LUBLIN-POLONIA

Dapartmant of Mathernatics
Yesoven Stata Univerity

M. D. GRIGORIAN, S. A. AJUNZ

Generalisation of Legendre Polynomials

Uogónienie wielamianów Legendre'a

Abstract

The authore give formale for the determination of a generalised polynomid eseciated with a differstial operator whose L_{g}-norm is a minirmurn Problems of optimal extrapolation and interpolation within the dase of groeralized polymoricie are also treated.

We give the formula determining the polynomial of the minimam deviation from zero in L_{2}-metric for a large class of the generalized polynomials induced by a differential operator. In the class of generalized polynomials the problems of the optimn extrapolation and interpolation are solved toa

Now, we give the exact formulations of the above problems.
Let

$$
D x(\cdot)=x^{(r)}(\cdot)+a_{1}(\cdot) x^{(r-1)}(\cdot)+\cdots+a_{r-1}(\cdot) \dot{x}(\cdot)+a_{r}(\cdot)
$$

be a differential operator of the order $r(r \in N)$ with the variable coefficients $c_{i}(\cdot) \in O^{r-1}([0,1]), 1 \leq i \leq r$, such that there exist I linear independent solutions $v_{1}(\cdot), \ldots, v_{r}(\cdot)$ of the equation $D s=0$ satisfying the condition

$$
\begin{equation*}
W_{k}(t)=W_{k}\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right):=\operatorname{det}\left(\varepsilon_{i}^{(j)}(t)\right)_{i=1 j=0}^{k k-1}>0,1 \leq k \leq \tau . \tag{1}
\end{equation*}
$$

If the operator D satisfies the condition (1), then it can be represented in the form

$$
D x(\cdot)=\frac{1}{\omega_{r}(\cdot)} \frac{d}{d l} \frac{1}{\omega_{r-1}(\cdot)} \frac{d}{d l} \cdots \frac{1}{\omega_{1}(\cdot)} \frac{d}{d l} \frac{1}{\omega_{0}(\cdot)} x(\cdot)
$$

where $\omega_{0}(t)=w_{1}(t)$

$$
\omega_{i}(t)=\frac{W_{i-1}(t) W_{i+1}(t)}{W_{i}^{2}(t)}, \quad 1 \leq i \leq r, \quad\left(W_{0}=1, W_{r+1}=W_{r}\right)
$$

(see [1]).
By the expression of $\omega_{i}(\cdot)$ and from (1) it follows that $\omega_{0}(\cdot)>0, \ell \in[0,1]$ and $\omega_{i}(\cdot) \in C^{r-1}([0,1]), 0 \leq i \leq{ }_{r}$.

Let's consider the following extremal problems

$$
\begin{align*}
& \|x(\cdot)\|_{\left.L_{2}(0,1]\right)} \longrightarrow \inf ; D_{x(\cdot)=1} \tag{I}\\
& \left\|x^{(m)}(\tau)\right\| \rightarrow \sup ;\|x(\cdot)\|_{L_{3}([0,1])} \leq 1, \quad D x(\cdot)=0 . \tag{II}
\end{align*}
$$

If $D=\left(\frac{d}{d t}\right)^{r}$ then the solutions of the problem (1) are the Legendre polynomials (see [2]).

Definition 1. The solutions of the problem (I) for $r=1,2, \ldots$ we call the generalized Legendre polynomials.

The problem (II) is called the problem of the optimal extrapolation ($\$ \notin[0,1]$) and interpolation ($\tau \in[0,1]$) in L_{2}-metric for the generalized polynomials.

1. The generalized polynomials of the least deviation from sero in L_{g}-metric. We solve the problem (I). Let's introduce the following notations

$$
\begin{aligned}
& D_{i} x(\cdot):=\frac{d}{d t} \frac{1}{\omega_{i}(\cdot)} x(\cdot), \quad D_{0} x(\cdot):=x(\cdot) \\
& L_{i} x(\cdot):=D_{i} D_{i-1} \ldots D_{0} x(\cdot), \quad 1 \leq i \leq i
\end{aligned}
$$

