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Generalized Neumann—-Poincaré Operator and Chord—arc Curves

Uogolniony operator Neumanna-Poincaré’go i krzywe tuk-cigciwa

Abstract. Let I’ be a rectifiable Jordan curve in the finite plane regular in the sense of
Ahlfors-David, i.e. AD-regular.
Let Lg, p> 1, stand for the class of rcal-valued functions 1(s) on I such that

/ [z(s)|” ds < +00 and /:t(s)ds -0.
- r r

If the Cauchy singular integral operator cr acting on Lg is split into its real and imaginary parts
Cr and CE. resp., then the following characterizations of chord-arc curves in the finite plane can
be given. .

I is a chord-arc iff C; is a bounded isomorphism of Lg for some p > 1. T is chord-arc iff
—1, 1 are regular values of the operator C!v acting on L} for some p>1

If p=2and ||CT - Cr" < 1, where T is the unit circle, |T| = 27 and L} = L§(0, 27)
then I is chord-arc. Some further statements concern the case when ||C} " < 1 and the operator
C{ acts on Lg

1. Introduction. The spectacular achievement of Louis de Branges [2]
overshadowed another brilliant result obtained about the same time by Guy David
[5]. David was able to give a complete characterization of locally rectifiable curves I'
and exponents p for which the Cauchy singular integral is a bounded linear operator
on the space LP(T") of complex-valued functions h on I' that satisfy

/lh(z)|’|dz| < +00.
inl

A locally rectifiable curve T is called regular in the sense of Ahlfors-David, or
AD-regular, if there exists a positive constant M such that for any disk D(a; R) the
arc-length measure |[I'N D(a; R)| < MR.

The Cauchy singular integral operator C' is defined as

(11) (CTh)(z0) = Ch(z) = % PV.
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where T is a subarc of T of length 2¢ bisected by zo. We drop the usual factor 1/2
due to reasons evident from what follows.

According to David the operator h +— C"h is bounded on a locally rectifiable
curve T’ for some p > 1, if and only if I is AD-regular. Then it is also bounded for
all p> 1.

This classical problem has a long history going back to Plemelj, Privalov and
others. The partial solution for Lipschitz graphs presented by Calderén at the
Helsinki Congress [3] was already considered as a major achievement. For more details
cf. the excellent survey article of S. Semmes [10].

If T is a Jordan curve in the finite plane we may consider, following Guy Da
vid [5], complementary Hardy spaces HP(Dy), k = 1,2, on complementary domains
D,, D; of an AD-regular curve I' (0 € Dy, 0o € Dz, p > 1). For g € HP(D;) we
assume the normalization g(co) = 0. These classes coincide for AD-regular I in the
finite plane with the familiar classes EP(Dy), cf. [6].

Any f € H?(D;) has non-tangential limiting values a.e. on T and [ |f(z)|?|dz| <
+00. The same is true for ¢ € H?(D;). Since the functions f,g € H?(Dy) can be re-
covered from their boundary values by the Cauchy integral formula, we may consider
HP(Dy) as subspaces of LP(T).

As shown by David, D; and D, are domains of Smimov type, i.e. HP(D),
HP(D,) are LP—closures of polynomials, or polynomials in ™!, resp. Moreover, any
h € LP(T") has a unique decomposition

(1.2) h(Q) = f({)—g(¢) ;5 f€H"D:) , g€ HY(Dy).
This unique decomposition is performed by Plemelj’s formulas
i 1
(13)  f(O=35[A(QO=-Ch(Q , 9(O)=5[=-hY+Ch(C)] ,(CeT.

Hence, for I' being AD-regular and h € LP(T"), p > 1:

(1.4) h(¢Q) = f(Q)—9(Q) » Ch(Q) = f(¢) +g(0) .

Therefore h = f on I' holds, iff g = 0, i.e.

(1.5) f=Cf < feH!D,).
Similarly
(1.6) g=—-Cg < g€ H'(D,) .

