LUBLIN-POLONIA

Instytut Matematyki UMCS

J. G. KRZY Z

Generalized Neumann-Poincaré Operator and Chord-arc Curves

Uogólniony operator Neumnnna-Poincarégo i krzywe łuk-cięciwa

Abstract

Let Γ be a rectifiable Jordan curve in the finite plane regular in the sense of Alifors David, i.e. Al)-regular.

Let $L_{0}^{p}, p>1$, stand for the class of real-valued functions $x(s)$ on Γ such that

$$
\int_{\Gamma}|x(s)|^{p} d s<+\infty \text { and } \int_{\Gamma} x(s) d s=0
$$

If the Cauchy singular integral operator C^{Γ} acting on L_{0}^{p} is split into its real and imaginary parts C_{1}^{Γ} and C_{2}^{Γ}, resp., then the following characterizations of chord-arc curves in the finite plane can be given.
Γ is a chord-arc iff C_{2}^{Γ} is a bounded isomorphism of L_{0}^{p} for some $p>1 . \Gamma$ is chord-arc iff $-1,1$ are regular values of the operator $C_{1}^{\mathrm{\Gamma}}$ acting on L_{0}^{p} for some $p>1$

If $p=2$ and $\left\|C^{T}-C^{\Gamma}\right\|<1$, where T is the unit circle, $|\Gamma|=2 \pi$ and $L_{0}^{p}=L_{0}^{p}(0,2 \pi)$ then Γ is chord-arc. Some further statements concern the case when $\left\|C_{1}^{\Gamma}\right\|<1$ and the operator C_{1}^{Γ} acts on L_{0}^{2}.

1. Introduction. The spectacular achievement of Louis de Branges [2]. overshadowed another brilliant result obtained about the same time by Guy David [5]. David was able to give a complete characterization of locally rectifiable curves Γ and exponents p for which the Cauchy singular integral is a bounded linear operator on the space $L^{p}(\Gamma)$ of complex-valued functions h on Γ that satisfy

$$
\int_{\Gamma}|h(z)|^{p}|d z|<+\infty .
$$

A locally rectifiable curve Γ is called regular in the sense of Ahlfors-David, or AD-regular, if there exists a positive constant M such that for any disk $D(a ; R)$ the arc-length measure $|\Gamma \cap D(a ; R)| \leq M R$.

The Cauchy singular integral operator C^{Γ} is defined as

$$
\begin{align*}
\left(C^{\Gamma} h\right)\left(z_{0}\right) & =C h\left(z_{0}\right)=\frac{1}{\pi i} \text { P.V. } \int_{\Gamma} \frac{h(z) d z}{z-z_{0}}:= \tag{1.1}\\
& =\frac{1}{\pi i} \lim _{\varepsilon \rightarrow 0} \int_{\Gamma \backslash \Gamma \varepsilon} \frac{h(z) d z}{z-z_{0}} \quad, z_{0} \in \Gamma
\end{align*}
$$

where Γ_{ε} is a subare of Γ of length 2ε bisected by z_{0}. We drop the usual factor $1 / 2$ due to reasons evident from what follows.

According to David the operator $h \mapsto C^{\mathrm{r}} h$ is bounded on a locally rectifiable curve Γ for some $p>1$, if and only if Γ is AD -regular. Then it is also bounded for all $p>1$.

This classical problem has a long history going back to Plemelj, Privalov and others. The partial solution for Lipschitz graphs presented by Calderón at the Helsinki Congress [3] was already considered as a major achievement. For more details cf. the excellent survey article of S. Semmes [10].

If Γ is a Jordan curve in the finite plane we may consider, following Guy D a vid [5], complementary Hardy spaces $H^{p}\left(D_{k}\right), k=1,2$, on complementary domains D_{1}, D_{2} of an AD-regular curve $\Gamma\left(0 \in D_{1}, \infty \in D_{2}, p>1\right)$. For $g \in H^{p}\left(D_{2}\right)$ we assume the normalization $g(\infty)=0$. These classes coincide for AD-regular Γ in the finite plane with the familiar classes $E^{p}\left(D_{k}\right)$, cf. [6].

Any $f \in H^{p}\left(D_{1}\right)$ has non-tangential limiting values a.e. on Γ and $f_{\Gamma}|f(z)|^{p}|d z|<$ $+\infty$. The same is true for $g \in H^{p}\left(D_{2}\right)$. Since the functions $f, g \in H^{p}\left(D_{k}\right)$ can be recovered from their boundary values by the Cauchy integral formula, we may consider $H^{p}\left(D_{k}\right)$ as subspaces of $L^{p}(\Gamma)$.

