ANNALES UNIVERSITATIS MARIAE CURIE SKLODOWSKA

LUBLIN-POLONIA

VOL. XLIII, 7

SECTIO A

Instytut Matematyki UMCS

J. G. KRZYZ

Generalized Neumann-Poincaré Operator and Chord-arc Curves

Uogólniony operator Neumanna-Poincaré'go i krzywe łuk-cięciwa

Abstract. Let Γ be a rectifiable Jordan curve in the finite plane regular in the sense of Ahlfors-David, i.e. AD-regular.

Let L_0^p , p > 1, stand for the class of real-valued functions x(s) on Γ such that

$$\int_{\Gamma} |x(s)|^p \, ds < +\infty \quad ext{and} \quad \int_{\Gamma} x(s) \, ds = 0$$

If the Cauchy singular integral operator C^{Γ} acting on L_0^p is split into its real and imaginary parts C_1^{Γ} and C_2^{Γ} , resp., then the following characterizations of chord-arc curves in the finite plane can be given.

 Γ is a chord-arc iff C_2^{Γ} is a bounded isomorphism of L_0^p for some p > 1. Γ is chord-arc iff -1, 1 are regular values of the operator C_1^{Γ} acting on L_0^p for some p > 1.

If p = 2 and $||C^T - C^{\Gamma}|| < 1$, where T is the unit circle, $|\Gamma| = 2\pi$ and $L_0^p = L_0^p(0, 2\pi)$ then Γ is chord-arc. Some further statements concern the case when $||C_1^{\Gamma}|| < 1$ and the operator C_1^{Γ} acts on L_0^2 .

1. Introduction. The spectacular achievement of Louis de Branges [2] overshadowed another brilliant result obtained about the same time by Guy David [5]. David was able to give a complete characterization of locally rectifiable curves Γ and exponents p for which the Cauchy singular integral is a bounded linear operator on the space $L^p(\Gamma)$ of complex-valued functions h on Γ that satisfy

$$\int_{\Gamma} |h(z)|^p |dz| < +\infty$$

A locally rectifiable curve Γ is called *regular in the sense of Ahlfors-David*, or AD-*regular*, if there exists a positive constant M such that for any disk D(a; R) the arc-length measure $|\Gamma \cap D(a; R)| \leq MR$.

The Cauchy singular integral operator C^{Γ} is defined as

(1.1)
$$(C^{\Gamma}h)(z_0) = Ch(z_0) = \frac{1}{\pi i} P.V. \int_{\Gamma} \frac{h(z) dz}{z - z_0} :=$$
$$= \frac{1}{\pi i} \lim_{\varepsilon \to 0} \int_{\Gamma \setminus \Gamma_{\varepsilon}} \frac{h(z) dz}{z - z_0} , z_0 \in \Gamma ,$$

1989

where Γ_{ε} is a subarc of Γ of length 2ε bisected by z_0 . We drop the usual factor 1/2 due to reasons evident from what follows.

According to David the operator $h \mapsto C^{\Gamma}h$ is bounded on a locally rectifiable curve Γ for some p > 1, if and only if Γ is AD-regular. Then it is also bounded for all p > 1.

This classical problem has a long history going back to Plemelj, Privalov and others. The partial solution for Lipschitz graphs presented by Calderón at the Helsinki Congress [3] was already considered as a major achievement. For more details cf. the excellent survey article of S. Semmes [10].

If Γ is a Jordan curve in the finite plane we may consider, following Guy Da vid [5], complementary Hardy spaces $H^p(D_k)$, k = 1, 2, on complementary domains D_1 , D_2 of an AD-regular curve Γ ($0 \in D_1$, $\infty \in D_2$, p > 1). For $g \in H^p(D_2)$ we assume the normalization $g(\infty) = 0$. These classes coincide for AD-regular Γ in the finite plane with the familiar classes $E^p(D_k)$, cf. [6].