Moreover, (1.4)-(1.6) imply CCh = Cf+Cg = f—g = h, and we obtain an important
observation [9]:

(1.7) ct=1, C'=C,

where I stands for the identity operator. Thus, for any p > 1 and any AD-regular I'
CT is an isomorphism of LP(T') being an involution.
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Remark 1.1. Any h € LP(T'), p > 1, generates, according to (1.3), a unique
pair f, g of functions belonging to complementary HP-spaces and we have

1 phQd_[f(z), z€ Dy ;

1.8 i =
o i fr C-z  \g(z), 2€D;.

2. Generalized Neumann-Poincaré operator C]. If T is C* then the
classical Neumann-Poincaré operator A has the form

i)
(21) R =~ [ MO toglc=zlds 5 CeT
Eifr G
1 .
The kernel k(z,() = TR log |¢ — z| has in the C®-case a continuous extension
on I x I and so A is continuous on the space of continuous, real-valued functions h.
Due to the identit —ilo |¢ = 2| = = arg(z — () it
ue to the identity Be g = 75 ™8 we may write
1 ¢'(s)
. e h I =
(2.2) (Wh)(z) = ~ /r () Tm 73— ds
-— 1 h(¢) d¢
—Re{wi‘ﬁ (—z}'

If the last integral is understood in the sense of principal value and I' is AD-regular
then A becomes a bounded linear operator on the space L} (I') = L of real-valued
functions h € LP(T'), p > 1. If we split the Cauchy operator (1.1) acting on x € Lj.
p > 1, into its real and imaginary parts C) and Cy, resp., i.e.

(2.3) qz=cﬁz=%«h+6§y
(2.4) Oyt a kv %(Cz LB

we obtain bounded linear operators on Ly, p > 1, with CI = N for T in C* and
continuous z. In what follows we shall drop the superscript I in most cases. Therefore
C; may be called a generalized Neumann-Poincaré operator acting on Ly (I") and
bounded for an AD-regular Jordan curve I' in the finite plane and p > 1. If (' is
bounded for some p > 1, it is also bounded for all p > 1. In what follows we take for
granted these assumptions on I" and p.

The formula (1.7) implies immediately the following relations resulting from the
identity C = C) +iC3 :

(2.5) C? — 02 = I+, dC1 Ca =t C2Cy; :

We now establish some properties of the operators Cx. To this end we introduce
the subspace L§(T") = L} being the maximal subspace of L} containing no constant
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finctions exeept for o - 0. Thas L = P(LY) where P is the projection
v fortshds/ L with Lostanding for the length of T

Lhe mtroduction of the spaces LY enables ns to eliminate constant functions from
the compatition and this can resalt e in change of norin of the operators C'y. In
the vase of unbonunded AD regular T LE (1) contains no constant functions exeept
for the null function and an analogous procedure is redundant.

Lemma 2.1.  The opcrator C, is bounded on L. It vamishes on constant
functions ouly and maps L)) one to-one onto its subspace

(2.6) Iy =IF :='Co(LY)C L .

Proof. It follows from (2.4) that ||Cy]| < ||C|| so €y is bounded on Lg. If
ry = const then obviously Cyrg = 0. Suppose now that Cyag = 0, ie. Crg = C.L‘o
Then Cxp = yo € Ly and consequently, g = L(—rxy + Ciro) € HP(D,), as well as
f = 3(z0+Cx0) € HP(D,), have identically vanishing imaginary parts. Hence g = 0,
f = a = const and finally f — g = 2y = a. Thus

(2.7) Cy19 = 0 < 1¢ = const.

Hence C; is 1:1 on Lj. Suppose now that C2z¢ = a = const for some vy € Ly . Then
Czg = Ci1¢9+1Cyx9 = Cyzg +ia and consequently g = %(—xo +Cyxp+1a) € HP(D,)
has a constant imaginary part. Thus Im ¢ = a = 0 since g(oo) = 0 and this shows
that C(L}% ) does not contain any constant function except for 0. This proves that
C is a one-to-one operator on Lf and the inclusion (2.6) follows.

