ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA

LUBLIN-POLONIA

VOL XLII, 8

SECTIO A

1988

Instytut Matematyla UMCS A. LECKO, D. PARTYKA

An Alternative Proof of a Result Due to Douady and Earle

Nowy dowód pewnego twierdzenia Douady - Earle'a

Abstract. In this paper we give an alternative simple proof of a Theorem due to Douady and Earle concerning homeomorphic extension of automorphisms of the unit circle T. Taking into account a result of J. Krzyż we investigate this extension in case of quasisymmetric automorphisms.

0. Introduction. In this paper we associate with any automorphism γ of the unit circle **T** a mapping F_{γ} of the unit disc Δ onto itself. We show that the mapping F_{γ} is a homeomorphism of Δ onto itself which has a continuous extension to the automorphism γ^{-1} of **T** and satisfies the identity (1.3). In the special case when γ is a k-quasisymmetric automorphism of **T** (see the Definition 2.3 in [5]) F_{γ} is a K-quasiconformal automorphism of Δ and the constant K depends on k only. In fact $F_{\gamma}^{-1} = E(\gamma)$, where $E(\gamma)$ is the mapping introduced by A. Douady and C. J. Earle in [2]. However our definition of F_{γ} is formally different and simpler that of $E(\gamma)$. This way we get alternative proofs of Theorems 1 and 2 established in [2].

1. We denote by Δ the unit disc. For each $z \in \Delta$ the Möbius transformation h_z of the closed disc $\overline{\Delta}$ is given by the following formula

$$h_{\varepsilon}(\xi) = \frac{\xi - \varepsilon}{1 - \overline{\varepsilon}\xi}, \quad \xi \in \overline{\Delta}.$$

We also consider the class M of all Möbius transformations of $\overline{\Delta}$ and this class Aut_T of all automorphisms (i.e. sense-preserving homeomorphic self-mappings) of the unit circle $T = \partial \Delta$. Evidently

 $\mathbf{M} = \{ e^{i\varphi} h_z : \varphi \in \mathbf{R} , z \in \Delta \}.$

For any automorphism $\gamma \in Aut_T$ we define

(1.1)
$$\phi(z,w;\gamma) = \frac{1}{2\pi} \int_{T} (h_z \circ \gamma)(\xi) \operatorname{Re} \frac{\xi+w}{\xi-w} |d\xi|, \quad z,w \in \Delta.$$

As shown by Choquet [1] the mapping

$$\Delta \ni w \to \phi(z,w;\gamma) \in \Delta$$

is an automorphism of Δ for any fixed $z \in \Delta$ and consequently there exists the function $w = F_{\gamma}(z)$ defined implicitly by the equation

(1.2)
$$\phi(z,w;\gamma)=0.$$

This way we obtain the mapping F_{γ} of Δ into itself. Moreover, the following theorem holds:

Theorem 1.1. For any automorphism $\gamma \in \operatorname{Aut}_{\mathbf{T}}$ the mapping F_{γ} is an automorphism of Δ which has a continuous extension to the automorphism γ^{-1} of \mathbf{T} . Moreover

$$(1.3) F_{\eta_1} \circ \gamma \circ \eta_2 = \eta_2^{-1} \circ F_{\gamma} \circ \eta_1^{-1}$$

for all Mobius transformation $\eta_1, \eta_2 \in M$.

Proof. Let $\gamma \in \operatorname{Aut}_{\mathbf{T}}$. We first prove that F_{γ} is a cotinuous extension of the automorphism γ^{-1} of \mathbf{T} on Δ . Let $z_n \in \Delta$, $n = 1, 2, \ldots$ be a sequence which converges to the point $s \in \overline{\Delta}$ and let $F_{\gamma}(z_{n_b}) \in \Delta$, $k = 1, 2, \ldots$ be an arbitrary subsequence of the sequence $F_{\gamma}(z_n) \in \Delta$, $n = 1, 2, \ldots$. There exists a subsequence $F_{\gamma}(z_{n_b})$, $l = 1, 2, \ldots$ which converges to a certain point $w \in \overline{\Delta}$. Assume that $s \in \Delta$. Then