As shown by David, D_{1} and D_{2} are domains of Smirnov type, i.e. $H^{p}\left(D_{1}\right)$, $H^{p}\left(D_{2}\right)$ are L^{p}-closures of polynomials, or polynomials in z^{-1}, resp. Moreover, any $h \in L^{p}(\Gamma)$ has a unique decomposition

$$
\begin{equation*}
h(\zeta)=f(\zeta)-g(\zeta) \quad ; \quad f \in H^{p}\left(D_{1}\right) \quad, g \in H^{p}\left(D_{2}\right) \tag{1.2}
\end{equation*}
$$

This unique decomposition is performed by Plemelj's formulas

$$
\begin{equation*}
f(\zeta)=\frac{1}{2}[h(\zeta)-C h(\zeta)] \quad, \quad g(\zeta)=\frac{1}{2}[-h(\zeta)+C h(\zeta)], \zeta \in \Gamma . \tag{1.3}
\end{equation*}
$$

Hence, for Γ being AD-regular and $h \in L^{p}(\Gamma), p>1$:

$$
\begin{equation*}
h(\zeta)=f(\zeta)-g(\zeta) \quad, \quad C h(\zeta)=f(\zeta)+g(\zeta) \tag{1.4}
\end{equation*}
$$

Therefore $h=f$ on Γ holds, iff $g=0$, i.e.

$$
\begin{equation*}
f=C f \Longleftrightarrow f \in H^{p}\left(D_{1}\right) \tag{1.5}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
g=-C g \Longleftrightarrow g \in H^{p}\left(D_{2}\right) \tag{1.6}
\end{equation*}
$$

Moreover, (1.4)-(1.6) imply $C C h=C f+C g=f-g=h$, and we obtain an important observation [9]:

$$
\begin{equation*}
C^{2}=I, \quad C^{-1}=C \tag{1.7}
\end{equation*}
$$

where I stands for the identity operator. Thus, for any $p>1$ and any AD-regular Γ C^{Γ} is an isomorphism of $L^{p}(\Gamma)$ being an involution.

Remark 1.1. Any $h \in L^{p}(\Gamma), p>1$, generates, according to (1.3), a unique pair f, g of functions belonging to complementary H^{p}-spaces and we have

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{h(\zeta) d \zeta}{\zeta-z}=\left\{\begin{array}{l}
f(z), \tag{1.8}\\
g(z), \\
g \in D_{1}
\end{array}\right.
$$

2. Generalized Neumann-Poincaré operator C_{1}^{Γ}. If Γ is C^{3} then the classical Neumann-Poincaré operator \mathcal{N} has the form

$$
\begin{equation*}
(\mathcal{N} h)(z)=-\frac{1}{\pi} \int_{\Gamma} h(\zeta) \frac{\partial}{\partial n_{\zeta}} \log |\zeta-z| d s \quad ; z, \zeta \in \Gamma \tag{2.1}
\end{equation*}
$$

The kernel $k(z, \zeta)=-\frac{1}{\pi} \frac{\partial}{\partial n_{\zeta}} \log |\zeta-z|$ has in the C^{3}-case a continuous extension on $\Gamma \times \Gamma$ and so \mathcal{N} is continuous on the space of continuous, real-valued functions h. Due to the identity $-\frac{\partial}{\partial n_{\zeta}} \log |\zeta-z|=\frac{\partial}{\partial s} \arg (z-\zeta)$ we may write

$$
\begin{align*}
(\mathcal{N} h)(z) & =\frac{1}{\pi} \int_{\Gamma} h(\zeta) \operatorname{Im} \frac{\zeta^{\prime}(s)}{\zeta(s)-z} d s= \tag{2.2}\\
& =\operatorname{Re}\left\{\frac{1}{\pi i} \int_{\Gamma} \frac{h(\zeta) d \zeta}{\zeta-z}\right\}
\end{align*}
$$

If the last integral is understood in the sense of principal value and Γ is $A D$-regular then \mathcal{N} becomes a bounded linear operator on the space $L_{\mathbf{R}}^{p}(\Gamma)=L_{\mathbf{R}}^{p}$ of real-valued functions $h \in L^{p}(\Gamma), p>1$. If we split the Cauchy operator (1.1) acting on $x \in L_{\mathrm{R}}^{p}$. $p>1$, into its real and imaginary parts C_{1} and C_{2}, resp., i.e.

$$
\begin{equation*}
C_{1} x=C_{1}^{\Gamma} x=\frac{1}{2}(C x+\overline{C x}) \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
C_{2} x=C_{2}^{\mathrm{\Gamma}} x=\frac{1}{2 i}(C x-\overline{C x}) \tag{2.4}
\end{equation*}
$$

we obtain bounded linear operators on $L_{\mathbf{R}}^{p}, p>1$, with $C_{1}^{r}=\mathcal{N}$ for Γ in C^{3} and continuous x. In what follows we shall drop the superscript Γ in most cases. Therefore C_{1} may be called a generalized Neumann-Poincaré operator acting on $L_{\mathrm{R}}^{p}(\Gamma)$ nnd bounded for an AD-regular Jordan curve Γ in the finite plane and $p>1$. If C_{1} is bounded for some $p>1$, it is also bounded for all $p>1$. In what follows we take for granted these assumptions on Γ and p.