The operator C; cannot vanish identically on all L§ for an AD-regular I'. Note
that otherwise L§ would consist only of constant functions which is obviously absurd.
For C, we have, to the contrary, the following

Remark 2.2, If I = T = {z: ]z| = 1} then CT = 0 on L} for all p > 1. The
converse is also true.

vProof Trigonqmetric polynomials z, = Z:ﬂ{a" cosnfl + b,sinf) =
Yonei(@ne’™® + @ne™'"), a, = 1(an — ib,) are dense in Lf; the decomposition
(1.2) takes the form z, = f — g, where f = Ef=. ape® g = 2 _Wqenind,

Hence by (1.4) CTx,, = f + g is purely imaginary and consequently Cl'z, = 0 for all
7, and also for all x € L}, p > 1. L
Suppose now that Cyx = 0 for all z € L}. Then Cx = —Cz, z € L§, or

_l‘. r.v. /x(s)—z'iflig— = l FYV. /I(S)L(s)f—dsz 4
w I 2(8) - T 2(s) — 2(t)

z'(s) d i, i
) 2l = 0, or g Im log[z(s) — z(t)] = 0 for almost all s,¢, and

2(sz) — 2(t)
2(81) — 2(1)

Henee Im

consequently arg = const for all ¢t between s, and s; which can be
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arbitrary. ‘This means that 1'is a cirele. Note that s+ 2(s) is absolutely continnous
for a bounded AD-regular T

3. Neumann domains and Lavrentiev curves. A bounded, simply con-
nected domain D is said to be a Carathéodory domain, if the conformal mapping of D
on the unit disk A has a continuous extension to its closure D. Any bounded Jordan
domain is a Carathéodory domain, however, there exist Carathéodory domains whose
boundary is not a Jordan curve.

Let D be a bounded Carathéodory domain with a rectifiable boundary curve I'
and let HP(D) stand for {f € HP(D) : Re f € L} , Im f € L}}. According to M.
Zinsmeister [11] D is said to be a Neumann domain iff there ezists a bounded linear
operator S : LY — L} generating an isomorphism ¢ — ¢ + 1Sy between L} = L§(T)
and H (D) for some p > 1.

If such an isomorphism does exist for some p > 1, it also exists for all p > 1.
An unbounded domain Dy with a locally rectifiable boundary curve I' is called a
Neumann domain iff for some 2o ¢ Dy the image domain D of Dy under the mapping
2+ (z —z9)7! is a bounded Neumann domain.

Zinsmeister also gave the following geometric characterization of Neumann do-
mains: D is a Neumann domain if and only if 3D is AD-regular and C\ D is k-locally
connected for some k > 1.

We recall that a set E in the plane is called k-locally connected (k-l.c.), k > 1,if
for any zp € C and any disk D(zo;7) the set EN D(z;r) is contained in a connected
subset of E N D(z; kr).

Since AD regularity and k l.c. property are preserved under Moebius trans-
formations, the above geometric characterization applies to both bounded and un-
bounded domains. 4

A Jordan curveT in C is called a chord-arc (or Lavrentiev) curve iff there exists a
positive constant I such that for any z,,2; € I' we have min{|T', |, |T2{} < K|z; — z2],
where I'y are complementary subarcs of I' with end-points z;,z, and length |Tg|.
Evidently any chord-arc curve is AD-regular.

As pointed out by Zinsmeister [11], T is chord-arc if and only if both com-
ponents of C \ T are Neumann domains. In view of Gehring’s characterization of
quasicircles in terms of k-local connectivity [8] chord-arc curves may be also char-
acterized as AD regular quasicircles, cf. [11]. Using the above given definitions and
characterizations we shall derive various characterizations of chord-arc curves in terms
of operators C'y. b =1,2.