(1.4)
$$\max_{\xi\in T} |h_{z_n} \circ \gamma(\xi) - h_z \circ \gamma(\xi)| \to 0 \quad \text{as} \quad n \to \infty .$$

If $w \in T$ then by (1.1), (1.4) and the properties of Poisson integral we have

$$\begin{aligned} \left|\phi(z_{n_{k_l}},F_{\gamma}(z_{n_{k_l}});\gamma)-h_s\circ\gamma(w)\right| \leq \\ \leq \frac{1}{2\pi}\int_{\mathbf{T}} \left|h_{z_{n_{k_l}}}\circ\gamma(\xi)-h_s\circ\gamma(\xi)\right| \operatorname{Re}\frac{\xi+F_{\gamma}(z_{n_{k_l}})}{\xi-F_{\gamma}(z_{n_{k_l}})} \left|d\xi\right|+\\ +\left|\phi(z,F_{\gamma}(z_{n_{k_l}});\gamma]-h_s\circ\gamma(w)\right| \to 0 \quad \text{as } l\to\infty \;. \end{aligned}$$

Therefore by (1.2) we get $h_x \circ \gamma(w) = 0$ which is impossible in view of $h_x \circ \gamma(w) \in \mathbf{T}$. Thus $w \in \Delta$ and in the limiting case we obtain

$$0 = \lim_{i \to \infty} \phi(z_{n_{ij}}, F_{\gamma}(z_{n_{ij}}); \gamma) = \phi(z, w; \gamma) .$$

Hence $w = F_{\gamma}(z)$ and this means that

$$\lim_{n\to\infty}F_{\gamma}(z_n)=F_{\gamma}(z).$$

Now we assume that $s \in T$. Then

(1.5)
$$\max_{\xi \in T \setminus I_{x}(z)} |h_{z_{n}} \circ \gamma(\xi) + z| \to 0 \quad \text{as} \quad n \to \infty$$

where $I_{\varepsilon}(z) = \{\xi \in T : |\xi - \gamma^{-1}(z)| < \varepsilon\}$ for all ε , $0 < \varepsilon < 2$. If $w \in \Delta$ then by the bounded convergence theorem and the properties of Poisson integral we get

$$0 = \lim_{l \to \infty} \phi(z_{n_{k_l}}, F_{\gamma}(z_{n_{k_l}}); \gamma) = -z$$

because of (1.5). This is a contradiction if $z \in T$, whence $w \in T$. If $w \neq \gamma^{-1}(z)$ then setting $r = \frac{|w - \gamma^{-1}(z)|}{2}$ we obtain analogously by (1.1) and (1.5)

$$\begin{split} \phi(z_{n_{k_l}}, F_{\gamma}(z_{n_{k_l}}); \gamma) &= \\ &= \frac{1}{2\pi} \int (h_{z_{n_{k_l}}} \circ \gamma(\xi) + z) \operatorname{Re} \frac{\xi + F_{\gamma}(z_{n_{k_l}})}{\xi - F_{\gamma}(z_{n_{k_l}})} |d\xi| + \\ &+ \frac{1}{2\pi} \int (h_{z_{n_{k_l}}} \circ \gamma(\xi) + z) \operatorname{Re} \frac{\xi + F_{\gamma}(z_{n_{k_l}})}{\xi - F_{\gamma}(z_{n_{k_l}})} |d\xi| - \\ &- z \frac{1}{2\pi} \int_{T} \operatorname{Re} \frac{\xi + F_{\gamma}(z_{n_{k_l}})}{\xi - F_{\gamma}(z_{n_{k_l}})} |d\xi| \to -z \quad \text{as} \quad i \to \infty. \end{split}$$