The formula (1.7) implies immediately the following relations resulting from the identity $C=C_{1}+i C_{2}$:

$$
\begin{equation*}
C_{1}^{2}-C_{2}^{2}=I \quad, \quad C_{1} C_{2}=-C_{2} C_{1} \tag{2.5}
\end{equation*}
$$

We now establish some properties of the operators C_{k}. To this end we introduce the subspace $L_{0}^{p}(\Gamma)=L_{0}^{p}$ being the maximal subspace of L_{R}^{p} containing no constant
finntions- wrop for $r=0$. Thas $L_{0}^{p}=P\left(L_{\mathbf{R}}^{p}\right)$ where P is the projection

The inf orduction of the spaces I en analdes as for diminate constant functions from

 fon the mull function and an analogens procedure is redmedant.

Lemma 2.1. The operator C_{2} is bumbled on $L_{\mathbf{R}}^{p}$. It manishes on comstant functions only and map. I_{0}^{p} one to one onto it. subspace

$$
\begin{equation*}
\tilde{L}_{0}^{p}(\Gamma)=\tilde{L}_{0}^{p}:=C_{2}^{\prime}\left(L_{\theta}^{p}\right) \subset L_{0}^{p} \tag{2.6}
\end{equation*}
$$

Proof. It follows from (2.4) that $\left\|C_{2}^{\prime}\right\| \leq\|C\|$ so C_{2} is bomuded on $L_{\mathbf{R}}^{p}$. If $x_{0}=$ const then obviously $\mathcal{C}_{2}^{\prime} x_{0}=0$. Suppose now that $C_{2}^{\prime}, r_{0}=0$, i.e. $C^{\prime} x_{0}=C^{\prime} x_{0}$. Then $C x_{0}=y_{0} \in L_{\mathbf{R}}^{p}$ and consequently; $g=\frac{1}{2}\left(-x_{0}+C r_{0}\right) \in H^{p}\left(D_{2}\right)$, as well as $f=\frac{1}{2}\left(x_{0}+C x_{0}\right) \in H^{p}\left(D_{1}\right)$, have identically vanishing imaginary parts. Hence $g=0$, $f=a=$ const and finally $f-g=x_{0}=a$. Thus

$$
\begin{equation*}
C_{2} x_{0}=0 \Longleftrightarrow x_{0}=\text { const } . \tag{2.7}
\end{equation*}
$$

Hence C_{2} is 1:1 on L_{0}^{p}. Suppose now that $C_{2} x_{0}=a=$ const for some $x_{0} \in L_{\mathbf{R}}^{p}$. Then $C x_{0}=C_{1} x_{0}+i C_{2} x_{0}=C_{1} x_{0}+i a$ and consequently $g=\frac{1}{2}\left(-x_{0}+C_{1} x_{0}+i a\right) \in H^{p}\left(D_{2}\right)$ has a constant imaginary part. Thus $\operatorname{In} g=a=0$ since $g(\infty)=0$ and this shows that $C_{\mathbf{2}}\left(L_{\mathbf{R}}^{p}\right)$ does not contain any constant function except for 0 . This proves that C_{2} is a one-to-one operator on L_{0}^{p} and the inclusion (2.6) follows.

The operator C_{2} cannot vanish identically on all $L_{\mathbf{R}}^{p}$ for an AD -regular Γ. Note that otherwise $L_{\mathbf{R}}^{p}$ would consist only of constant functions which is obvinusly absurd. For C_{1} we have, to the contrary, the following

Remark 2.2. If $\Gamma=T=\{z:|z|=1\}$ then $C_{1}^{T}=0$ on L_{0}^{p} for all $p>1$. The converse is also true.

Proof. Trigonometric polynomials $x_{N}=\sum_{n=1}^{N}\left(a_{n} \cos n \theta+b_{n} \sin \theta\right)=$ $\sum_{n=1}^{N}\left(\alpha_{n} e^{i n \theta}+\bar{\alpha}_{n} e^{-i n \theta}\right), \alpha_{n}=\frac{1}{2}\left(a_{n}-i b_{n}\right)$ are dense in L_{0}^{p}; the decomposition (1.2) takes the form $x_{N}=f-g$, where $f=\sum_{n=1}^{N} \alpha_{n} e^{i n \theta}, g=-\sum_{n=1}^{N} \bar{\alpha}_{n} e^{-i n \theta}$. Hence by (1.4) $C^{T} x_{N}=f+g$ is purely imaginary and consequently $C_{1}^{T} x_{N}=0$ for all r_{N} and also for all $x \in L_{0}^{p}, p>1$.

