LUBLIN-POLONIA

V()I. Xl/II, 10
SECTIO A
1989

Instytut Matematyki UMC'S

M. NOWAK

Some New Inequalities for Periodic Quasisymmetric Functions

Nowe nierówności dla okresowych funkeji quasisymetrycznych

Abstract

As pointed out in [2], [3] the boundary correspondence under quasiconformal selfmappings of Jordan domains may be represented by M - quasisymmetric functions $x \mapsto x+\sigma(x)$, $x \in \mathbf{R}$, where σ is 2π-periodic. In this paper some estimates of various norms and Fourier coefficients of σ depending on M and established in [3] are improved.

1. Introduction. Notations. Statement of results. Any automorphism φ od the unit circle T admitting a quasiconformal extension to the unit disc \mathbf{D} also admits a quasiconformal exter :-on Φ with $\Phi(0)=0$. By lifting the mapping Φ of $\mathrm{D} \backslash\{0\}$ under $z \mapsto-i \log z$ to the upper half-plane we obtain a quasisymmetric (abbreviated : qs) function $x \mapsto x+\sigma(x), x \in \mathbf{R}$, with 2π-periodic σ. Obviously the period 2π may be replaced by any $a>0$ and a corresponding class of functions σ will be denoted by $E(M, a)$. The normalization

$$
\begin{equation*}
\sigma(0)=\sigma(a)=0 \tag{1.1}
\end{equation*}
$$

defines the subclass $E_{1}(M, a)$ of $E(M, a)$. Evidently $E_{1}(M, 1)+\mathrm{id}$ is the subclass of the familiar class $H_{1}(M)$ of M-qs functions h normalized by the condition

$$
\begin{equation*}
h(0)=0, \quad h(1)=1 \tag{1.2}
\end{equation*}
$$

If $\sigma \in E(M, a)$ then $\sigma_{0}(x)=\sigma(x)-a^{-1} \int_{0}^{a} \sigma(t) d t$ satisfies :

$$
\begin{equation*}
\int_{0}^{a} \sigma_{0}(x) d x=0 \tag{1.3}
\end{equation*}
$$

The subclass of $E(M, a)$ subject to the normalization (1.3) will be denoted by $E_{0}(M, a)$. For sake of brevity $E(M)$ will stand for $E_{0}(M, 2 \pi)$. With some abuse of language we shall call $\sigma \in E(M, a)$-a periodic qs function.

In Section 2 we establish some basic lemmas concerning periodic qs functions which will be used further on in obtaining various estimates established in [3].
In particular we answer in the positive a conjecture posed in [3, p.232 ${ }^{5,6}$] and obtain for $\sigma \in E(M)$ an estimate of $\sum_{n=1}^{\infty} \rho_{n}$ of the form $O(\sqrt{M-1})$ (Theorem 3.1). Here $\sigma(x)=\sum_{n=1}^{\infty} \rho_{n} \sin \left(n x+x_{n}\right)$ and $\rho_{n} \geq 0$.

I wish to thank Professor Jan Krzyz for suggesting these problems and for his invaluable help during the preparation of this paper.

2. Basic lemmas.

Lemma 2.1. If $\sigma \in E_{0}(M, 1)$ then

$$
\begin{equation*}
\sup \{|\sigma(x)|: x \in \mathbf{R}\} \leq \frac{1}{2} \frac{M-1}{M+1} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1}|\sigma(x)|^{2} d x \leq \frac{1}{8}\left(\frac{M-1}{M+1}\right)^{2} \tag{2.2}
\end{equation*}
$$

Proof. We may assume that.