On the other hand due to (1.2) we have

$$\lim_{l\to\infty}\phi(z_{n_{b_l}},F_{\gamma}(z_{n_{b_l}});\gamma)=0$$

which is impossible because of $z \in T$. This means that $w = \gamma^{-1}(z)$ and

$$\lim F_{\gamma}(z_n) = \gamma^{-1}(z) .$$

Now we show that (1.3) holds. Let $\eta \in \mathcal{M}$ be any Möbius transformation and $z \in \Delta$ be fixed. By (1.1) the functions

$$\Delta \ni w \rightarrow \phi(z, w; \gamma \circ \eta) \in \Delta$$

and with respect to the conformal invariance

$$\Delta \ni w \rightarrow \phi(z, \eta(w); \gamma) \in \Delta$$

are the solution of Dirichlet problem for Δ with the boundary values $h_1 \circ \gamma \circ q$ on T. Hence and from (1.2) it follows that

$$0 = \phi(z, F_{\gamma \circ \eta}(z); \gamma \circ \eta) = \phi(z, \eta \circ F_{\gamma \circ \eta}(z); \gamma)$$

and

$$0 = \phi(z, F_{\gamma}(z); \gamma) .$$

This implies due to the Choquet theorem $F_{\gamma}(s) = \eta \circ F_{\gamma \circ \eta(s)}$. Therefore

$$(1.6) F_{\gamma \circ \eta} = \eta^{-1} \circ F_{\gamma}$$

Since $h_s \circ \eta \in M$, there exist $\varphi \in \mathbb{R}$ and $s' \in \Delta$ such that

$$h_{z} \circ \eta = e^{i\varphi}h_{z}$$

From (1.1) and (1.7) it follows that for any $w \in \Delta$

(1.8)
$$\phi(z,w;\eta\circ\gamma)=e^{i\varphi}\phi(z',w;\gamma).$$

Setting $w = F_{\eta \circ \gamma}(z)$ in (1.8) we obtain

$$0 = \phi(z, F_{\eta \circ \gamma}(z); \eta \circ \gamma) = e^{i\varphi} \phi(z', F_{\eta \circ \gamma}(z); \gamma)$$

and by (1.2)

 $0 = \phi(z', F_{\gamma}(z'); \gamma) .$

This gives by virtue of the Choquet theorem that

$$F_{qo\gamma}(z) = F_{\gamma}(z')$$

From (1.7) we have

$$h_z \circ \eta(z') = e^{i\varphi} h_{z'}(z') = 0$$

Hence $\eta(s') = s$ and by (1.9)

$$F_{\eta\circ\gamma}(z)=F_{\gamma}\circ\eta^{-1}(z)$$

Thus

$$F_{\eta\circ\gamma}=F_{\gamma}\circ\eta^{-1}$$

and this together with (1.6) implies (1.3).

Now we will show that $F_{\gamma} : \Delta \to \Delta$ is a sense-preserving local diffeomorphism. Let us fix $w \in \Delta$. We set $\gamma_w = h_w \circ \gamma \circ h_{F_{\gamma}(w)}^{-1} \in \text{Aut}_T$. By (1.3) we get

(1.10)
$$F_{\gamma_{w}}(0) = h_{F_{\gamma}(w)} \circ F_{\gamma} \circ h_{w}^{-1}(0) = 0$$

A aimple calculation gives

$$\partial_{w}\phi(s,u;\gamma_{w}) = \frac{1}{4\pi}\partial_{u}\left(\int\limits_{T}\frac{\gamma_{w}(\xi)-z}{1-\overline{z}\gamma_{w}(\xi)}\left(\frac{\xi+u}{\xi-u}+\frac{\overline{\xi}+\overline{u}}{\overline{\xi}-\overline{u}}\right)|d\xi|\right)$$

Hence

$$\partial_n \phi(0,0;\gamma_{\Psi}) = \frac{1}{2\pi} \int_{\mathbf{T}} \overline{\xi} \gamma_{\Psi}(\xi) |d\xi| = \epsilon$$

and similarly

$$\partial_{\mathbf{T}}\phi(0,0;\gamma_{\boldsymbol{\varpi}}) = rac{1}{2\pi}\int\limits_{\mathbf{T}}\xi\gamma_{\boldsymbol{\varpi}}(\xi)|d\xi| = b$$