Any $f \in H^p(D_1)$ has non-tangential limiting values a.e. on Γ and $\int_{\Gamma} |f(z)|^p |dz| < +\infty$. The same is true for $g \in H^p(D_2)$. Since the functions $f, g \in H^p(D_k)$ can be recovered from their boundary values by the Cauchy integral formula, we may consider $H^p(D_k)$ as subspaces of $L^p(\Gamma)$.

As shown by David, D_1 and D_2 are domains of Smirnov type, i.e. $H^p(D_1)$, $H^p(D_2)$ are L^p -closures of polynomials, or polynomials in z^{-1} , resp. Moreover, any $h \in L^p(\Gamma)$ has a unique decomposition

(1.2)
$$h(\zeta) = f(\zeta) - g(\zeta) \quad ; \quad f \in H^p(D_1) \quad , \ g \in H^p(D_2) \; .$$

This unique decomposition is performed by Plemelj's formulas

(1.3)
$$f(\zeta) = \frac{1}{2} [h(\zeta) - Ch(\zeta)] , \quad g(\zeta) = \frac{1}{2} [-h(\zeta) + Ch(\zeta)] , \quad \zeta \in \Gamma .$$

Hence, for Γ being AD-regular and $h \in L^p(\Gamma)$, p > 1:

(1.4)
$$h(\zeta) = f(\zeta) - g(\zeta) \quad , \quad Ch(\zeta) = f(\zeta) + g(\zeta) \; .$$

Therefore h = f on Γ holds, iff g = 0, i.e.

(1.5)
$$f = Cf \iff f \in H^p(D_1)$$

Similarly

(1.6)
$$g = -Cg \iff g \in H^p(D_2)$$

Moreover, (1.4)-(1.6) imply CCh = Cf + Cg = f - g = h, and we obtain an important observation [9]:

(1.7)
$$C^2 = I$$
 , $C^{-1} = C$,

where I stands for the identity operator. Thus, for any p > 1 and any AD-regular Γ C^{Γ} is an isomorphism of $L^{p}(\Gamma)$ being an involution. **Remark 1.1.** Any $h \in L^{p}(\Gamma)$, p > 1, generates, according to (1.3), a unique pair f, g of functions belonging to complementary H^{p} -spaces and we have

(1.8)
$$\frac{1}{2\pi i} \int_{\Gamma} \frac{h(\zeta) d\zeta}{\zeta - z} = \begin{cases} f(z) , \ z \in D_1 ; \\ g(z) , \ z \in D_2 . \end{cases}$$

2. Generalized Neumann-Poincaré operator C_1^{Γ} . If Γ is C^3 then the classical Neumann-Poincaré operator \mathcal{N} has the form

(2.1)
$$(\mathcal{N}h)(z) = -\frac{1}{\pi} \int_{\Gamma} h(\zeta) \frac{\partial}{\partial n_{\zeta}} \log |\zeta - z| \, ds \quad ; \ z, \zeta \in \Gamma$$

The kernel $k(z,\zeta) = -\frac{1}{\pi} \frac{\partial}{\partial n_{\zeta}} \log |\zeta - z|$ has in the C^3 -case a continuous extension on $\Gamma \times \Gamma$ and so \mathcal{N} is continuous on the space of continuous, real-valued functions h. Due to the identity $-\frac{\partial}{\partial n_{\zeta}} \log |\zeta - z| = \frac{\partial}{\partial s} \arg (z - \zeta)$ we may write

(2.2)
$$(\mathcal{N}h)(z) = \frac{1}{\pi} \int_{\Gamma} h(\zeta) \operatorname{Im} \frac{\zeta'(s)}{\zeta(s) - z} \, ds =$$
$$= \operatorname{Re} \left\{ \frac{1}{\pi i} \int_{\Gamma} \frac{h(\zeta) \, d\zeta}{\zeta - z} \right\}.$$

If the last integral is understood in the sense of principal value and Γ is AD-regular then \mathcal{N} becomes a bounded linear operator on the space $L^p_{\mathbf{R}}(\Gamma) = L^p_{\mathbf{R}}$ of real-valued functions $h \in L^p(\Gamma)$, p > 1. If we split the Cauchy operator (1.1) acting on $x \in L^p_{\mathbf{R}}$, p > 1, into its real and imaginary parts C_1 and C_2 , resp., i.e.