Theorem 3.1. An AD reqular curve I' in the finite plane is chord arc if and

only if v
ELT) :=1C3(L}) = &f .

Proof. Suppose that i_g(r) = I! As shown in Lemma 2.1, C; maps L] onto
L? one-to-one. Since L is a Bannch space, the inverse mupping €' is a bounded
operator on L} and maps it onto itself.

The function ¢ +1y with o, € L? belongs to HI(D)) if and only if C(p 4 1¢0) =
Cip = Coyp +1(Cy + Cap) = p H 11, 1.0

(3.1) 4 Crp= ot o =it Cuth = ~Cap
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Thus the desired isomorphism between L and HY (D)) takes the form ¢ — @ 415,
where

(3.2) Si=-C;'U-¢C) , S'=-5.

This proves that D, is a Neumann domain. Similarly x + iy with x, ¢ € L] belongs to
H{(D;) = H?(D;) if and only if C(x +i¥) = Cix — C2¢ + 1(C1 ¢y + Cax) = —x — 19,

i.e.
(3.3) x+Cix=C , ¢v+Ci¢p =-Crx

and the desired isomorphism between L] and H?(D,) takes the form x — x +1S;x,
where

(3.4) Sa=C;'(I+Cy) , S;'=-5;.

Thus D; is also a Neumann domain and consequently, I' is chord-arc.

Suppose now that I' is chord-arc. Then D;,D, are Neumann domains and
consequently, there exists bounded linear operators S;, Sz such that for an arbitrary
Y € L

v+iSiv € H)(Dy) , ¢ +iSy € HY(D,) .

Thus f = —S,¢ + 1y € Hf(D,) and g = —S;¢ + i) € HP(D;) have equal imaginary
parts and are generated, due to (1.3), (1.4), by zp = f—g = (S2—-S1)¥ = 2C, 'y € L.
Moreover, % C2z0 = Y may be arbitrary which shows that C3(L}) = Lf and this ends
the proof.

Remark 3.2. T is a chord-arc curve iff S;,S; are bounded on Lj for some
p>1l.

It follows from the formulas (3.1) that the operator S; : ¢ — 1 may be also

defined as the unique solution ¥ of the equation (I — C))i» = Ca¢. Thus there exists
a bounded inverse (I — C;)~" and hence we obtain, in the case of chord-arc curves,

(3.5) Si=(I-C)'C=-C'(I-Cy),

and similarly

(3.6) S;=-(I+C)'Ca=C; (I +Cy).
Moreover,
(3.7) S3 -8 =2C;!

shows to be an isomorphism of L} for a chord-arc curve. Consequently, we obtain
the following

Theorem 3.3. An AD-regular curve I' # T in the finste plane 1s chord-arc of
and only if the points 1, —1 are regular values of the operator C} acting on L, p > 1.
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We exclude the case I' = T since then C; = 0 and so the notion of regular values
does not make sense.
As an immediate consequence we obtain

Proposition 3.4. If T is AD-reguler and the norm of C! w.r.t. L} is equal
d <1 for some p>1 thenT s a chord-arc curve.

Proof. Given an arbitrary y € L] we can write the unique solution z of the
equation y = (I — C})r in the form of an absolutely convergent series = = y + C,y +
C?y + --- Similarly z = y — Cyy + C}y — - - is the unique solution of the equation
y = (I + Cy)z. Moreover,

I FCzl| 2 (1 =Dzl , e flzf) < (1 -d)" "yl

in both cases. Consequently, F1 are regular points of the operator Cy; and we are
done, in view of Theorem 3.3.

Note that Cyz = z for z = const so that ||C,|| > 1 on L§ and therefore the
elimination of constant functions is essential.