It has been shown (see [4], [1] and also [2]) that

$$(1.11) |a|^2 - |b|^2 > 0.$$

The implicit function theorem, (1.2) and (1.10) imply that there exists a neighbourhood U of 0 and exactly one continuously differentiable function $U \ni z \to u(z) \in \Delta$ such that $\phi(z, u(z); \gamma_{w}) = 0$, for $z \in U$ and u(0) = 0. From Choquet theorem, (1.2) and (1.10) it follows that $F_{\gamma_w}(z) = u(z)$ for $z \in U$. Thus the mapping F_{γ_w} is continuously differentiable in U and differentiating with respect z and \overline{z} at the point z = 0 both aides of the equation

$$\phi(z,F_{\gamma_w}(z);\gamma_w)=0$$

we obtain

$$a\partial_{\mathbf{z}}(F_{\gamma_{\mathbf{v}}})(0) + b\overline{\partial_{\mathbf{z}}(F_{\gamma_{\mathbf{v}}})(0)} = 1 ,$$

$$a\partial_{\mathbf{z}}(F_{\gamma_{\mathbf{v}}})(0) + b\overline{\partial_{\mathbf{z}}(F_{\gamma_{\mathbf{v}}})(0)} = -\frac{1}{2\pi} \int_{-\infty}^{\infty} \gamma^{2}(\xi) |d\xi| = \epsilon$$

whence

(1.12)
$$\partial_{\varepsilon}(F_{\gamma_{w}})(0) = \frac{\overline{a} - \overline{c}b}{|a|^{2} - |b|^{2}} , \quad \partial_{\overline{s}}(F_{\gamma_{w}})(0) = \frac{\overline{a}c - b}{|a|^{2} - |b|^{2}}$$

If $\varphi \in \mathbf{R}$ satisfies $e = |e|e^{i\varphi}$ then $\operatorname{Re}\left(-e^{-i\varphi}\gamma_{\varphi}^{2}(\xi)\right) \leq 1$ for any $\xi \in \mathbf{T}$ and we have

$$|c| = \frac{1}{2\pi} \int_{\mathbf{T}} \operatorname{Re} \left(-e^{-i\varphi} \gamma_{\omega}^{2}(\xi) \right) |d\xi| \leq \frac{1}{2\pi} \int_{\mathbf{T}} |d\xi| = 1 .$$

If |e| = 1 then $\gamma_w(\xi) = i e^{i\varphi/2}$ for every $\xi \in \mathbf{T}$, but this is impossible. Therefore |e| < 1 and from (1.11) and (1.12) it follows that the Jacobian of the mapping F_{γ_w} at s = 0 is positive, i.e.

(1.13)
$$|\partial_{T}(F_{\gamma_{\tau}})(0)|^{2} - |\partial_{T}(F_{\gamma_{\tau}})(0)|^{2} = \frac{1 - |c|^{2}}{|a|^{2} - |b|^{2}} > 0$$

By (1.3), (1.10) and (1.13) we see that the mapping $F_{\gamma} = \int_{F_{\gamma}}^{-1} \circ F_{\gamma_{\omega}} \circ h_{\omega}$ is a sense-preferving diffeomorphism in the neighbourhood $h^{-1}(U)$ of ω . Furthermore, as proved earlier, the mapping F_{γ} has a continuous extension on the circle T to the automorphism $\gamma^{-1} \in \text{Aut}_{T}$. Applying the argument principle we state that F_{γ} is a diffeomorphism of Δ onto itself. In fact F_{γ} is real analytic because of regularity of the function $\Delta \times \Delta \ni (z, \omega) \rightarrow \phi(z, \omega; \gamma) \in \Delta$ and this ends the proof.

Corollary 1.2. For any automorphism $\gamma \in \operatorname{Aut}_T$ the mapping F_{γ}^{-1} is a realanalytic diffeomorphism of the unit disc Δ onto itself which is a continuous extension of γ on Δ and for any Mobius transformations $\eta_1, \eta_2 \in M$ the following equality holds

$$F_{\eta_1\circ\gamma\circ\eta_3}^{-1}=\eta_1\circ F_{\gamma}^{-1}\circ\eta_2$$

Remark. As a metter of fact the mapping F_{γ}^{-1} coincides with the mapping $E(\gamma)$ found by Douady and Earle in [2]. In such a way we get an alternative proof of the Theorem 1 from [2].