$$
\begin{equation*}
\sigma(0)=\sigma(1)=0 \tag{2.3}
\end{equation*}
$$

Otherwise we could consider $\sigma_{1}(x)=\sigma\left(x+x_{0}\right)$ where $x_{0} \in[0 ; 1)$ satisfies $\pi\left(x_{0}\right)=!$.
So we can take $\sigma \in E_{1}(M, 1)$. Since $\int_{0}^{1} \sigma(x) d x=0$, there exists $r_{1} \in(0 ; 1)$ such that $\sigma\left(x_{1}\right)=0$. Since $\sigma \in E_{1}(M, 1)$ we have the estimate

$$
\begin{equation*}
|\sigma(x)| \leq \frac{M-1}{M+1} \tag{2.4}
\end{equation*}
$$

cf. [3, p.231].
If $\sigma \in E_{1}(M, 1),(\alpha ; \beta) \subset(0 ; 1)$ and $\sigma(\alpha)=\sigma(\beta)=0$ then obvionsis

$$
\begin{equation*}
\sup \{|\sigma(x)|: x \in(\alpha, \beta)\} \leq(\beta-\Omega) \frac{M-1}{M+1} \tag{2.5}
\end{equation*}
$$

Note that $x \mapsto(\beta-\alpha)^{-1} \sigma((\beta-\alpha) x+\alpha) \in E_{1}(M, 1)$ and apply (2.4).
Let I_{k} (or J_{l}, respectively) be the system of maximal, disjoint, qpoll intmank in $[0 ; 1)$ such that $\sigma(x)>0$ on I_{k} (and $\sigma(x)<0$ on J_{l}, resp.) and $\sigma(x)=11$ at the end-points of I_{k} and J_{1}. If all the intervals I_{k} and J_{l} are such that the length of orarh is at most $\frac{1}{2}$, then (2.1) immediately follows from (2.5).

Assume now that one of these intervals, say I_{0} has the length $\left|I_{0}\right|>\frac{1}{2}$ 1)ne wh the normalization (1.3) we have

$$
\begin{equation*}
\int_{\bigcup J_{1}}|\sigma(x)| d x=\int_{\bigcup_{I_{b}}} \sigma(x) d x \tag{2.6}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
\max \left\{\sigma(x): x \in I_{0}\right\}=\sigma\left(x_{0}\right)>\frac{1}{2} \frac{M-1}{M+1} \tag{2.7}
\end{equation*}
$$

Since $\left|I_{0}\right|>\frac{1}{2}$, we have $\sum\left|J_{l}\right|<\frac{1}{2}$ and hence by (2.5) and [3; formula (2.13)]

$$
\begin{equation*}
\int_{\bigcup_{J_{l}}}|\sigma(x)| d x \leq \frac{1}{2} \sum\left|J_{l}\right|^{2} \frac{M-1}{M+1} \leq \frac{1}{8} \frac{M-1}{M+1} \tag{2.8}
\end{equation*}
$$

since $\sum\left|J_{l}\right|^{2}<\frac{1}{4}$.
We now prove that the assumption (2.7) leads to a contradiction.
To this end we examine the behaviour of $\sigma\left(x_{0}+t\right)$ for $x_{0}+t \in I_{0}$.
The familiar M-condition for $\sigma+\mathrm{id}$ (cf. [1]) :

$$
\begin{equation*}
\frac{1}{M} \leq \frac{t+\sigma\left(x_{0}+t\right)-\sigma\left(x_{0}\right)}{t+\sigma\left(x_{0}\right)-\sigma\left(x_{0}-t\right)} \leq M \tag{2.9}
\end{equation*}
$$

implies for $t<0$

$$
\left(\frac{1}{M}-1\right) t+\sigma\left(x_{0}\right) \leq \sigma\left(x_{0}+t\right)
$$

Note that $\sigma\left(x_{0}\right)-\sigma\left(x_{0}-t\right) \geq 0$.
By (2.7) for $0 \leq t \leq \frac{M}{2(M+1)}=\beta$ we have

$$
\begin{equation*}
0 \leq\left(\frac{1}{M}-1\right) t+\frac{1}{2} \frac{M-1}{M+1} \leq \sigma\left(x_{0}+t\right) \tag{2.10}
\end{equation*}
$$

Similarly, for $t<0$ the M-condition (2.9) implies

$$
\begin{equation*}
\sigma\left(x_{0}+t\right) \geq(M-1) t+\sigma\left(x_{0}\right)>(M-1) t+\frac{1}{2} \frac{M-1}{M+1} . \tag{2.11}
\end{equation*}
$$