In the case p = 2 we shall obtain another related sufficient condition for I' to be
chord-arc. Since the norm of C' does not change under similarity, we may assume
that |[[| = 2. Then both operators CT, C" act on L?(0,2r) and the operator
CT — C" makes sense. As a simple consequence of Proposition 3.4 and Remark 2.2
we obtain

Proposition 3.5. If the L} norm |[CT — C'|| =d < 1 then T is a chord-arc
curve.

Proof. We have for an arbitrary ro € L} in view of Remark 2.2

& lzo||* 2 I(CT = CT)zo||? = || = CT 20 +i(CT - CT)ao|I* =
= ICT zoll® + (€7 = C3)zall? -

Hence ||CT z|| < d||zo[| and this ends the proof.

Proposition 3.5 is a counterpart of a theorem due to Coifman and Meyer [4]
which refers to the unbounded chord-arc curves. Note that for unbounded T the
space L';’l does not contain constant functions # 0.

4. The case ||C'}||,«: < 1. Chord-arc curves for which the L§-norm of the
generalized Neumann - Poincaré operator C) is less than one make up a rather inter-
esting class of curves. First of all, the Neumann series is convergent in L§. Since the
Neumann operator €'y may be written in the form

(Cyri(t) = % PV. /;E(.ﬁ)d.ﬂ arg (z(s) — 2(t)) ,
. l‘
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the condition ||Ci[gz < 1 indicates that the local rotation of the chord emanating
from 2(t) is fairy small in the mean. We shall now derive some equivalent analytic
conditions included in the

Theorem 4.1. For a chord-arc curve I' # T the following are equivalent:

@) ICT ez =: Gl =d < 1;

(ii) for any pasir f = +1iyp € HI(Dy), 9 = x + 1y € HY(D,), ¢ # 0, the inner
product (¢, x) is negative and

1
(pox) < -3(1- e — xlI* ;

(iii) the operator (I + C1)(I — Cy)~! s positive and

1-d

(I +Ci)T = C1) "m0, 20) 2 17

zol?, O0<d<1,

for any zo € L}.

Proof. (i)<=(ii) According to (1.3) the functions f,g are generated by
To = ¢ — x € L2. Obviously (i) is equivalent to

(4.1) lIzoll? ~ lICs2oll? 2 (1 = d*)l|zo|” -

On the other hand,

1 1
¢ = ‘2'(-1'0 +Cizo) , XxX= E(—zo + Ciz0)

and hence a

(pyx) = E(—Ilzoll2 +[ICr=ol?)
or
(4-2) llzoll* = IC1zoll? = —4(p, x) -

From (4.1) and (4.2) the equivalence of (i) and (ii) readily follows.

(ii)==(iii). Since T is chord-arc, I — C) is an isomorphism of L? by Theorem 3.3
and so given yo € L? we can find a unique z, satisfying (I — C1)~'yo = zo. Then, as
before,

(I +Cy)I=C1) 'yo,w) = (I +C1)zo,(I — Cy)zo) =
= (2¢,-2x) = —4(p,x) 2 (1 — d®)||zo|?

in view of (ii). Now, yo = (I — Cy)z¢ and hence |lyo]| < (1 + d)||zo]| by (i)&<==(ii).
Thus ||zo||? > [lyell?/(1 + d?) and finally

1-d

2

1-d*
(I + GO = €)™ yoswo) 2 g Iwoll? =
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(i1i)==>(1). Suppose I is chord arc and

—

—d
1+

(4.3) (I +C)U =Cr) 'yo,wo) 2 llyoll®

a

for some 0 < d < 1 and all yo € L3. With (I — C;) 'y = zo we have ||yo|| > 6||zo]|
for some 6 > 0 and all zo € L} so that

1—-d
((I + Cy)zo, (I - C1)zo) = |lzoll® — IC1 201 > 17d 6||zol|?

for all zo € L3. This implies ||Cy|| = di < 1 which is equivalent to (i) with d = d;.
Repeating the steps (i)==>(ii)==>(iii) we see that the best value of d in (4.3) is just
d,. This ends the proof.