2. Lemma 2.1. If an automorphism $\gamma \in Aut_T$ is normalized by the equality

(2.1)
$$\frac{1}{2\pi}\int_{\mathbf{T}}\gamma(\xi)|d\xi|=\phi(0,0;\gamma)=0$$

then for every open are $I \subset T$ of length $|I| \leq \frac{1}{2}\pi$ we have

$$|\gamma(I)| \leq \frac{4}{3}\pi$$

Proof. Let $I \subset \mathbf{T}$ be an arbitrary open arc of length $|I| = \frac{2}{3}\pi$. Without loss of generality we may assume that $-1 \in \mathbf{T} \setminus \gamma(I)$ and the arc $\gamma(I)$ is symmetric with respect to the real axis. Suppose that $|\gamma(I)| > \frac{1}{3}\pi$. Then

$$\left|\frac{1}{2\pi}\int_{\mathbf{T}\setminus I}\gamma(\xi)|d\xi|\right| \geq \frac{1}{2\pi}\int_{\mathbf{T}\setminus I}|\operatorname{Re}\gamma(\xi)||d\xi| \geq -\left(1-\frac{|I|}{2\pi}\right)\cos\frac{|\gamma(I)|}{2} > \frac{1}{3} \geq \left|\frac{1}{2\pi}\int_{I}\gamma(\xi)|d\xi|\right|$$

and this contradicts (2.1). This proves the inequality (2.2).

Lemma 2.2. If an automorphism $\gamma \in \operatorname{Aut}_{\mathcal{T}}$ normalized by (2.1) has a Kquasiconformal (K - qc) extension φ on the unit disc Δ , $1 \leq K < \infty$, then

(2.3)
$$|\varphi(0)| \leq \delta(K) = \frac{1}{2} + \frac{\sqrt{3}}{2} \cot\left(\frac{\pi}{3} + \arccos \Phi_K\left(\frac{\sqrt{3}}{2}\right)\right)$$

where $\Phi_K = \mu^{-1}(\frac{1}{K}\mu)$ and $\mu(r)$, 0 < r < 1, is the module of the ring domain $\Delta \setminus [0, r]$, (see [7]).

Proof. Let $\gamma \in \operatorname{Aut_T}$ be an arbitrary automorphism satisfying the assumption of the lemma. Without loss of generality we may assume that $\varphi(0) = -a$, where $0 \leq a < 1$. By the Darboux principle there exists an open arc $I \subset T$ of length $|I| = \frac{2}{3}\pi$ such that the arc $\gamma(I)$ is symmetric with respect to the real axis and contains the point 1. Denoting by $\omega(s, I)$ the harmonic measure in Δ we have

(2.4)
$$\frac{1}{K} \mu(\cos \frac{\pi}{3} \omega(0, I)) \leq \mu(\cos \frac{\pi}{3} \omega(\varphi(0), \gamma(I)))$$

because of the quasi-invariance of the harmonic measure, (see [3]). Putting in (2.4) $|I| = \frac{2}{3}\pi$ we get

(2.5)
$$\cos \frac{\pi}{2} \omega(\varphi(0), \gamma(I)) \leq \Phi_{K}\left(\frac{\sqrt{3}}{2}\right)$$

Since

$$\omega(-\epsilon,\gamma(I)) = \omega(0,h_{-\epsilon}(\gamma(I))) = \frac{|h_{-\epsilon}(\gamma(I))|}{2\pi}$$

then applying (2.5) we obtain

$$|h_{-s}(\gamma(I))| \ge 4 \arccos \Phi_K\left(\frac{\sqrt{3}}{2}\right)$$

From (2.2) it follows that for $a > \frac{1}{2}$

$$|h_{-a}(\gamma(I))| \le 2 \arg\left(\frac{e^{i\frac{2}{3}\pi} + a}{1 + ae^{i\frac{2}{3}\pi}}\right) = -\frac{4}{3}\pi + \arctan\frac{\sqrt{3}}{2a - 1}$$

and the desired formula (2.3) follows in view of (2.6).