Suppose now that $C_{1} x=0$ for all $x \in L_{0}^{p}$. Then $C x=-\overline{C x}, x \in L_{0}^{p}$, or

$$
\frac{1}{\pi i} P . V . \int_{\Gamma} x(s) \frac{z^{\prime}(s) d s}{z(s)-z(t)} \equiv \frac{1}{\pi i} P . V . \int_{\Gamma} x(s) \frac{\overline{z^{\prime}(s)} d s}{z(s)-\overline{z(t)}} .
$$

Hence $\operatorname{Im} \frac{z^{\prime}(s)}{z(s)-z(t)}=0$, or $\frac{d}{d s} \operatorname{lin} \log [z(s)-z(t)]=0$ for almost all s, t, and consequently arg $\frac{z\left(s_{2}\right)-z(t)}{z\left(s_{1}\right)-z(t)}=$ const for all t between s_{1} and s_{2} which can be
arbitrary: 'This means that T ' is a circle. Note that $s+a(s)$ is absolutely contimusus for a bounded AD regular I'.
3. Neumann domains and Lavrentiev curves. A bounded, simply connected domain D is said to be a Curathéodory domain, if the conformal mapping of D on the unit disk Δ has a continuous extension to its closure \bar{D}. Any bounded Jordan domain is a Carathéodory domain, however, there exist Carathéodory domains whose boundary is not a Jordan curve.

Let D be a bounded Carathéodory domain with a rectifiable boundary curve Γ and let $H_{0}^{p}(D)$ stand for $\left\{f \in H^{p}(D): \operatorname{Re} f \in L_{0}^{p}, \operatorname{Im} f \in L_{0}^{p}\right\}$. According to M. Zinsmeister [11] D is said to be a Neumann domain iff there exists a bounded linear operator $S: L_{0}^{p} \rightarrow L_{0}^{p}$ generating an isomorphism $\varphi \mapsto \varphi+i S \varphi$ between $L_{0}^{p}=L_{0}^{p}(\Gamma)$ and $H_{0}^{p}(D)$ for some $p>1$.

If such an isomorphism does exist for some $p>1$, it also exists for all $p>1$. An unbounded domain D_{0} with a locally rectifiable boundary curve Γ is called a Neumann domain iff for some $z_{0} \notin \bar{D}_{0}$ the image domain D of D_{0} under the mapping $z \mapsto\left(z-z_{0}\right)^{-1}$ is a bounded Neumann domain.

Zinsmeister also gave the following geometric characterization of Neumann domains: D is a Neumann domain if and only if ∂D is $A D$-regular and $\mathbf{C} \backslash D$ is k-locally connected for some $k \geq 1$.

We recall that a set E in the plane is called k-locally connected ($k-l . c$.), $k \geq 1$, if for any $z_{0} \in \mathbf{C}$ and any disk $D\left(z_{0} ; r\right)$ the set $E \cap \bar{D}\left(z_{0} ; r\right)$ is contained in a connected subset of $E \cap \bar{D}\left(z_{0} ; k r\right)$.

Since AD-regularity and $k-1 . c$. property are preserved under Moebius transformations, the above geometric characterization applies to both bounded and unbounded domains.

A Jordan curve Γ in $\overline{\mathbf{C}}$ is called a chord-arc (or Lavrentiev) curve iff there exists a positive constant K such that for any $z_{1}, z_{2} \in \Gamma$ we have $\left.\min \left\{\left|\Gamma_{1}\right|, \mid \Gamma_{2}\right\}\right\} \leq K\left|z_{1}-z_{2}\right|$, where Γ_{k} are complementary subarcs of Γ with end-points z_{1}, z_{2} and length $\left|\Gamma_{k}\right|$. Evidently any chord-arc curve is AD-regular.

As pointed out by Zinsmeister [11], Γ is chord-are if and only if both components of $\mathbf{C} \backslash \Gamma$ are Neumann domains. In view of Gehring's characterization of quasicircles in terms of k-local connectivity [8] chord-arc curves may be also characterized as AD-regular quasicircles, cf. [11]. Using the above given definitions and characterizations we shall derive various characterizations of chord-arc curves in terms of operators $C_{k}^{\circ} k=1,2$.