If f =¢+ip € HY(Dy), g = x +1¥ € H*D;) then ¢ = -85,5;x,
X = —52 51 and in view of (ii) we obtain

Corollary 4.2. If ||Cy]| =d < 1 on Lj then

1
(4.4) (5152X: %) = ($2519,) 2 (1 = d*)|op = xII?
for any p,x € L}. Thus 5,5, and (5152)7" = 5,5, are positive.

Corollary 4.3. If T is chord-arc then H{(D;) and HP(D,) are isomorphic.
The isomorphism can be established by the formula

f==Sy+ipy=g=-Sy+iyp, velf.

The converse also holds if S|, S, are bounded, due to Zinsmeister's characterization
of chord-arc curves.

A natural question arises to find a geometric characterization of curves for which

IC:]| < 1.

REFERENCES

[1] Ahlfors, L. V., Zur Theorie der Uberlagerungsflachen, Acta Math. 65 (1935), 157-194.

[2) de Branges, L. , A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137-152.

[3) Calderén, A. P. , Commutators, singular integrals on Lipschitz curves and related opera-
tors, Proc. Internat. Congr. Math. (Helsinki 1978), Helsinki 1980, 85-36.

[4) Coifman,R. , Meyer, Y., Lavrentiev’s curves and conformal mappings, Institut Mittag-
Leffler, Report No.5, 1983.

(5] David, G. , Opérateurs intégrauz singuliers sur certaines courbes du plan complez, Ann. Sci.
Ecole Norni. Sup. 17 (1981), 157 189.



78 J. G. Krzys

(8] Duren, P. , Theory of HP -spaces, Academic Press, New York and London 1970.

[7] Gaier, D., Lectures on Complez Approzimation, Birkhauser, Boston-Basel-Stuttgart 1985.

(8] Gehring , F. W. | Unsvalent functions and the Schwarzian derivative, Comment. Math.
lelv. 52 (1977), 561-572.

[9) Krzyz ,J G. , Some remarks concerning the Cauchy operator on AD-regular curves, Ann
Univ. M. Curie Sklodowska Sect. A, 42 (1988), 53-58.

[10) Semmes , S. , The Cauchy integral, chord-arc curves and quasiconformal mappings, The
Bieberbach Conjecture, Proceedings of the Symposium on the Occasion of the Proof, Amer.
Math. Soc. Providence 1986.

[11) Zinsmeister , M. , Domaines de Lavrentiev, Publ. Math. d’Orsay, Paris 1985.

STRESZCZENIE

Niech I' bedsie prostowalng krzyws Jordana w plaszczyénie skoriczonej, regularng w sensie
Ahlforsa-Davids, tzn. AD-regularng.

Niech Lg, P > 1, oznacza klase funkcji rzeczywistych z(8) na ' takich, ze jl‘ Jz(s)|P ds <
400 oraz II x(s)ds = 0. Jeseli operator calki osobliwej Cauchy’ego C' dzialajacy na Lg
rozlozymy na jego czeéé rzeczywisty C{. i urojong Cr, to mozna scharakteryzowaé krzywe luk
—ciqciwa w terminach tych operatoréw.

I' jest krzywa luk—ciqciwa wtedy i tylko wtedy, gdy C{ jest ograniczonym izomorfizmem Lop
dla pewnego p > 1.

T jest krzywg luk—cigciwa wtedy i tylko wtedy, gdy -1, 1 s3 wartoéciami regularnyini operatora
C{ drialajacego na L} dla pewnego p > 1.

Jedli p = 2 oraz ||CT - Cr" < 1, gdzie T jest okregiem jednostkowym, |F| = 27 oraz
L = LS(O, 27), to I jest krzywg luk-ci¢ciwa. Ponadto podano kilka dalszych wlasnosci operatora
C,’ dzialajgcego na L[z, w przypadku gdy ||C=— || <1