(2.3)
$$C_1 x = C_1^{\Gamma} x = \frac{1}{2} (Cx + \overline{Cx})$$

(2.4)
$$C_2 x = C_2^{\Gamma} x = \frac{1}{2i} (Cx - \overline{Cx})$$

we obtain bounded linear operators on $L_{\mathbf{R}}^p$, p > 1, with $C_1^{\Gamma} = \mathcal{N}$ for Γ in C^3 and continuous x. In what follows we shall drop the superscript Γ in most cases. Therefore C_1 may be called a generalized Neumann-Poincaré operator acting on $L_{\mathbf{R}}^p(\Gamma)$ and bounded for an AD-regular Jordan curve Γ in the finite plane and p > 1. If C_1 is bounded for some p > 1, it is also bounded for all p > 1. In what follows we take for granted these assumptions on Γ and p.

The formula (1.7) implies immediately the following relations resulting from the identity $C = C_1 + iC_2$:

(2.5)
$$C_1^2 - C_2^2 = I$$
 , $C_1 C_2 = -C_2 C_1$

We now establish some properties of the operators C_k . To this end we introduce the subspace $L_0^p(\Gamma) = L_0^p$ being the maximal subspace of $L_{\mathbf{R}}^p$ containing no constant functions except for x = 0. Thus $L_0^p = P(L_{\mathbf{R}}^p)$ where P is the projection $x \mapsto x = \int_{\Gamma} x(s) ds/L$ with L standing for the length of Γ .

The introduction of the spaces L_0^p enables us to eliminate constant functions from the competition and this can result e.g. in change of norm of the operators C_k . In the case of unbounded AD regular $\Gamma = L_{\mathbf{R}}^p(\Gamma)$ contains no constant functions except for the null function and an analogous procedure is redundant.

Lemma 2.1. The operator C_2 is bounded on $L^p_{\mathbf{R}}$. It vanishes on constant functions only and maps L^p_0 one to one onto its subspace

(2.6)
$$\widetilde{L}_0^p(\Gamma) = \widetilde{L}_0^p := C_2(L_0^p) \subset L_0^p$$

Proof. It follows from (2.4) that $||C_2|| \leq ||C||$ so C_2 is bounded on $L_{\mathbf{R}}^p$. If $x_0 = \text{const}$ then obviously $C_2 x_0 = 0$. Suppose now that $C_2 x_0 = 0$, i.e. $C x_0 = C x_0$. Then $C x_0 = y_0 \in L_{\mathbf{R}}^p$ and consequently, $g = \frac{1}{2}(-x_0 + C x_0) \in H^p(D_2)$, as well as $f = \frac{1}{2}(x_0 + C x_0) \in H^p(D_1)$, have identically vanishing imaginary parts. Hence g = 0, f = a = const and finally $f - g = x_0 = a$. Thus

$$(2.7) C_2 x_0 = 0 \iff x_0 = \text{const.}$$

Hence C_2 is 1:1 on L_0^p . Suppose now that $C_2 x_0 = a = \text{const}$ for some $x_0 \in L_{\mathbf{R}}^p$. Then $Cx_0 = C_1 x_0 + iC_2 x_0 = C_1 x_0 + ia$ and consequently $g = \frac{1}{2}(-x_0 + C_1 x_0 + ia) \in H^p(D_2)$ has a constant imaginary part. Thus Im g = a = 0 since $g(\infty) = 0$ and this shows that $C_2(L_{\mathbf{R}}^p)$ does not contain any constant function except for 0. This proves that C_2 is a one-to-one operator on L_0^p and the inclusion (2.6) follows.

The operator C_2 cannot vanish identically on all $L^p_{\mathbf{R}}$ for an AD-regular Γ . Note that otherwise $L^p_{\mathbf{R}}$ would consist only of constant functions which is obviously absurd. For C_1 we have, to the contrary, the following

Remark 2.2. If $\Gamma = T = \{z : |z| = 1\}$ then $C_1^T = 0$ on L_0^p for all p > 1. The converse is also true.