Theorem 3.1. An $A D$ regular curve Γ in the finite plane is chord arc if and. only if

$$
\tilde{L}_{0}^{p}\left(\Gamma^{\prime}\right):=C_{2}\left(L_{0}^{p}\right)=L_{0}^{p}
$$

Proof. Suppose that $\tilde{L}_{0}^{p}(\Gamma)=I_{0}^{\prime \prime}$. As shown in Lemma 2.1, C_{2} maps L_{0}^{p} onto \tilde{L}_{0}^{p} one-to-one. Since L_{0}^{p} is a Bannch space, the inverse mapping C_{2}^{-1} is n bounded operator on L_{0}^{p} and maps it onto ituelf.

The function $\varphi+i \psi$ with $\varphi, \downarrow \in L_{0}^{p}$ belongs to $H_{0}^{P}\left(D_{1}\right)$ if and nuly if $C\left(\hat{p}+i \psi^{\ell}\right)=$ $C_{1} \varphi-C_{2} \psi+i\left(C_{1} \psi+C_{2}{ }^{\prime}\right)=\varphi+i \psi$, i.r.

$$
\begin{equation*}
-\varphi+C_{1} \varphi=C_{2} t \quad, \quad-t+C_{1} \psi=-C_{2 \varphi} \varphi . \tag{3.1}
\end{equation*}
$$

Thus the desired isomorphism between L_{0}^{p} and $H_{0}^{p}\left(D_{1}\right)$ takes the form $\varphi \mapsto \varphi+i S_{1} \varphi$, where

$$
\begin{equation*}
S_{1}=-C_{2}^{-1}\left(I-C_{1}\right) \quad, \quad S_{1}^{-1}=-S_{1} . \tag{3.2}
\end{equation*}
$$

This proves that D_{1} is a Neumann domain. Similarly $\chi+i \psi$ with $\lambda, \psi \in L_{0}^{p}$ belongs to $H_{0}^{p}\left(D_{2}\right)=H^{p}\left(D_{2}\right)$ if and only if $C(\chi+i \psi)=C_{1} \chi-C_{2} \psi+i\left(C_{1} \psi+C_{2} \chi\right)=-\chi-i \psi$, i.e.

$$
\begin{equation*}
\chi+C_{1} \chi=C_{2} \psi \quad, \quad \psi+C_{1} \psi=-C_{2} \chi \tag{3.3}
\end{equation*}
$$

and the desired isomorphism between L_{0}^{p} and $H^{p}\left(D_{2}\right)$ takes the form $\chi \mapsto \chi+i S_{2} \chi$, where

$$
\begin{equation*}
S_{2}=C_{2}^{-1}\left(I+C_{1}\right), \quad S_{2}^{-1}=-S_{2} \tag{3.4}
\end{equation*}
$$

Thus D_{2} is also a Neumann domain and consequently, Γ is chord-arc.
Suppose now that Γ is chord-arc. Then D_{1}, D_{2} are Neumann domains and consequently, there exists bounded linear operators S_{1}, S_{2} such that for an arbitrary $\psi \in L_{0}^{p}$

$$
\psi+i S_{1} \psi \in H_{0}^{p}\left(D_{1}\right) \quad, \quad \psi+i S_{2} \psi \in H^{p}\left(D_{2}\right)
$$

Thus $f=-S_{1} \psi+i \psi \in H_{0}^{P}\left(D_{1}\right)$ and $g=-S_{2} \psi+i \psi \in H^{p}\left(D_{2}\right)$ have equal imaginary parts and are generated, due to (1.3), (1.4), by $x_{0}=f-g=\left(S_{2}-S_{1}\right) \psi=2 C_{2}^{-1} \psi \in L_{0}^{P}$. Moreover, $\frac{1}{2} C_{2} x_{0}=\psi$ may be arbitrary which shows that $C_{2}\left(L_{0}^{p}\right)=L_{0}^{p}$ and this ends the proof.

Remark 3.2. Γ is a chord-arc curve iff S_{1}, S_{2} are bounded on L_{0}^{p} for some $p>1$.

It follows from the formulas (3.1) that the operator $S_{1}: \varphi \mapsto \psi$ may be also defined as the unique solution ψ of the equation $\left(I-C_{1}\right) \psi=C_{2} \varphi$. Thus there exists a bounded inverse $\left(I-C_{1}\right)^{-1}$ and hence we obtain, in the case of chord-arc curves,

$$
\begin{equation*}
S_{1}=\left(I-C_{1}\right)^{-1} C_{2}=-C_{2}^{-1}\left(I-C_{1}\right) \tag{3.5}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
S_{2}=-\left(I+C_{1}\right)^{-1} C_{2}=C_{2}^{-1}\left(I+C_{1}\right) \tag{3.6}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
S_{2}-S_{1}=2 C_{2}^{-1} \tag{3.7}
\end{equation*}
$$

shows to be an isomorphism of L_{0}^{p} for a chord-arc curve. Consequently, we obtain the following

Theorem 3.3. An $A D$-regular curve $\Gamma \neq T$ in the finite plane is chord-arc if and only if the points $1,-1$ are regular values of the operator C_{1}^{Γ} acting on $L_{0}^{p}, p>1$.