The last term is positive as soon as

$$
0 \geq t \geq-\frac{1}{2} \frac{1}{M+1}=-\alpha
$$

Note that the length of the interval $[-\alpha, \beta] \subset I_{0}$ equals $\frac{1}{2}$, i.e. $\alpha+\beta=\frac{1}{2}$. In view of (2.10) and (2.11)

$$
\begin{aligned}
\int_{I_{0}} \sigma(x) d x & \geq \int_{-\alpha}^{0} \sigma\left(x_{0}+t\right) d t+\int_{0}^{\beta} \sigma\left(x_{0}+t\right) d t \\
& \geq \int_{-\alpha}^{\beta} \sigma\left(x_{0}\right) d t+\int_{-\alpha}^{0}(M-1) t d t+\int_{0}^{\beta}\left(\frac{1}{M}-1\right) t d t \\
& >(\alpha+\beta) \frac{1}{2} \frac{M-1}{M+1}-(M-1) \frac{1}{2} \alpha^{2}-\frac{1}{2} \frac{M-1}{M} \beta^{2} \\
& =\frac{1}{4} \frac{M-1}{M+1}-\frac{1}{2}(M-1)\left(\alpha^{2}+\frac{\beta^{2}}{M}\right)=\frac{1}{8} \frac{M-1}{M+1}
\end{aligned}
$$

which contradicts (2.6) and (2.8).
We have for $\sigma \in E_{0}(M, 1)$

$$
\begin{aligned}
\int_{0}^{1}|\sigma(x)|^{2} d x & \leq \max \{|\sigma(x)|: x \in R\} \cdot \int_{0}^{1}|\sigma(x)| d x \\
& \leq \frac{1}{2} \frac{M-1}{M+1} \cdot \frac{1}{4} \frac{M-1}{M+1}
\end{aligned}
$$

and (2.2) follows by (2.1) and [3; (2.12)].
We now prove
Lemma 2.2. If $\sigma \in E_{1}(M, 1)$ then

$$
\begin{equation*}
\left|\sigma\left(\frac{1}{2^{n}}\right)\right| \leq\left(\frac{M}{M+1}\right)^{n}-\frac{1}{2^{n}} \quad, \quad n \in \mathbf{N} . \tag{2.12}
\end{equation*}
$$

Proof. Consider the case $n=1$. Then the inequality

$$
M^{-1} \leq \frac{1 / 2+\sigma(1)-\sigma(1 / 2)}{1 / 2+\sigma(1 / 2)-\sigma(0)}=\frac{1 / 2-\sigma(1 / 2)}{1 / 2+\sigma(1 / 2)} \leq M
$$

implies

$$
\sigma(1 / 2) \leq \frac{1}{2} \frac{M-1}{M+1}=\frac{M}{M+1}-\frac{1}{2} \text { and also }-\sigma(1 / 2) \leq \frac{M}{M+1}-\frac{1}{2}
$$

and (2.12) follows for $n=1$. Suppose now that (2.12) holds for some $n \in \mathbf{N}$. Then we have

$$
\begin{aligned}
\frac{1}{M} & \leq \frac{2^{-n-1}+\sigma\left(2^{-n}\right)-\sigma\left(2^{-n-1}\right)}{2^{-n-1}+\sigma\left(2^{-n-1}\right)-\sigma(0)} \\
& \leq \frac{2^{-n-1}+\left(\frac{M}{M+1}\right)^{n}-2^{-n}-\sigma\left(2^{-n-1}\right)}{2^{-n-1}+\sigma\left(2^{-n-1}\right)}
\end{aligned}
$$

Hence

$$
\sigma\left(\frac{1}{2^{n+1}}\right) \leq\left(\frac{M}{M+1}\right)^{n+1}-\frac{1}{2^{n+1}}
$$

follows after some obvious calculations. On the other hand, for $\sigma\left(\frac{1}{2^{n}}\right)<0$ we have

$$
M \geq \frac{2^{-n-1}+\sigma\left(2^{-n}\right)-\sigma\left(2^{-n-1}\right)}{2^{-n-1}+\sigma\left(2^{-n-1}\right)} \geq \frac{2^{-n-1}+2^{-n}-\left(\frac{M}{M+1}\right)^{n}-\sigma\left(2^{-n-1}\right)}{2^{-n-1}+\sigma\left(2^{-n-1}\right)}
$$