Proof. Trigonometric polynomials $x_N = \sum_{n=1}^N (a_n \cos n\theta + b_n \sin \theta) = \sum_{n=1}^N (\alpha_n e^{in\theta} + \overline{\alpha}_n e^{-in\theta}), \ \alpha_n = \frac{1}{2}(a_n - ib_n)$ are dense in L_0^p ; the decomposition (1.2) takes the form $x_N = f - g$, where $f = \sum_{n=1}^N \alpha_n e^{in\theta}, \ g = -\sum_{n=1}^N \overline{\alpha}_n e^{-in\theta}$. Hence by (1.4) $C^T x_N = f + g$ is purely imaginary and consequently $C_1^T x_N = 0$ for all x_N and also for all $x \in L_0^p, p > 1$.

Suppose now that $C_1 x = 0$ for all $x \in L_0^p$. Then $Cx = -\overline{Cx}, x \in L_0^p$, or

$$\frac{1}{\pi i} P.V. \int_{\Gamma} x(s) \frac{z'(s) \, ds}{z(s) - z(t)} \equiv \frac{1}{\pi i} P.V. \int_{\Gamma} x(s) \frac{z'(s) \, ds}{\overline{z(s) - \overline{z(t)}}} \, .$$

Hence Im $\frac{z'(s)}{z(s) - z(t)} = 0$, or $\frac{d}{ds}$ Im $\log[z(s) - z(t)] = 0$ for almost all s, t, and consequently arg $\frac{z(s_2) - z(t)}{z(s_1) - z(t)} = \text{const for all } t$ between s_1 and s_2 which can be

72

arbitrary. This means that T is a circle. Note that $s \mapsto z(s)$ is absolutely continuous for a bounded AD-regular Γ .

3. Neumann domains and Lavrentiev curves. A bounded, simply connected domain D is said to be a *Curathéodory domain*, if the conformal mapping of Don the unit disk Δ has a continuous extension to its closure \overline{D} . Any bounded Jordan domain is a Carathéodory domain, however, there exist Carathéodory domains whose boundary is not a Jordan curve.

Let D be a bounded Carathéodory domain with a rectifiable boundary curve Γ and let $H_0^p(D)$ stand for $\{f \in H^p(D) : \text{Re } f \in L_0^p\}$. If $f \in L_0^p\}$. According to M. Zinsmeister [11] D is said to be a Neumann domain iff there exists a bounded linear operator $S: L_0^p \to L_0^p$ generating an isomorphism $\varphi \mapsto \varphi + iS\varphi$ between $L_0^p = L_0^p(\Gamma)$ and $H_0^p(D)$ for some p > 1.

If such an isomorphism does exist for some p > 1, it also exists for all p > 1. An unbounded domain D_0 with a locally rectifiable boundary curve Γ is called a Neumann domain iff for some $z_0 \notin \overline{D}_0$ the image domain D of D_0 under the mapping $z \mapsto (z - z_0)^{-1}$ is a bounded Neumann domain.

Zinsmeister also gave the following geometric characterization of Neumann domains: D is a Neumann domain if and only if ∂D is AD-regular and $\mathbb{C} \setminus D$ is k-locally connected for some $k \geq 1$.

We recall that a set E in the plane is called k-locally connected (k-l.c.), $k \ge 1$, if for any $z_0 \in \mathbb{C}$ and any disk $D(z_0; r)$ the set $E \cap \overline{D}(z_0; r)$ is contained in a connected subset of $E \cap \overline{D}(z_0; kr)$.

Since AD-regularity and k-l.c. property are preserved under Moebius transformations, the above geometric characterization applies to both bounded and unbounded domains.

A Jordan curve Γ in $\overline{\mathbb{C}}$ is called a chord-arc (or Lavrentiev) curve iff there exists a positive constant K such that for any $z_1, z_2 \in \Gamma$ we have $\min\{|\Gamma_1|, |\Gamma_2|\} \leq K|z_1 - z_2|$, where Γ_k are complementary subarcs of Γ with end-points z_1, z_2 and length $|\Gamma_k|$. Evidently any chord-arc curve is AD-regular.