We exclude the case $\Gamma=T$ since then $C_{1}=0$ and so the notion of regular values does not make sense.

As an immediate consequence we obtain
Proposition 3.4. If Γ is $A D$-regular and the norm of C_{1}^{\top} v.r.t. L_{0}^{p} is equal $d<1$ for some $p>1$ then Γ is a chord-arc curve.

Proof. Given an arbitrary $y \in L_{0}^{p}$ we can write the unique solution x of the equation $y=\left(I-C_{1}\right) x$ in the form of an absolutely convergent series $x=y+C_{1} y+$ $C_{1}^{2} y+\cdots$ Similarly $x=y-C_{1} y+C_{1}^{2} y-\cdots$ is the unique solution of the equation $y=\left(I+C_{1}\right) x$. Moreover,

$$
\left\|\left(I \mp C_{1}\right) x\right\| \geq(1-d)\|x\|, \quad \text { i.e. }\|x\| \leq(1-d)^{-1}\|y\|
$$

in both cases. Consequently, ∓ 1 are regular points of the operator C_{1} and we are done, in view of Theorem 3.3.

Note that $C_{1} x=x$ for $x=$ const so that $\left\|C_{1}\right\| \geq 1$ on L_{R}^{p} and therefore the elimination of constant functions is essential.

In the case $p=2$ we shall obtain another related sufficient condition for Γ to be chord-arc. Since the norm of C^{Γ} does not change under similarity, we may assume that $|\Gamma|=2 \pi$. Then both operators C^{T}, C^{Γ} act on $L^{2}(0,2 \pi)$ and the operator $C^{T}-C^{\Gamma}$ makes sense. As a simple consequence of Proposition 3.4 and Remark 2.2 we obtain

Proposition 3.5. If the L_{0}^{p}-norm $\left\|C^{T}-C^{\Gamma^{\top}}\right\|=d<1$ then Γ is a chord-arc curve.

Proof. We have for an arbitrary $x_{0} \in L_{0}^{2}$ in view of Remark 2.2

$$
\begin{aligned}
d^{2}\left\|x_{0}\right\|^{2} & \geq\left\|\left(C^{T}-C^{\Gamma}\right) x_{0}\right\|^{2}=\left\|-C_{1}^{\Gamma} x_{0}+i\left(C_{2}^{T}-C_{2}^{\Gamma}\right) x_{0}\right\|^{2}= \\
& =\left\|C_{1}^{\Gamma} x_{0}\right\|^{2}+\left\|\left(C_{2}^{T}-C_{2}^{\Gamma}\right) x_{0}\right\|^{2} .
\end{aligned}
$$

Hence $\left\|C_{1}^{\Gamma} x_{0}\right\| \leq d\left\|x_{0}\right\|$ and this ends the proof.
Proposition 3.5 is a counterpart of a theorem clue to Coifman and Meyer [4] which refers to the unbounded chord-arc curves. Note that for unbounded Γ the space $L_{\mathbf{R}}^{p}$ does not contain constant functions $\neq 0$.
4. The case $\left\|C_{1}^{1}\right\|_{L_{o}^{2}}<1$. Chord-arc curves for which the L_{0}^{2}-norm of the greneralized Neumann-Poincaré operator C_{1} is less than one make up a rather interesting class of curves. First of all, the Neumann series is convergent in L_{0}^{2}. Since the Neumann operator C_{1} may be written in the form

$$
\left(C_{1}, r\right)(t)=\frac{1}{\pi} P \cdot V \int_{1} x(s) d s \arg (z(s)-z(t)),
$$

the condition $\|\left. C_{1}\right|_{L_{0}^{z}}<1$ indicates that the local rotation of the chord emanating from $z(t)$ is fairy small in the mean. We shall now derive some equivalent analytic conditions included in the

Theorem 4.1. For a chord-arc curve $\Gamma \neq T$ the following are equivalent:
(i) $\left\|C_{1}^{\mathrm{r}}\right\|_{L_{0}^{2}}=:\left\|C_{1}\right\|=d<1$;
(ii) for any pair $f=\varphi+i \psi \in H_{0}^{2}\left(D_{1}\right), g=\chi+i \psi \in H^{2}\left(D_{2}\right), \psi \neq 0$, the inner product $\langle\varphi, \chi\rangle$ is negative and

$$
\langle\varphi, \chi\rangle \leq-\frac{1}{4}\left(1-d^{2}\right)\|\varphi-\chi\|^{2}
$$

