_{7} is a sense-preserving diffeomorphism of Δ onto itself. We shall estimate its complex dilatatioa in Δ. Setting $\gamma_{\omega}=h_{\omega} \circ \gamma \circ h_{F_{T}(w)}^{-1} \in A u t_{T}$ for any w $\in \Delta$ we have by (1.3)

$$
F_{\gamma_{0}}=h_{F_{\gamma}(w)} \circ F_{\gamma} \circ h_{w}^{-1}
$$

and hence

$$
\begin{equation*}
\left|\frac{\partial_{z} F_{\gamma_{y}}(0)}{\partial_{s} F_{\gamma v}(0)}\right|=\left|\frac{\partial_{T} F_{\gamma}(v)}{\partial_{z} F_{\gamma}(v)}\right| . \tag{2.12}
\end{equation*}
$$

It follows from the Theorem 2 [5] that the antomorphism γ admits K-qc extension φ on Δ and the constant K depends on k only. Then the mapping $\varphi_{\varphi}=h_{\varphi} \circ \rho \circ h_{\rho_{\sim}(w)}^{-1}$ is a K-qc extension of γ_{v} on Δ and

$$
\frac{1}{2 \pi} \int_{T} \gamma_{\phi}(\xi)|d \xi|=\phi\left(0,0 ; \gamma_{\theta}\right)=0
$$

in view of $F_{7_{0}}(0)=0$ and (1.2). Thus by the Lemma 2.2 we get

$$
\begin{equation*}
\left|\varphi_{\infty}(0)\right| \leq \delta(K) \tag{2.18}
\end{equation*}
$$

Since $h_{\varphi_{w}}(0)^{\circ} \varphi_{\omega}$ is K-qc mapping of Δ onto itself such that $h_{\varphi_{\omega}}(0)^{\circ} \varphi_{\omega}(0)=0$ then by virtue of the Theorem 1 [5] we obtain that $h_{\varphi_{w}}(0){ }^{\circ} \%_{0}$ is the $\lambda(K)-q^{s}$ automarphism of T where

$$
\lambda(K)=\left[\mu^{-1}\left(\frac{\pi K}{2}\right)\right]^{-2}-1
$$

is the distortion function [7]. With regand to (213) we desive that γ_{0} is the k_{0}-qs automorphism of T where

$$
k_{w}=\left(\frac{1+\left|\varphi_{\omega}(0)\right|}{1-\left|\varphi_{\omega}(0)\right|}\right)^{2} \lambda(K) \leq\left(\frac{1+\delta(K)}{1-\delta(K)}\right)^{2} \lambda(K)
$$

Hence by (1.12), (1.13), (2.3), (2.8), (2.9) and (2.12) we get for any $x \in \Delta$

$$
\begin{aligned}
& 1-\left|\frac{\partial_{\bar{z}} F_{\gamma}(\infty)}{\partial_{8} F_{7}(\infty)}\right|^{2}=\frac{\left(1-|c|^{2}\right)\left(|a|^{2}-|\Delta|^{2}\right)}{|\bar{a}-\bar{c} b|^{2}} \geq \\
& \geq \frac{\sqrt{2}}{4 \pi^{2}}\left(\sin \frac{2 \pi}{\left(1+k_{w}\right)^{2}}\right)^{2}\left(\sin \frac{\pi}{1+k_{w}}\right)^{2} \sin \frac{\pi}{\left(1+k_{w}\right)^{2}} \geq \\
& \geq \frac{\sqrt{2}}{4 \pi^{2}} \frac{4^{2}}{\left(1+k_{w}\right)^{4}} \frac{2^{2}}{\left(1+k_{w}\right)^{2}} \frac{2 \sqrt{2}}{\left(1+k_{w}\right)^{2}}=\frac{64}{\pi^{2}\left(1+k_{w}\right)^{8}} \geq \\
& \geq \frac{64}{\pi^{2}}\left(1+\frac{3 \lambda(K)}{\Phi_{K}^{-2}\left(\frac{\sqrt{3}}{2}\right)-1}\right)^{-8}
\end{aligned}
$$

becasse of

$$
\left(\frac{1+\delta(K)}{1-\delta(K)}\right)^{2}=3\left(\Phi_{K}^{-2}\left(\frac{\sqrt{3}}{2}\right)-1\right)^{-1}
$$

Thus

$$
\begin{aligned}
& \frac{\left|\partial_{z} F_{7}(w)\right|+\left|\partial_{7} F_{7}(w)\right|}{\left|\partial_{8} F_{7}(x)\right|-\left|\partial_{T} F_{7}(x)\right|} \leq 2\left(2 \frac{\pi^{2}}{64}\left(1+\frac{3 \lambda(K)}{\Phi_{K}^{-2}\left(\frac{\sqrt{2}}{2}\right)-1}\right)^{8}-1\right)= \\
& =\frac{\pi^{2}}{16}\left(1+3 \lambda(K)\left(\Phi_{K}^{-2}\left(\frac{\sqrt{5}}{2}\right)-1\right)^{-1}\right)^{3}-2=K^{*}
\end{aligned}
$$

for every $\omega \in \Delta$ so F_{γ} is the K^{\bullet}-qc mapping of Δ onto itself. Following the proof of the Theorem 2 [5] and applying the estimate from [6] we get $K \leq \min \left\{k^{3 / 2}, 2 k-1\right\}$ and this means that the constant K° depends only on k. This way we are done.

Remark. It follows from the proof of the above theorem and Corollary 1.2 that the mapping F_{7}^{-1} is a $K^{\circ}-q c$ extension of the antomorphism $\gamma \in A u t T_{T}$ on Δ if and only if γ admits a K-qcextension on Δ. This way we get an alternative proof of the Theorem 2 from [2].

.REFERENCES

[1] Choquet, O. . Sur an type de Irandormation asalytiuge generalisant le representation conforme et definic amoyen de fonctions harmoniques. Bull. Soi. Mash. (2) 69 (1945), 156-165.
[2] Dousdy, A. Earle, C. J., Conformally natural estension of homeomorphesme of the cincle , Acta Mash. 157 (1886), 23-48.
[3] Hersch. J., Longuears estremales mesur hormonique el distance hyperboligue, C. R. Acad. Sa. Paris 235 (1952), 560-571.
 123-124.
[3] Krayi, J. G. , Quaricircles and harmonic meareve, Ann. Aciad. Soi. Fenn. Val. 12 (1887). 19-2L
[6] Lohtiaen, M . Remarts on the mazimal dilatation on the Beterting-Ahlfore extenerion . Ans. Aced. Soi. Pann. Vol. 9 (1891), 133-130.
[7] Lehto, O. , Virtenen, KI. , Qmanioonfornal Mappings in the Plame, Springer-Verlage Bedin-Heidelberg-Now York, 1973.

STRESZCZENIE

[^0]
[^0]:

 artamorfacolow olregu T.