Definition 2.3. A sense-preserving automorphism γ of **T** is said to be a kquasisymmetric (k-qs) automorphism of **T** if and only if for any pair $I_1, I_2 \subset \mathbf{T}$ of disjoint adjacent open subarc of **T** of equal lengths $|I_1| = |I_2|$ the inequality

$$(2.7) \quad |\gamma(I_1)| \leq k |\gamma(I_2)|$$

holds, (see [5])

Theorem 2.4. If an automorphism $\gamma \in \operatorname{Aut}_T$ is k-qs, $1 \le k < \infty$, then Γ_γ is K° -qc mapping of Δ onto itself where the constant K° depends only on k.

Proof. To start with we shall show that for any k-qs automorphism $\gamma \in Aut_T$, $1 \le k < \infty$ the following inequalities hold:

$$|e| \le \cos \frac{2\pi}{(1+k)^2}$$

(2.9)
$$|a|^2 - |b|^2 \ge \frac{\sqrt{2}}{\pi^2} \left(\sin \frac{\pi}{1+k}\right)^2 \sin \frac{\pi}{(1+k)^2}$$

For any points $z_1, z_2 \in T$, $z_1 \neq z_2$, $l(z_1, z_2)$ stands for the subarc $\{z \in T : \arg z_1 < \arg z < \arg z_2\}$ of T. Let us fix $\xi \in T$ and let $\alpha_l = |\gamma(l(i^{l-1}\xi, i^l\xi))|, l = 1, 2, ...$ By (2.7) we have for any l = 1, 2, 3, 4,

$$\alpha_l + \alpha_{l+1} \leq \frac{2\pi k}{1+k}$$
 and $\alpha_l \geq \frac{2\pi}{(1+k)^2}$

Consequently there exists I such that

$$\frac{2\pi}{(1+k)^2} \leq \alpha_l \leq \alpha_{l+2} \leq \frac{\pi k}{1+k} \, .$$

Therefore

$$\left|\sum_{n=1}^{n} \gamma^{2}(i^{n}\xi)\right| \leq 2|\cos \alpha_{l}| + 2|\cos \alpha_{l+2}| \leq 4\cos \frac{2\pi}{(1+k)^{2}}$$

for every $\xi \in \mathbf{T}$ and this leads to

$$|e| = \frac{1}{2\pi} \left| \int_{\mathbf{T}} \gamma^{2}(\xi) |d\xi| \right| = \frac{1}{2\pi} \left| \int_{I(1,i)} \sum_{n=1}^{4} \gamma^{2}(i^{n}\xi) |d\xi| \right| \le \cos \frac{2\pi}{(1+k)^{2}} .$$

Now, for any $t \in \mathbb{R}$ and $u \in [0, \pi]$ we define

$$\begin{aligned} \beta_1(t, \mathbf{u}) &= \left| \gamma \big(I(e^{it}, e^{i(t+u)}) \big) \right| , \\ \beta_2(t, \mathbf{u}) &= \left| \gamma \big(I(e^{i(t+u)}, -e^{it}) \big) \right| , \\ \beta_3(t, \mathbf{u}) &= \left| \gamma \big(I(-e^{it}, -e^{i(t+u)}) \big) \right| , \\ \beta_4(t, \mathbf{u}) &= \left| \gamma \big(I(-e^{i(t+u)}, e^{it}) \big) \right| . \end{aligned}$$

By (2.7) we have

$$\frac{2\pi}{1+k} \leq \beta_l(t+u) + \beta_{l+1}(t+u) \leq \frac{2\pi k}{1+k}, \quad l=1,2$$

and hence

(2.10)
$$\sum_{n=1}^{q} \sin \beta_n(t, \mathbf{u}) =$$

$$4 \sin \frac{\beta_1(t, \mathbf{u}) + \beta_2(t, \mathbf{u})}{2} \sin \frac{\beta_2(t, \mathbf{u}) + \beta_3(t, \mathbf{u})}{2} \sin \frac{\beta_1(t, \mathbf{u})\beta_3(t, \mathbf{u})}{2} \ge$$

$$\ge 4 \left(\sin \frac{\pi}{1+k}\right)^2 \sin \frac{\beta_1(t, \mathbf{u}) + \beta_3(t, \mathbf{u})}{2} \ge 0.$$