(iii) the operator $\left(I+C_{1}\right)\left(I-C_{1}\right)^{-1}$ is positive and

$$
\left\langle\left(I+C_{1}\right)\left(I-C_{1}\right)^{-1} x_{0}, x_{0}\right\rangle \geq \frac{1-d}{1+d}\left\|x_{0}\right\|^{2}, \quad 0<d<1,
$$

for any $x_{0} \in L_{0}^{2}$.
Proof. (i) \Longleftrightarrow (ii) According to (1.3) the functions f, g are generated by $x_{0}=\varphi-\chi \in L_{0}^{2}$. Obviously (i) is equivalent to

$$
\begin{equation*}
\left\|x_{0}\right\|^{2}-\left\|C_{1} x_{0}\right\|^{2} \geq\left(1-d^{2}\right)\left\|x_{0}\right\|^{2} . \tag{4.1}
\end{equation*}
$$

On the other hand,

$$
\varphi=\frac{1}{2}\left(x_{0}+C_{1} x_{0}\right) \quad, \quad \chi=\frac{1}{2}\left(-x_{0}+C_{1} x_{0}\right)
$$

and hence

$$
\langle\varphi, \chi\rangle=\frac{1}{4}\left(-\left\|x_{0}\right\|^{2}+\left\|C_{1} x_{0}\right\|^{2}\right)
$$

or

$$
\begin{equation*}
\left\|x_{0}\right\|^{2}-\left\|C_{1} x_{0}\right\|^{2}=-4\langle\varphi, \chi\rangle . \tag{4.2}
\end{equation*}
$$

From (4.1) and (4.2) the equivalence of (i) and (ii) readily follows.
(ii) \Longrightarrow (iii). Since Γ is chord-arc, $I-C_{1}$ is an isomorphism of L_{0}^{2} by Theorem 3.3 and so given $y_{0} \in L_{0}^{2}$ we can find a unique x_{0} satisfying $\left(I-C_{1}\right)^{-1} y_{0}=x_{0}$. Then, as before,

$$
\begin{aligned}
& \left\langle\left(I+C_{1}\right)\left(I-C_{1}\right)^{-1} y_{0}, y_{0}\right\rangle=\left\langle\left(I+C_{1}\right) x_{0},\left(I-C_{1}\right) x_{0}\right\rangle= \\
& =\langle 2 \varphi,-2 \chi\rangle=-4\langle\varphi, \chi\rangle \geq\left(1-d^{2}\right)\left\|x_{0}\right\|^{2}
\end{aligned}
$$

in view of (ii). Now, $y_{0}=\left(I-C_{1}\right) x_{0}$ and hence $\left\|y_{0}\right\| \leq(1+d)\left\|x_{0}\right\|$ by (i) \Longleftrightarrow (ii). Thus $\left\|x_{0}\right\|^{2} \geq\left\|y_{0}\right\|^{2} /\left(1+d^{2}\right)$ and finally

$$
\left\langle\left(I+C_{1}\right)\left(I-C_{1}\right)^{-1} y_{0}, y_{0}\right) \geq \frac{1-d^{2}}{(1+d)^{2}}\left\|y_{0}\right\|^{2}=\frac{1-d}{1+d}\left\|y_{0}\right\|^{2}
$$

(iii) \Longrightarrow (i). Suppose Γ is chord arc and

$$
\begin{equation*}
\left\langle\left(I+C_{1}\right)\left(I-C_{1}\right)^{-1} y_{0}, y_{0}\right\rangle \geq \frac{1-d}{1+d}\left\|y_{0}\right\|^{2} \tag{4.3}
\end{equation*}
$$

for some $0<d<1$ and all $y_{0} \in L_{0}^{2}$. With $\left(I-C_{1}\right)^{-1} y_{0}=x_{0}$ we have $\left\|y_{0}\right\| \geq \delta\left\|x_{0}\right\|$ for some $\delta>0$ and all $x_{0} \in L_{0}^{2}$ so that

$$
\left\langle\left(I+C_{1}\right) x_{0},\left(I-C_{1}\right) x_{0}\right\rangle=\left\|x_{0}\right\|^{2}-\left\|C_{1} x_{0}\right\|^{2} \geq \frac{1-d}{1+d} \delta^{2}\left\|x_{0}\right\|^{2}
$$

for all $x_{0} \in L_{0}^{2}$. This implies $\left\|C_{1}\right\|=d_{1}<1$ which is equivalent to (i) with $d=d_{1}$. Repeating the steps $(\mathrm{i}) \Longrightarrow(\mathrm{ii}) \Longrightarrow$ (iii) we see that the best value of d in (4.3) is just d_{1}. This ends the proof.