As pointed out by Zinsmeister [11], Γ is chord-arc if and only if both components of $\mathbf{C} \setminus \Gamma$ are Neumann domains. In view of Gehring's characterization of quasicircles in terms of k-local connectivity [8] chord-arc curves may be also characterized as AD-regular quasicircles, cf. [11]. Using the above given definitions and characterizations we shall derive various characterizations of chord-arc curves in terms of operators C_k , k = 1, 2.

Theorem 3.1. An AD-regular curve Γ in the finite plane is chord-arc if and only if

$$L_0^p(\Gamma) := C_2(L_0^p) = L_0^p$$

Proof. Suppose that $\widetilde{L}_0^p(\Gamma) = L_0^p$. As shown in Lemma 2.1, C_2 maps L_0^p onto \widetilde{L}_0^p one-to-one. Since L_0^p is a Banach space, the inverse mapping C_2^{-1} is a bounded operator on L_0^p and maps it onto itself.

The function $\varphi + i\psi$ with $\varphi, \psi \in L_0^p$ belongs to $H_0^p(D_1)$ if and only if $C(\varphi + i\psi) = C_1\varphi - C_2\psi + i(C_1\psi + C_2\varphi) = \varphi + i\psi$, i.e.

(3.1) $-\varphi + C_1 \varphi = C_2 \psi \quad , \quad -\psi + C_1 \psi = -C_2 \varphi \; .$

Thus the desired isomorphism between L_0^p and $H_0^p(D_1)$ takes the form $\varphi \mapsto \varphi + iS_1\varphi$, where

(3.2)
$$S_1 = -C_2^{-1}(I - C_1)$$
, $S_1^{-1} = -S_1$

This proves that D_1 is a Neumann domain. Similarly $\chi + i\psi$ with $\chi, \psi \in L_0^p$ belongs to $H_0^p(D_2) = H^p(D_2)$ if and only if $C(\chi + i\psi) = C_1\chi - C_2\psi + i(C_1\psi + C_2\chi) = -\chi - i\psi$, i.e.

(3.3)
$$\chi + C_1 \chi = C_2 \psi$$
, $\psi + C_1 \psi = -C_2 \chi$

and the desired isomorphism between L_0^p and $H^p(D_2)$ takes the form $\chi \mapsto \chi + iS_2\chi$, where

(3.4)
$$S_2 = C_2^{-1}(I + C_1)$$
, $S_2^{-1} = -S_2$

Thus D_2 is also a Neumann domain and consequently, Γ is chord-arc.

Suppose now that Γ is chord-arc. Then D_1, D_2 are Neumann domains and consequently, there exists bounded linear operators S_1, S_2 such that for an arbitrary $\psi \in L_0^p$

$$\psi + iS_1\psi \in H^p_0(D_1) \quad , \quad \psi + iS_2\psi \in H^p(D_2)$$

Thus $f = -S_1\psi + i\psi \in H_0^p(D_1)$ and $g = -S_2\psi + i\psi \in H^p(D_2)$ have equal imaginary parts and are generated, due to (1.3), (1.4), by $x_0 = f - g = (S_2 - S_1)\psi = 2C_2^{-1}\psi \in L_0^p$. Moreover, $\frac{1}{2}C_2x_0 = \psi$ may be arbitrary which shows that $C_2(L_0^p) = L_0^p$ and this ends the proof.

Remark 3.2. Γ is a chord-arc curve iff S_1, S_2 are bounded on L_0^p for some p > 1.