It is known (see [3]) that the general solation of the differential equation $D x(\cdot)=1$ can be written in the form

$$
x(l)=x_{r+1}(t)+\sum_{i=1}^{r} x_{i} x_{i}(t)
$$

where

$$
\begin{align*}
& x_{1}(l)=\omega_{0}(l) \\
& s_{2}(l)=\omega_{0}(l) \int_{0}^{1} \omega_{1}\left(l_{1}\right) d t_{l} \\
& x_{8}(l)=\omega_{0}(l) \int_{0}^{1} \omega_{1}\left(l_{1}\right) \int_{0}^{l_{1}} \omega_{2}\left(t_{2}\right) d t_{2} d t_{1} \tag{2}\\
& \vdots \\
& x_{r+1}(l)=\omega_{0}(l) \int_{0}^{1} \omega_{1}\left(l_{1}\right) \int_{0}^{l_{1}} \omega_{2}\left(t_{2}\right) \cdots \int_{0}^{l_{r-1}} \omega_{r}\left(l_{r}\right) d t_{r} \ldots d l_{1}
\end{align*}
$$

Using the above representation of $x(\cdot)$ one can write the problem (I) in the form

$$
\begin{equation*}
f(x) \rightarrow \text { inf } ; x=\left(x_{1}, \ldots, x_{7}\right) \in \mathbf{R}_{r} \tag{3}
\end{equation*}
$$

where

$$
f(x)=\left\|w_{r+1}(\cdot)+\sum_{i=1}^{r} x_{i} w_{i}(\cdot)\right\|_{\left.L_{2}(l 0,1)\right)}
$$

It is the convex finited dimensional problem without restrictions with the function $f(\cdot)$ which is strictly convex and continuous. Then there exists a unique solution of the problem. The existence follows from the Weierstrass theorem, as $f(\cdot) \in C\left(R^{r}, R\right)$ and $f(x) \rightarrow \infty$ with $|x| \rightarrow+\infty$ and the uniqueness fallows from the strict convexity of $f(x)$.

The solution of the problem (I) is denoted by

$$
\hat{x}(t)=w_{r+1}(l)+\sum_{i=1}^{r} \hat{x}_{i} w_{i}(t)
$$

In what follows we write the necessary condition for extremum in the problem (3) (in our case it is also sufficient).

By the Fermat theorem $f^{\prime}(\hat{x})=0$ i.e.

$$
\begin{equation*}
\int_{0}^{1} \widehat{x}(t) u_{i}(t) d t=0, \quad 1 \leq i \leq \tag{4}
\end{equation*}
$$

Since $\Sigma_{1}(\cdot), \ldots, u_{r}(\cdot)$ form the generalized Tchebycheff system (see [3], page 30), and the condition (4) is satisfied, following the proposition 1,4 (see [4], page 41) $\hat{z}(b)$ has exact I sign changes on $(0,1)$.

Let's denote by $\left\{T_{2 D_{r}}(\cdot)\right\}_{r=1}^{c \infty}$ the system of functions which are the solutions of the problem (I) for $\tau=1,2, \ldots$. It follows from (4) that it is an orthogonal system

Now we obtain the formulas for the determination of the explicit form of the solution $\hat{x}(\cdot)$.

For this purpose we use the Lagrange principle (see [2]).
Introduce the following notations:

$$
x_{1}=\frac{x}{\omega_{0}}, \quad x_{i}=\frac{1}{\omega_{i}} \frac{d}{d t} x_{i-1}, \quad 2 \leq i \leq r,
$$

and reduce the problem (I) to the following one

$$
\int_{0}^{1} x_{1}^{2}(l) d t \rightarrow \inf ; \dot{x}_{1}=\omega_{1} x_{2}, \dot{x}_{2}=\omega_{2} x_{3}, \ldots, \dot{x}_{r-1}=\omega_{r-1} x_{r}, \dot{x}_{r}=\omega_{r}
$$