If $f=\varphi+i \psi \in H_{0}^{2}\left(D_{1}\right), g=\chi+i \psi \in H^{2}\left(D_{2}\right)$ then $\varphi=-S_{1} S_{2} \chi$, $\chi=-S_{2} S_{1} \varphi$ and in view of (ii) we obtain

Corollary 4.2. If $\left\|C_{1}\right\|=d<1$ on L_{0}^{2} then

$$
\begin{equation*}
\left\langle S_{1} S_{2} \chi, \chi\right\rangle=\left\langle S_{2} S_{1} \varphi, \varphi\right\rangle \geq \frac{1}{4}\left(1-d^{2}\right)\|\varphi-\chi\|^{2} \tag{4.4}
\end{equation*}
$$

for any $\varphi, \chi \in L_{0}^{2}$. Thus $S_{1} S_{2}$ and $\left(S_{1} S_{2}\right)^{-1}=S_{2} S_{1}$ are positive.
Corollary 4.3. If Γ is chord arc then $H_{0}^{p}\left(D_{1}\right)$ and $H^{p}\left(D_{2}\right)$ are isomorphic. The isomorphism can be established by the formula

$$
f=-S_{1} \psi+i \psi \Longleftrightarrow g=-S_{2} \psi+i \psi, \quad \psi \in L_{0}^{p} .
$$

The converse also holds if S_{1}, S_{2} are bounded, due to Zinsmeister's characterization of chord-arc curves.

A natural question arises to find a geometric characterization of curves for which $\left\|C_{1}\right\|<1$.

REFERENCES

[1] Ahlfors, L. V., Zur Theorie der Überlagerungsflächen, Acta Math. 65 (1935), 157-194.
[2] de Branges, L. . A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137-152.
[3] Calderón, A. P. , Commutators, singular integrals on Lipschitz curves and related operators, Proc. Internat. Congr. Math. (Helsinki 1978), Helsinki 1980, 85-96.
[4] Coifman, R., Meyer, Y. Lavrentiev's curves and conformal mappings, Institut MittagLeffler, Report No.5, 1983.
[5] David, G. , Opérateurs intégraux singuliers sur certaines courbes du plan complex, Ann. Sci. École Normı. Sup. 17 (1981), $157 \quad 189$.
[6] Duren, P. , Theory of $H^{\text {P }}$-spaces, Academic Press, New York and London 1970.
[7] Gaier, D. , Lectures on Complex Approximation, Birkhäuser, Boston-Basel-Stuttgart 1985.
[8] Geliriug, F. W. Univalent functions and the Schenarzian derivative, Comment. Math. Helv. 52 (1977), 561-572.
$[9] \mid K r z y i, J . G$. Some remarks concerning the Cauchy operator on $A D$ regular curves, Ann Univ. M Curie Sklodowska Sect. A, 42 (1988), 53-58.
[10] Semmes, S. The Cauchy integral, chord-arc curves and grasiconformal mappings, The Bieberbach Conjecture, Proceedings of the Symposium on the Occasion of the Proof, Amer. Math. Soc. Providence 1986
[11] Zinsmeister, M. , Domaines de Lavrentiev, Publ. Math. d'Orsay, Paris 1985

STRESZCZENIE

Niech Γ bęsie prostowalną krzyw Jordana w plaszczyźnie skonczonej, regularna w sensie Ahlforsa-Davide, ten. AD-regularna.

Niech $L_{0}^{p}, p>1$, oznacza klase funkcji rzeczywistych $x(s)$ na Γ takich, zee $\int_{\Gamma}|x(s)|^{p} d s<$ $+\infty$ oraz $\int_{\Gamma} x(s) d s=0$. Jezeli operator calki osobliwej Cauchy'ego C^{Γ} dzialajacy na L_{0}^{p} rozlożymy na jego czą̣́ć rzeczywistą $C_{[}^{\Gamma}$ i urojoną C_{2}^{Γ}, to można scharakteryzować krzywe luk -cipciwe w terminach tych operatorów.
Γ jest krzywa luk-cieciwa wtedy i tylko wtedy, gdy C_{2}^{Γ} jest ograniczonym izomorfizmem L_{0}^{p} dla pewnego $p>1$.
Γ jest krzywą luk-cipciwa wtedy i tylko wtedy, gdy $-1,1$ sạ wartościami regularnymi operatora C_{1}^{Γ} drialajacego na L_{0}^{p} dla pewnego $p>1$.

Jeáli $p=2$ oraz $\left\|C^{T}-C^{\Gamma}\right\|<1$, gdzie T jest okregiem jednostkowym, $|\Gamma|=2 \pi$ oraz $L_{0}^{P}=L_{0}^{P}(0,2 \pi)$, to Γ jest krzywą łuk-ciẹciwa. Ponadto podano kilka dalszych wlasności operatora C_{1}^{Γ} dzialajacego na L_{0}^{2} w przypadku gdy $\left\|C_{1}^{\Gamma}\right\|<1$.