It follows from the formulas (3.1) that the operator $S_1 : \varphi \mapsto \psi$ may be also defined as the unique solution ψ of the equation $(I - C_1)\psi = C_2\varphi$. Thus there exists a bounded inverse $(I - C_1)^{-1}$ and hence we obtain, in the case of chord-arc curves,

(3.5)
$$S_1 = (I - C_1)^{-1} C_2 = -C_2^{-1} (I - C_1)$$

and similarly

(3.6)
$$S_2 = -(I + C_1)^{-1}C_2 = C_2^{-1}(I + C_1)$$

Moreover,

$$(3.7) S_2 - S_1 = 2C_2^-$$

shows to be an isomorphism of L_0^p for a chord-arc curve. Consequently, we obtain the following

Theorem 3.3. An AD-regular curve $\Gamma \neq T$ in the finite plane is chord-arc if and only if the points 1, -1 are regular values of the operator C_1^{Γ} acting on L_0^p , p > 1. We exclude the case $\Gamma = T$ since then $C_1 = 0$ and so the notion of regular values does not make sense.

As an immediate consequence we obtain

Proposition 3.4. If Γ is AD-regular and the norm of C_1^{Γ} w.r.t. L_0^p is equal d < 1 for some p > 1 then Γ is a chord-arc curve.

Proof. Given an arbitrary $y \in L_0^p$ we can write the unique solution x of the equation $y = (I - C_1)x$ in the form of an absolutely convergent series $x = y + C_1y + C_1^2y + \cdots$ Similarly $x = y - C_1y + C_1^2y - \cdots$ is the unique solution of the equation $y = (I + C_1)x$. Moreover,

 $||(I \mp C_1)x|| \ge (1-d)||x||$, i.e. $||x|| \le (1-d)^{-1}||y||$

in both cases. Consequently, ∓ 1 are regular points of the operator C_1 and we are done, in view of Theorem 3.3.

Note that $C_1 x = x$ for x = const so that $||C_1|| \ge 1$ on $L^p_{\mathbf{R}}$ and therefore the elimination of constant functions is essential.

In the case p = 2 we shall obtain another related sufficient condition for Γ to be chord-arc. Since the norm of C^{Γ} does not change under similarity, we may assume that $|\Gamma| = 2\pi$. Then both operators C^{T} , C^{Γ} act on $L^{2}(0, 2\pi)$ and the operator $C^{T} - C^{\Gamma}$ makes sense. As a simple consequence of Proposition 3.4 and Remark 2.2 we obtain

Proposition 3.5. If the L_0^p -norm $||C^T - C^{\Gamma}|| = d < 1$ then Γ is a chord-arc curve.

Proof. We have for an arbitrary $x_0 \in L_0^2$ in view of Remark 2.2

$$d^{2} \|x_{0}\|^{2} \geq \|(C^{T} - C^{\Gamma})x_{0}\|^{2} = \| - C_{1}^{\Gamma}x_{0} + i(C_{2}^{T} - C_{2}^{\Gamma})x_{0}\|^{2} = \\ = \|C_{1}^{\Gamma}x_{0}\|^{2} + \|(C_{2}^{T} - C_{2}^{\Gamma})x_{0}\|^{2}.$$

Hence $||C_1^{\Gamma} x_0|| \leq d||x_0||$ and this ends the proof.

Proposition 3.5 is a counterpart of a theorem due to Coifman and Meyer [4] which refers to the unbounded chord-arc curves. Note that for unbounded Γ the space $L^p_{\mathbf{B}}$ does not contain constant functions $\neq 0$.

4. The case $\|C_1^{\Gamma}\|_{L_0^2} < 1$. Chord-arc curves for which the L_0^2 -norm of the generalized Neumann-Poincaré operator C_1 is less than one make up a rather interesting class of curves. First of all, the Neumann series is convergent in L_0^2 . Since the Neumann operator C_1 may be written in the form

$$(C_1.x)(t) = \frac{1}{\pi} P.V. \int_{\Gamma} x(s) \, ds \, \arg\left(z(s) - z(t)\right) \, ,$$

the condition $||C_1||_{L^2_0} < 1$ indicates that the local rotation of the chord emanating from z(t) is fairy small in the mean. We shall now derive some equivalent analytic conditions included in the

Theorem 4.1. For a chord-arc curve $\Gamma \neq T$ the following are equivalent:

(i) $||C_1^{\Gamma}||_{L^2_0} =: ||C_1|| = d < 1;$

(ii) for any pair $f = \varphi + i\psi \in H_0^2(D_1)$, $g = \chi + i\psi \in H^2(D_2)$, $\psi \neq 0$, the inner product $\langle \varphi, \chi \rangle$ is negative and

$$\langle arphi, \chi
angle \leq -rac{1}{4}(1-d^2) \|arphi-\chi\|^2$$

(iii) the operator $(I + C_1)(I - C_1)^{-1}$ is positive and

$$\langle (I+C_1)(I-C_1)^{-1}x_0, x_0 \rangle \geq \frac{1-d}{1+d} ||x_0||^2 , \quad 0 < d < 1 ,$$

for any $x_0 \in L^2_0$.

Proof. (i) \iff (ii) According to (1.3) the functions f, g are generated by $x_0 = \varphi - \chi \in L^2_0$. Obviously (i) is equivalent to

(4.1)
$$\|x_0\|^2 - \|C_1x_0\|^2 \ge (1-d^2)\|x_0\|^2$$

On the other hand,

$$\varphi = \frac{1}{2}(x_0 + C_1 x_0)$$
, $\chi = \frac{1}{2}(-x_0 + C_1 x_0)$,

and hence

$$\langle \varphi, \chi \rangle = \frac{1}{4} (-\|x_0\|^2 + \|C_1 x_0\|^2)$$

ΟΓ

(4.2)
$$||x_0||^2 - ||C_1x_0||^2 = -4\langle \varphi, \chi \rangle .$$

From (4.1) and (4.2) the equivalence of (i) and (ii) readily follows.

(ii) \Longrightarrow (iii). Since Γ is chord-arc, $I - C_1$ is an isomorphism of L_0^2 by Theorem 3.3 and so given $y_0 \in L_0^2$ we can find a unique x_0 satisfying $(I - C_1)^{-1}y_0 = x_0$. Then, as before,

$$\langle (I+C_1)(I-C_1)^{-1}y_0, y_0 \rangle = \langle (I+C_1)x_0, (I-C_1)x_0 \rangle = = \langle 2\varphi, -2\chi \rangle = -4\langle \varphi, \chi \rangle \ge (1-d^2) \|x_0\|^2$$

in view of (ii). Now, $y_0 = (I - C_1)x_0$ and hence $||y_0|| \le (1 + d)||x_0||$ by (i) \iff (ii). Thus $||x_0||^2 \ge ||y_0||^2/(1 + d^2)$ and finally

$$\langle (I+C_1)(I-C_1)^{-1}y_0, y_0 \rangle \ge \frac{1-d^2}{(1+d)^2} \|y_0\|^2 = \frac{1-d}{1+d} \|y_0\|^2$$

(iii) \Longrightarrow (i). Suppose Γ is chord arc and

(4.3)
$$\langle (I+C_1)(I-C_1)^{-1}y_0, y_0 \rangle \ge \frac{1-d}{1+d} \|y_0\|^2$$

for some 0 < d < 1 and all $y_0 \in L^2_0$. With $(I - C_1)^{-1}y_0 = x_0$ we have $||y_0|| \ge \delta ||x_0||$ for some $\delta > 0$ and all $x_0 \in L^2_0$ so that

$$\langle (I+C_1)x_0, (I-C_1)x_0 \rangle = ||x_0||^2 - ||C_1x_0||^2 \ge \frac{1-d}{1+d} \,\delta^2 ||x_0||^2$$

for all $x_0 \in L_0^2$. This implies $||C_1|| = d_1 < 1$ which is equivalent to (i) with $d = d_1$. Repeating the steps (i) \Longrightarrow (ii) \Longrightarrow (iii) we see that the best value of d in (4.3) is just d_1 . This ends the proof.

If $f = \varphi + i\psi \in H_0^2(D_1)$, $g = \chi + i\psi \in H^2(D_2)$ then $\varphi = -S_1S_2\chi$, $\chi = -S_2S_1\varphi$ and in view of (ii) we obtain

Corollary 4.2. If $||C_1|| = d < 1$ on L_0^2 then

(4.4)
$$\langle S_1 S_2 \chi, \chi \rangle = \langle S_2 S_1 \varphi, \varphi \rangle \ge \frac{1}{4} (1 - d^2) \|\varphi - \chi\|^2$$

for any $\varphi, \chi \in L^2_0$. Thus $S_1 S_2$ and $(S_1 S_2)^{-1} = S_2 S_1$ are positive.