Applying again the inequality (2.7) we obtain for any $l \in \mathbb{R}$ and $u \in [\frac{\pi}{4}, \frac{\pi}{4}\pi]$ the following inequalities

$$\beta_1(t, u) + \beta_2(t, u) \ge \beta_1(t, \frac{\pi}{4}) + \beta_2(t, \frac{\pi}{4}) \ge \frac{1}{1+k} \left[\beta_1(t, \frac{\pi}{2}) + \beta_2(t, \frac{\pi}{2})\right] \ge \frac{2\pi}{(1+k)^2}$$

and similarly

$$\beta_2(t, \mathbf{z}) + \beta_4(t, \mathbf{z}) \geq \frac{2\pi}{(1+k)^2}$$

Therefore

(2.11)
$$\frac{2\pi}{(1+k)^2} \leq \beta_1(t,u) + \beta_3(t,u) \leq 2\pi - \frac{2\pi}{(1+k)^2}$$

As shown in [1]

$$|a|^{3} - |b|^{3} = \left(\frac{1}{2\pi}\right)^{3} \int_{0}^{\pi} (\sin u \int_{0}^{2\pi} \sum_{n=1}^{4} \sin \beta_{n}(t, u) dt) du$$

Hence by (2.10), (2.11) we get the estimate (2.9). Let us consider any k-qs automorphism $\gamma \in \operatorname{Aut}_T$, $1 \leq k < \infty$. It follows from the Theorem 1.1 that F_{γ} is a sense-preserving diffeomorphism of Δ onto itself. We shall estimate its complex dilatation in Δ . Setting $\gamma_w = h_w \circ \gamma \circ h_{F_{\gamma}(w)}^{-1} \in \operatorname{Aut}_T$ for any $w \in \Delta$ we have by (1.3)

$$F_{\gamma_{\varphi}} = h_{F_{\gamma}(\varphi)} \circ F_{\gamma} \circ h_{\varphi}^{-1}$$

and hence

(2.12)
$$\left|\frac{\partial_{\overline{z}}F_{\gamma_{w}}(0)}{\partial_{z}F_{\gamma_{w}}(0)}\right| = \left|\frac{\partial_{\overline{z}}F_{\gamma}(w)}{\partial_{z}F_{\gamma}(w)}\right|$$

It follows from the Theorem 2 [5] that the automorphism γ admits K-qc extension φ on Δ and the constant K depends on k only. Then the mapping $\varphi_{\varphi} = h_{\varphi} \circ \varphi \circ h_{F_{-}(\varphi)}^{-1}$ is a K-qc extension of γ_{φ} on Δ and

$$\frac{1}{2\pi}\int_{\mathbf{T}}\gamma_{\boldsymbol{\omega}}(\boldsymbol{\xi})\,|d\boldsymbol{\xi}|=\phi(0,0;\gamma_{\boldsymbol{\omega}})=0\;,$$

in view of $F_{7-}(0) = 0$ and (1.2). Thus by the Lemma 2.2 we get

$$(2.13) \qquad |\varphi_{\omega}(0)| \leq \delta(K) .$$

Since $h_{\varphi_{w}(0)} \circ \varphi_{w}$ is K-qc mapping of Δ onto itself such that $h_{\varphi_{w}(0)} \circ \varphi_{w}(0) = 0$ then by virtue of the Theorem 1 [5] we obtain that $h_{\varphi_{w}(0)} \circ \gamma_{w}$ is the $\lambda(K)$ -qs automorphism of **T** where

$$\lambda(K) = \left[\mu^{-1}\left(\frac{\pi K}{2}\right)\right]^{-2} - 1$$

is the distortion function [7]. With regard to (2.13) we derive that γ_{w} is the k_{w} -qs automorphism of T where

$$k_{w} = \left(\frac{1+|\varphi_{w}(0)|}{1-|\varphi_{w}(0)|}\right)^{2}\lambda(K) \leq \left(\frac{1+\delta(K)}{1-\delta(K)}\right)^{2}\lambda(K) .$$