This implies

$$
\begin{aligned}
\sigma\left(\frac{1}{2^{n+1}}\right) & \geq-\frac{1}{2} \frac{M-1}{M+1} \cdot \frac{1}{2^{n}}-\frac{M^{n}}{(M+1)^{n+1}}+\frac{1}{2^{n}} \frac{1}{M+1} \\
& =\frac{1}{2^{n}}\left(\frac{1-M}{1+M}+\frac{1}{2}\right)-\frac{M^{n}}{(M+1)^{n+1}}
\end{aligned}
$$

It is sufficient to verify that the last term is $\geq \frac{1}{2^{n+1}}-\left(\frac{M}{M+1}\right)^{n+1}$
which is equivalent to the obvious inequality

$$
M \geq 1+\left(\frac{M+1}{2 M}\right)^{n}(M-1) \quad, \quad M \geq 1
$$

Hence (2.12) holds for $n+1$ and we are done.
As corollaries of Lemmas 2.1 and 2.2 we obtain following inequalities :
If $\sigma \in E(M)$ and $n \in \mathbf{N}$ then

$$
\begin{equation*}
\sup \{|\sigma(x)|: x \in \mathbf{R}\} \leq \pi \frac{M-1}{M+1} \tag{2.13}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{2 \pi}|\sigma(x)|^{2} d x \leq \pi^{2}\left(\frac{M-1}{M+1}\right)^{2} \tag{2.14}
\end{equation*}
$$

$$
\begin{equation*}
\left|\sigma\left(\frac{\pi}{2^{n}}\right)\right|=\left|\sigma\left(\frac{2 \pi}{2^{n+1}}\right)\right| \leq 2 \pi\left[\left(\frac{M}{M+1}\right)^{n+1}-\frac{1}{2^{n+1}}\right] . \tag{2.15}
\end{equation*}
$$

Moreover, for any $x \in \mathbf{R}$

$$
\begin{equation*}
\left|\sigma\left(x+\frac{\pi}{2^{n}}\right)-\sigma(x)\right| \leq 2 \pi\left[\left(\frac{M}{M+1}\right)^{n+1}-\frac{1}{2^{n+1}}\right] \tag{2.16}
\end{equation*}
$$

These inequalities are counterparts of inequalities (2.1), (2.2) and (2.12), resp.
3. Main results. We now prove a sharpened version of Theorem 2.10 in [3].

Theorem 3.1. If $\sigma \in E(M)$ and

$$
\begin{equation*}
\sigma(x)=\sum_{n=1}^{\infty} \rho_{n} \sin \left(n x+x_{n}\right) \quad, \quad \rho_{n} \geq 0 \tag{3.1}
\end{equation*}
$$

then

$$
\begin{align*}
\sum_{n=1}^{\infty} \rho_{n} & \leq \pi\left(\frac{M-1}{M+1}\right)+\sqrt{2} \pi \sum_{n=2}^{\infty} \sqrt{\left(\frac{M}{M+1}\right)^{n}-\frac{1}{2^{\prime \prime}}} \tag{3.2}\\
& =: \rho(M)= \begin{cases}O(\sqrt{M-1}) & \text { as } M \rightarrow 1^{+} \\
O(M) & \text { as } M \rightarrow \infty\end{cases}
\end{align*}
$$

Proof. If (3.1) holds then

$$
\frac{1}{\pi} \int_{0}^{2 \pi}[\sigma(x+h)-\sigma(x-h)]^{2} d x=4 \sum_{n=1}^{\infty} \rho_{n}^{2} \sin ^{2} n h
$$

cf. [4;p.241].
Hence for any $k \in \mathbb{N}$ and $h=\frac{\pi}{2^{n+1}}$

$$
\int_{10}^{2 \pi}\left[\sigma\left(x+\frac{k \pi}{2^{n}}\right)-\sigma\left(x+\frac{(k-1) \pi}{2^{n}}\right)\right]^{2} d x=4 \pi \sum_{k=1}^{\infty} r_{k}^{2} \sin ^{2} \frac{\pi k}{2^{n}+1}
$$