Corollary 4.3. If Γ is chord-arc then $H_0^p(D_1)$ and $H^p(D_2)$ are isomorphic. The isomorphism can be established by the formula

$$f = -S_1\psi + i\psi \iff g = -S_2\psi + i\psi \ , \quad \psi \in L^p_0 \ .$$

The converse also holds if S_1, S_2 are bounded, due to Zinsmeister's characterization of chord-arc curves.

A natural question arises to find a geometric characterization of curves for which $||C_1|| < 1$.

REFERENCES

- [1] Ahlfors, L. V., Zur Theorie der Überlagerungsflächen, Acta Math. 65 (1935), 157-194.
- [2] de Branges, L., A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137-152.
- [3] Calderon, A. P., Commutators, singular integrals on Lipschitz curves and related operators, Proc. Internat. Congr. Math. (Helsinki 1978), Helsinki 1980, 85-96.
- [4] Coifman, R., Meyer, Y., Lavrentiev's curves and conformal mappings, Institut Mittag-Leffler, Report No.5, 1983.
- [5] David, G., Opérateurs integrauz singuliers sur certaines courbes du plan complex, Ann. Sci. École Norm. Sup. 17 (1984), 157–189.

- [6] Duren, P., Theory of H^P-spaces, Academic Press, New York and London 1970.
- [7] Gaier, D., Lectures on Complex Approximation, Birkhäuser, Boston-Basel-Stuttgart 1985.
- [8] Gehring, F. W., Univalent functions and the Schwarzian derivative, Comment. Math. Helv. 52 (1977), 561-572.
- Krzyż, J. G., Some remarks concerning the Cauchy operator on AD-regular curves, Ann. Univ. M. Curie Skłodowska Sect. A, 42 (1988), 53-58.
- [10] Semmes, S., The Cauchy integral, chord-arc curves and guasiconformal mappings, The Bieberbach Conjecture, Proceedings of the Symposium on the Occasion of the Proof, Amer. Math. Soc. Providence 1986.
- [11] Zinsmeister, M., Domaines de Lavrentiev, Publ. Math. d'Orsay, Paris 1985.

STRESZCZENIE

Niech Γ bądzie prostowalną krzywą Jordana w plaszczyźnie skończonej, regularną w sensie Ahlforsa-Davida, tzn. AD-regularną.

Niech L_0^p , p > 1, oznacza klasę funkcji rzeczywistych x(s) na Γ takich, że $\int_{\Gamma} |x(s)|^p ds < +\infty$ oraz $\int_{\Gamma} x(s) ds = 0$. Jeżeli operator całki osobliwej Cauchy'ego C^{Γ} działający na L_0^p rozłożymy na jego część rzeczywistą C_1^{Γ} i urojoną C_2^{Γ} , to można scharakteryzować krzywe luk -cięciwa w terminach tych operatorów.

 Γ jest krzywą luk-cięciwa wtedy i tylko wtedy, gdy C_2^{Γ} jest ograniczonym izomorfizmem L_0^p dla pewnego p > 1.

 Γ jest krzywą luk-cięciwa wtedy i tylko wtedy, gdy -1, 1 są wartościami regularnymi operatora C_1^{Γ} działającego na L_0^p dla pewnego p > 1.

Jeśli p = 2 oraz $||C^T - C^{\Gamma}|| < 1$, gdzie T jest okręgiem jednostkowym, $|\Gamma| = 2\pi$ oraz $L_0^p = L_0^p(0, 2\pi)$, to Γ jest krzywą łuk-cięciwa. Ponadto podano kilka dalszych własności operatora C_1^{Γ} działającego na L_0^2 w przypadku gdy $||C_1^{\Gamma}|| < 1$.