The Lagrange function can be written as follows

$$
\mathcal{L}=\lambda_{0} \int_{0}^{1} x_{1}^{2}(l) d l+\int_{0}^{1}\left[\sum_{i=1}^{r-1} p_{i}\left(\dot{x}_{i}-\omega_{i} x_{i}+1\right)+\operatorname{Pr}\left(\dot{z}_{r} \omega_{r}\right)\right] d l
$$

a) The Euler equation

$$
\begin{aligned}
& -\dot{p}_{1}+\lambda_{0} \hat{x}_{1}=0 \\
& -\dot{p}_{i}-\omega_{i-1} p_{i-1}=0, \quad 2 \leq i \leq
\end{aligned}
$$

b) The transversality condition:

$$
p_{i}(0)=p_{i}(1)=0, \quad 1 \leq i \leq{ }_{\tau} .
$$

If $\lambda_{0}=0$ then by the conditions a) and b) we have $p_{i}(b) \equiv 0,1 \leq i \leq r$, and this contradicts the Lagrange principle. Thus $\lambda_{0} \neq 0$ and we can put $\lambda_{0}=(-1)^{r+1} / 2$. Now from the Euler equation we easily obtain the following equation

$$
\frac{d}{d t} \frac{1}{w_{1}(\cdot)} \frac{d}{d t} \frac{1}{w_{g}(\cdot)} \frac{d}{d t} \cdots \frac{1}{\omega_{r-1}(\cdot)} \frac{d}{d t} p_{r}(\cdot)=\frac{\hat{x}(\cdot)}{w_{0}(\cdot)}
$$

On denoting the operator on the left-hand side of the last equation by \tilde{D} and intro ducing the notation

$$
\tilde{L}_{0 x} x(\cdot)=x(\cdot), \quad \tilde{L}_{i} x(\cdot)=\frac{1}{\omega_{r-1}(\cdot)} \tilde{L}_{i-1} x(\cdot), \quad 1 \leq i \leq r-1,
$$

the conditions a) and b) can be transformed as follows

$$
\begin{align*}
& \tilde{D}_{p_{r}(\cdot)}=\frac{\hat{x}(\cdot)}{\omega_{0}(\cdot)} \tag{5}\\
& \tilde{L}_{j p_{r}}(0)=\tilde{L}_{j p_{r}}(1)=0, \quad 0 \leq j \leq r-1
\end{align*}
$$

Now, from the expansion of $\hat{x}(\cdot)$ und from (3) it follows that

$$
\begin{equation*}
\tilde{D}_{p_{r}(l)}=\frac{w_{r+1}(l)}{\omega_{0}(l)}+\sum_{i=1} \hat{x}_{i} \frac{u_{i}(t)}{\omega_{0}(t)} \tag{7}
\end{equation*}
$$

where $v_{i}(b)$ is determined by (2).
By integrating both sides of the equation (7) and using the boundary condition $\tilde{L}_{r-1} P_{r}(0)=0$ we obtain

$$
\tilde{L}_{r-1} \operatorname{Pr}(t)=\int_{n}^{t} \frac{\varkappa_{r+1}(\xi)}{\omega_{0}(\xi)} d \xi+\sum_{i=1}^{r} \hat{x}_{i} \int_{0}^{t} \frac{\varepsilon_{i}(\xi)}{\omega_{0}(\xi)} d \xi
$$

Then by moltiplying the last equation by $\omega_{1}(\cdot)$ and integrating it from 0 to l we get

$$
\tilde{L}_{r-2 \operatorname{Pr}}(l)=\int_{0}^{t} \omega_{1}\left(t_{1}\right) \int_{0}^{t_{1}} \frac{u_{r+1}(\xi)}{\omega_{0}(\xi)} d \xi d t_{1}+\sum_{i=1}^{r} x_{i} \int_{0}^{t} \omega_{2}\left(t_{1}\right) \int_{0}^{t_{1}} \frac{u_{i}(\xi)}{\omega_{0}(\xi)} d \xi d t_{1}
$$

By induction we see that

$$
\operatorname{Pr}(l)=v_{r+l}(l)+\sum_{i=1}^{r} \hat{x}_{i} v_{i}(l)
$$

where

$$
v_{i}(t)=\int_{0}^{1} \omega_{r-1}\left(t_{r-1}\right) \int_{0}^{t_{r-2}} \omega_{r-2}\left(l_{r-2}\right) \cdots \int_{0}^{t_{2}} \omega_{1}\left(t_{1}\right) \int_{0}^{l_{1}} \frac{s_{i}(\xi)}{\omega_{0}(\xi)} d \xi d t_{1} \ldots d t_{r-1}
$$