Moreover. in view of (216) we have

$$
\begin{aligned}
& \sum_{k=1}^{2^{n+1}}\left[\sigma\left(x+\frac{k \pi}{2^{n}}\right)-\sigma\left(x+\frac{(k-1) \pi}{2^{n}}\right)\right]^{2} \\
& \leq 2 \pi\left[\left(\frac{M}{M+1}\right)^{n+1}-\frac{1}{2^{n+1}}\right] \sum_{k=1}^{2^{n+1}}\left|\sigma\left(x+\frac{k \pi}{2^{n}}\right)-\sigma\left(x+\frac{(k-1) \pi}{2^{n}}\right)\right| \\
& \left.2 \pi \left\lvert\,\left(\frac{M}{M+1}\right)^{n+1} \frac{1}{2^{n+1}}\right.\right] V[\sigma],
\end{aligned}
$$

where $\sqrt{\prime}[\sigma]$ stands for the total variation of σ over $[0 ; 2 \pi]$.
After integrating both sides of the above inequality over $[0 ; 2 \pi]$ we obtain

$$
2^{n+1} 4 \pi \sum_{k=1}^{\infty} \rho_{k}^{2} \sin ^{2} \frac{\pi k}{2^{n+1}} \leq 4 \pi^{2}\left[\left(\frac{M}{M+1}\right)^{n+1}-\frac{1}{2^{n+1}}\right] \cdot V[\sigma]
$$

Hence, following [$4 ; \mathrm{p} .242$] we obtain :

$$
\sum_{k=2^{n-1}+1}^{2^{n}} \rho_{k}^{2} \sin ^{2} \frac{\pi k}{2^{n+1}} \leq \pi \cdot 2^{-n-1}\left[\left(\frac{M}{M+1}\right)^{n+1}-\frac{1}{2^{n+1}}\right] \cdot V[\sigma]
$$

and hence

$$
\sum_{k=2^{n-1}+1}^{2^{n}} \rho_{k}^{2} \leq 2 \pi \cdot 2^{-n-1}\left[\left(\frac{M}{M+1}\right)^{n+1}-\frac{1}{2^{n+1}}\right] \cdot V[\sigma]
$$

Next, in view of the obvious inequality $V[\sigma] \leq 4 \pi$,

$$
\begin{aligned}
\sum_{k=2^{n-1}+1}^{2^{n}} \rho_{k} & \leq\left(\sum_{k=2^{n-1}+1}^{2^{n}} \rho_{k}^{2}\right)^{1 / 2}\left(\sum_{k=2^{n-1}+1}^{2^{n}} 1\right)^{1 / 2} \\
& \leq 2 \pi \cdot 2^{-n / 2}\left[\left(\frac{M}{M+1}\right)^{n+1}-\frac{1}{2^{n+1}}\right]^{1 / 2} \cdot 2^{(n-1) / 2} \\
& =\pi \sqrt{2}\left[\left(\frac{M}{M+1}\right)^{n+1}-\frac{1}{2^{n+1}}\right]^{1 / 2}
\end{aligned}
$$

Hence

$$
\sum_{n=2}^{\infty} \rho_{n}=\sum_{n=1}^{\infty} \sum_{k=2^{n-1}+1}^{2^{n}} \rho_{k} \leq \pi \sqrt{2} \sum_{n=2}^{\infty}\left[\left(\frac{M}{M+1}\right)^{n}-\frac{1}{2^{n}}\right]^{1 / 2}
$$

which proves (3.2), in view of the inequality $\rho_{1} \leq \pi \frac{M-1}{M+1}$, cf. [3; p.235].
We now derive asymptotic behaviour of the bound $\rho(M)$ as $M \rightarrow 1^{+}$and $M \rightarrow$ ∞.