Hence by (1.12), (1.13), (2.3), (2.8), (2.9) and (2.12) we get for any $\omega \in \Delta$

$$\begin{split} \mathbf{i} &- \left| \frac{\partial_{\overline{i}} F_{\gamma}(w)}{\partial_{z} F_{\gamma}(w)} \right|^{2} = \frac{(1 - |c|^{2})(|a|^{2} - |b|^{2})}{|\overline{a} - \overline{c}b|^{2}} \geq \\ &\geq \frac{\sqrt{2}}{4\pi^{2}} \left(\sin \frac{2\pi}{(1 + k_{w})^{2}} \right)^{2} \left(\sin \frac{\pi}{1 + k_{w}} \right)^{2} \sin \frac{\pi}{(1 + k_{w})^{2}} \geq \\ &\geq \frac{\sqrt{2}}{4\pi^{2}} \frac{4^{2}}{(1 + k_{w})^{4}} \frac{2^{2}}{(1 + k_{w})^{2}} \frac{2\sqrt{2}}{(1 + k_{w})^{2}} = \frac{64}{\pi^{2}(1 + k_{w})^{6}} \geq \\ &\geq \frac{64}{\pi^{2}} \left(1 + \frac{3\lambda(K)}{\Psi_{K}^{-2}(\frac{\sqrt{2}}{3}) - 1} \right)^{-8} \end{split}$$

because of

$$\left(\frac{1+\delta(K)}{1-\delta(K)}\right)^3 = 3\left(\Phi_K^{-2}\left(\frac{\sqrt{3}}{2}\right) - 1\right)^{-1}.$$

Thus

$$\frac{|\partial_{x}F_{\gamma}(w)| + |\partial_{T}F_{\gamma}(w)|}{|\partial_{x}F_{\gamma}(w)| - |\partial_{T}F_{\gamma}(w)|} \le 2\left(2\frac{\pi^{2}}{64}\left(1 + \frac{3\lambda(K)}{\Phi_{K}^{-2}\left(\frac{\sqrt{3}}{2}\right) - 1}\right)^{8} - 1\right) = \frac{\pi^{3}}{16}\left(1 + 3\lambda(K)\left(\Phi_{K}^{-2}\left(\frac{\sqrt{3}}{2}\right) - 1\right)^{-1}\right)^{8} - 2 = K^{*}$$

for every $w \in \Delta$ so F, is the K° -qc mapping of Δ onto itself. Following the proof of the Theorem 2 [5] and applying the estimate from [6] we get $K \leq \min\{k^{2/3}, 2k-1\}$ and this means that the constant K° depends only on k. This way we are done.

Remark. It follows from the proof of the above theorem and Corollary 1.2 that the mapping F^{-1} is a K° -qc extension of the automorphism $\gamma \in \operatorname{Aut}_{T}$ on Δ if and only if γ admits a K-qc extension on Δ . This way we get an alternative proof of the Theorem 2 from [2].

.REFERENCES

- Choquet, G., Sur un type de transformation analytique generalmant la representation conforme et definic au moyen de fonctions harmoniques, Bull. Sci. Math. (2) 69 (1945), 156-165.
- [2] Douady, A., Earle, C.J., Conformally natural estension of homeomorphisms of the circle, Acta Math. 157 (1986), 23-48.
- [3] Hersch, J., Longueurs extremales mesure harmonique et distance hyperbolique, C. R. Acad. Sci. Paris 235 (1952), 569-571.
- [4] Kneses, H., Looung der Aufgabe 41, Jahrenber. Doutsch. Math. Verein. 35 (1926), 123-124.
- [5] KIBYS, J.G., Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Vol. 12 (1987). 19-24.
- [6] Lehtinen, M., Remarks on the maximal dilatation on the Bearling-Ahlfors extension, Ann. Acad. Sci. Fann. Vol. 9 (1984), 133-139.
- [7] Lehto, O., Virtanen, K.I., Quasiconformal Mappings in the Plane, Springer-Verlag, Berlin-Heidelberg-New York, 1973.

STRESZCZENIE

W pracy podany jest nowy, prosty dowód twierdzeń 1 i 2 uzyskanych przez A. Douady i C. J. Earle w pracy [2], dotyczących homeomorficznych rozzerzeń automorfizmów okręgu jednostkowego T. Stosując wynik J. Krzyża [5] badamy te rozzerzenia w przypadku quasisymetrycznych automorfizmów okręgu T.