Using the boundary conditions $\tilde{L}_{j} p_{r}(1)=0$ we get the following linear system
(8)

$$
\begin{aligned}
& \sum_{i=1}^{r} \hat{x}_{i} \int_{0}^{1} \frac{u_{i}(\xi)}{\omega_{0}(\xi)} d \xi=-\int_{0}^{1} \frac{u_{r+1}(\xi)}{\omega_{0}(\xi)} d \xi \\
& \sum_{i=1}^{r} \hat{x}_{i} \int_{0}^{1} \omega_{1}\left(t_{1}\right) \int_{0}^{t_{1}} \frac{u_{2}(\xi)}{\omega_{0}(\xi)} d \xi=-\int_{0}^{1} \omega_{1}\left(t_{1}\right) \int_{0}^{t_{1}} \frac{u_{r+1}(\xi)}{\omega_{0}(\xi)} d \xi d t_{1} \\
& \vdots \\
& \sum_{i=1}^{r} \hat{x}_{i} v_{1}(1)=v_{r+1}(1)
\end{aligned}
$$

Let's denote the coefficients in the system (8) by $a_{i k}, 1 \leq i \leq r, 1 \leq k \leq r$.
Since

$$
\operatorname{det}\left(v_{i}^{(j)}(l)\right)_{i=1, j=0}^{r-1}>0, \quad t \in[0,1]
$$

and

$$
\operatorname{det}\left(a_{i k}\right)_{i, k=1}^{r}=\frac{1}{\omega_{1}(1) \ldots \omega_{r-1}(1)} \operatorname{det}\left(v_{i}^{(j)}(1)\right)_{i=1, j=0}^{r-1}>0
$$

we conclude that the system (8) has a unique solution.
Thus we have proved the following
Theorem 1. The solution of the problem (1) is unique and it can be written as follous

$$
\hat{x}(t)=\omega_{0}(t) \tilde{D}_{p_{r}(t)}=u_{r+1}(t)+\sum_{i=1}^{r} \hat{x}_{i} u_{i}(t)
$$

where $\hat{\boldsymbol{x}}_{i}$ are determined from the ayatem (8).
2. 'The optirnal extrapolation and interpolation of generalizod polynossuialy in L_{2}-nutric. Consider now the problem (I) which is equivalent to the following one

$$
\begin{align*}
& x^{(0 n)}(\tau) \longrightarrow \text { inf } ;\|x(\cdot)\|_{\left.L_{2}(0,1]\right)}^{2} \leq 1, \quad D_{x}(\cdot)=0, \tag{II}\\
& 0 \leq m \leq r-1, \quad r \in \mathbb{R}
\end{align*}
$$

Since the general solution of the equation $D x(\cdot)=0$ can be written in the form $x(l)=\sum_{i=1}^{r} x_{i} u_{i}(l)$, the problem (II) is a problemin the convex programming which han the solution under the assumptions of compactness and continuity of the functional $f(x(\cdot))=x^{(m)}(r)$. We solve the problem by Kiyhu-Theloer theorem (see [2]).

Since the Slater condition is satisfied, the Lagrange function has the form

$$
\mathcal{L}(x, \lambda)=x^{(m)}(r)+\frac{\lambda}{2} \int_{0} x^{2}(f) d t, \quad z=\left(x_{1}, \ldots, x_{r}\right)
$$

Denote the solution of the problem (II) by $\tilde{\Sigma}(\tau)$ and write:

1. The minimum principle

$$
\min _{x \in \mathbb{R}^{-}}\left(x^{(m)}(\tau)+\frac{\lambda}{2} \int_{0}^{1} x^{2}(l) d t\right)=\hat{x}(m)(\tau)+\frac{\lambda}{2} \int_{0}^{1} \hat{x}^{2}(l) d t
$$

2. The condition of the sapplement nonrigid

$$
\lambda\left(\int_{0}^{1} \hat{x}^{2}(t) d t-1\right)=0
$$

3. The condition of the nonnegativity

$$
\lambda \geq 0
$$

It is obvious that $\lambda>0$. Then by the minimm prisciple wid the Fermat theorem we get

$$
\begin{equation*}
x^{(m)}(r)+\lambda \int_{0}^{1} \hat{x}(l) x(l) d t=0, \quad x(\cdot) \in P_{r}^{D} \tag{9}
\end{equation*}
$$

where $P_{r}^{D}=\left\{x(\cdot) \mid x(l)=\sum_{i=1}^{r} x_{i} w_{i}(l), x_{i} \in \mathbf{R}\right\}$.
Putting $\hat{x}(\cdot)$ instead of $a(\cdot)$ into the equation (9) and using the condition of the supplement nonrigid we see that $\lambda=-\hat{x}^{(m)}(r)$.