For $0<b<a$ we have $a^{n}-b^{n} \leq n(a-b) a^{n-1}$ and hence

$$
\begin{aligned}
& \sum_{n=2}^{\infty} V \sqrt{\left(\frac{M}{M+1}\right)^{n}-\frac{1}{2^{n}}} \leq \sqrt{\frac{M}{M+1}-\frac{1}{2}} \sum_{n=1}^{\infty} \sqrt{n+1}\left(\frac{M}{M+1}\right)^{n / 2} \\
& \quad \leq \sqrt{\frac{M-1}{2(M+1)}}\left(\sqrt{\frac{M}{M+1}}+(2 M+1) \sqrt{M(M+1)}+M(M+1)\right)
\end{aligned}
$$

i.e.

$$
\rho(M)=O(\sqrt{M-1}) \text { as } M \rightarrow 1^{+} .
$$

We have

$$
\begin{aligned}
\sum_{n=2}^{\infty} \sqrt{\left(\frac{M}{M+1}\right)^{n}-\frac{1}{2^{n}}} & <\sqrt{\frac{M}{M+1}} \sum_{n=1}^{\infty}\left(\frac{M}{M+1}\right)^{n / 2} \\
& =\sqrt{\frac{M}{M+1}}(M+\sqrt{M(M+1)})=O(M)
\end{aligned}
$$

and this implies $\rho(M)=O(M)$ as $M \rightarrow \infty$.
Corollary 3.2. If $\sigma \in E(M)$ then its Fourier conjugute $\tilde{\sigma}$ has the bound

$$
\begin{equation*}
\sup \{|\widetilde{\sigma}(x)|: x \in \mathbf{R}\} \leq \rho(M)=O(\sqrt{M-1}) \tag{3.3}
\end{equation*}
$$

as $M \rightarrow 1^{+}$.
The method applied above and due to Zygmund [4] enables us to prove the convergence of the series $\sum \rho_{n}^{\beta}$ for $2>\beta>2 /(2+\alpha)$ where

$$
\begin{equation*}
\alpha=\log _{2}\left(1+\frac{1}{M}\right) \tag{3.4}
\end{equation*}
$$

and estimate its sum.
We have the following generalization of Theorem 2.1.
Theorem 3.3. If $\sigma \in E(M)$ and (8.1) holds then for $2>\beta>2 /(2+\alpha)$, where α is defined by (3.4), we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \rho_{n}^{\beta} \leq \frac{1}{2}(2 \sqrt{2} \pi)^{\beta} \sum_{n=1}^{\infty} 2^{n(1-\beta)}\left[\left(\frac{M}{M+1}\right)^{n+1}-\frac{1}{2^{n+1}}\right]^{\beta / 2}=: \rho_{\beta}(M) \tag{3.5}
\end{equation*}
$$

Moreover, $\rho_{\beta}(M)=O\left((M-1)^{\beta / 2}\right)$ a.s $M \rightarrow 1^{+}$and. $\rho_{\beta}(M)=0(1)$ as $M \rightarrow \infty$ for fixed $\beta>1$.

We omit the proof since it is quite amalogons ton the pronf of Theorm 3.1 We use the following estimate :

$$
\sum_{k=2^{n-1}+1}^{2^{n}} \rho_{k}^{\beta} \leq\left(\sum_{k=2^{n-1}+1}^{2^{n}} \rho_{k}^{2}\right)^{\beta / 2}\left(\sum_{k=2^{n-1}+1}^{2^{\prime \prime}} 1\right)^{1}
$$

which is a special case of Hölder's inequality with $p=2 / \beta, y=9 /(9-\beta)$

REFERENCES

[1] Ahlfors, L. V., Lecturea on Quasiconformal Mappings, Van Nostrand, Princeton Toronto - New York - London 1966
[2] Krzyí, J. G. Quasscircles and harmonir measure: Alll. Achd Sci Felll Ser 1 I Math. 12 (1987), 1924.
[3] Krzyí, J. G. Harmonic analysis and houndary conveapmudenic, Alll Arad Sci Fenn. Ser.A1Math. 14 (1989), 225-242.
[4] Zygmund, A. Trigonometric Series, Voll, Cambridge luinasity Prass Cambridge 1968.

STRESZCZENIE

Jak wykazano w pracach [2]. [3] ¢uasikonforemme owlwzotowania obszaroiw jurdanowskich w