Let $e_{k}(\cdot)=T_{2 D_{3}}(\cdot) /\left\|T_{2 L_{b}}(\cdot)\right\|_{L_{3}(f)}$ be the orthonormal system of the generalized Legendre polynomials. Then $\dot{\dot{x}}(\cdot)$ can be represented in the form

$$
\begin{equation*}
\widehat{x}(l)=\sum_{i=1}^{r} \hat{x}_{i} e_{i}(l) \tag{10}
\end{equation*}
$$

Putting $e_{k}(\cdot)$ instead of $x(\cdot)$ in the equation (9) and using the representation (10) we obtain

$$
e_{k}^{(m)}(r)+\lambda \int_{0}^{1} \sum_{i=1}^{r} \hat{x}_{i} e_{i}(l) e_{k}(l) d l=e_{k}^{(m)}(r)+\lambda \hat{x}_{k}=0 .
$$

Hence $\hat{x}_{k}=-\frac{e_{k}^{(m)}(\tau)}{\lambda}$ and as a consequence of (10) we get

$$
\widehat{x}(t)=\sum_{k=1}^{r} e_{k}^{(m)}(r) e_{k}(t) / \hat{X}^{(m)}(\tau) .
$$

Differentiating m times both sidea of that equality at the point r, we obtain

$$
\left[\hat{x}^{(m)}(r)\right]^{p}=\sum_{k=1}^{r}\left(e_{k}^{(m)}(r)\right)^{2}
$$

Hence

$$
\hat{\chi}^{(m)}(r)=-\left(\sum_{k=1}^{r}\left(e_{k}^{(m)}(r)\right)^{2}\right)^{1 / 2}
$$

Therefore

$$
\hat{x}(l)=-\sum_{k=1}^{r} e_{k}^{(m)}(r) e_{k}(t) /\left(\sum_{k=1}^{r}\left(e_{k}^{(m)}(r)\right)^{2}\right)^{1 / 2}
$$

As a corollary of that reanlt we get the following inequality for the generalized polynomials.

$$
\left|x^{(m)}(\tau)\right| \leq\left(\sum_{k=1}^{r} e_{k}^{(m)}(r)^{2}\right)^{1 / 2}\|x(\cdot)\|_{L_{v}((0,1))} .
$$

This inequality can be proved uaing the Cauchy-Bunyaloowsky inequality.
Thus we are lead to the following result.
Theorem 2. The solution of the problem (II) is waigse and has the following form

$$
\hat{x}(t)=-\sum_{k=1}^{r} e_{k}^{(m)}(r) e_{k}(t) /\left(\sum_{k=1}^{r}\left(e_{k}^{(m)}(r)^{2}\right)^{1 / n}\right.
$$

where $e_{1}(\cdot), k=1, \ldots, r$ is the orthonormal aystem of the generalized Legendre poly. nomiale.

REPBRPNCES

 1825.
[2] Tichomirov, V.M. Some Phobleme in the Appnocrmation Theon (Ruacian), Publications of Muecow State Univernity 1976.
[3] Karlin, S. Siudden, W. , Tchebycheff Syatems: with Applioations in Amalyoie and Stafiatics, Intemaence Publ., Now York-Londan-Sydney 1866.
[1) Pinkue, A. , n-uidthe in Apprasimation Theory, Springer, Bartin 1085.

STRESZCZENIE

Autorzy podaja wsory porvalajace nyznaczyts w hasie uogolnionych wielomianów amazanych y pownym operatorem rómicalow ym uogolniony widomian o minimalnej L_{2}-norrie. Zoeldy równiez roswiazane dla klasy uogdrionych wielomianów problemy oplymalnej akstrapolecji i intorpolaci.

