LUBLIN-POLONIA

VOL. XLIII, 6
SECTIO A

Politechnika Lubelska

Inatytut Matematyki UMCS
L. KOCZAN , W.SZAPIEL

Extremal Problems in Some Classes of Measures (IV) Typically Real Functions

Problemy ekstremalne w pewnych klasach miar (IV)
Funkcje typowo rzeczywiste

Abstract

This paper is a conclusion of [8-10] and deals with compact convex classes of typically real functions whose ranges are in a given horizontal strip or else whose all odd coefficients are fixed. Like in [10] extreme and support points can form dense subsets and hence every extremal continuous problem over such class reduces to the extremal problem over its extreme (support) points. Some applications concern with the class of all typically real functions bounded in modulus by a common constant.

1. Introduction. Let $H(\Delta)$ be the linear space of all complex functions holomorphic in the open unit disc Δ, endowed with the topolngy of uniform convergence on compacta. In this paper, being a conclusion of [8-10], we shall be interested in subsets of the class

$$
\begin{equation*}
\mathcal{T}=\{f \in H(\Delta): f(0)=0, \operatorname{Im} f(z) \operatorname{In} z \geq 0 \text { for } z \in \Delta\} \tag{1.1}
\end{equation*}
$$

parallel to those considered in the previous part [10]. Since \mathcal{T} is the smallest convex cone in $H(\Delta)$ that contains the known class of all normalized typically real functions, we have the Rogosinski representation (1932) :

$$
\begin{equation*}
\mathcal{T}=\left\{z \mapsto z f(z) /\left(1-z^{2}\right): f \in \mathcal{F}_{R}\right\}, \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{P}_{R}=\{f \in H(\Delta): f(z)+f(\bar{z}) \geq 0 \text { for } z \in \Delta\} \tag{1.3}
\end{equation*}
$$

This is equivalent to the Robertson integral representation (1935) :

$$
\begin{equation*}
\mathcal{T}=\left\{f_{\nu}: \nu \in M\right\} \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{\nu}(z) \equiv \int_{0}^{\pi} q(z, \cos x) d \nu(x) \quad, \quad q(z, t) \equiv z /\left(1-2 t z+z^{2}\right) \tag{1.5}
\end{equation*}
$$

and M is the family of all finite nonnegative Borel measures on the interval $[0, \pi]$. For details see [1, 3-5, 11].

According to [8-10] we suppose that \mathcal{B} consists of all Borel subsets of $[0, \pi]$ and that M is endowed with the weak-star topology. Then the map $\nu \mapsto f_{\nu}$ is an affine homeomorphism from M onto \mathcal{T} [1], so we get that
(I) the equation $f_{\nu}=f$ with $f \in \mathcal{T}$ has the unique solution $\nu=\nu_{\rho} \in M$,
(II) ν_{f} is the weak-star limit of a sequence ($\nu_{f_{n}}$) whenever $f, f_{1}, f_{2}, \ldots \in \mathcal{T}$ and $f_{n} \rightarrow f$ uniformly on compacta.
For instance, if $f \in \mathcal{T}$ and $f_{n}(z) \equiv f((1-1 / n) z)$, then

$$
\begin{equation*}
d \nu_{f_{n}} / d x=(2 / \pi) \operatorname{Im} f\left((1-1 / n) e^{i x}\right) \sin x \text { on }[0, \pi] \text { and } \nu_{f_{n}} \xrightarrow{w^{*}} \cdot \nu_{f} \tag{1.6}
\end{equation*}
$$

(recover the function $g_{n}(z) \equiv\left(1-z^{2}\right) f_{n}(z) / z$ from its boundary function $g_{n} \mid \partial \Delta$ by means of the Poisson integral and use the property : $\left.2 f_{n}(z) \equiv f_{n}(z)+\overline{f_{n}(\bar{z})}\right)$.

Most of the paper is concerned with the compact convex sets :

$$
\begin{align*}
\mathcal{T}(L) & =\{f \in \mathcal{T}:|\operatorname{Im} f(z)| \leq \pi L \quad \text { for } z \in \Delta\}, \quad L>0, \tag{1.7}\\
\mathcal{T}(L, c) & =\left\{f \in \mathcal{T}(L): f^{\prime}(0)=c\right\} \quad, \quad 0 \leq c \leq 4 L \tag{1.8}
\end{align*}
$$

and

$$
\begin{equation*}
\mathcal{T}[g]=\left\{f \in \mathcal{T}: a_{2 m-1}(f)=a_{2 m-1}(g) \text { for } m=1,2, \ldots\right\}, \tag{1.9}
\end{equation*}
$$

where $g \in \mathcal{T}$ and $a_{j}(f)=f^{(j)}(0) / j$! for $j=0,1,2, \ldots$. Obviously, by subordination principle, $\mathcal{T}(L)=\bigcup_{0 \leq c \leq 4 L} \mathcal{T}(L, c)$.

Moreover, for any $0<r<1$ the real functional

$$
\begin{equation*}
\mathcal{T} \ni f \mapsto \sum_{j=1}^{\infty} a_{j}^{2}(f) r^{2 j}=(2 / \pi) \int_{j 0}^{\pi} \operatorname{Im}^{2} f\left(r e^{i x}\right) d x \tag{1.10}
\end{equation*}
$$

is continuous convex and hence

$$
\begin{equation*}
\mathcal{T}(L) \subset H^{2} \tag{1.11}
\end{equation*}
$$

We let add that $\mathcal{T} \subset H^{p}$ for $0<p<1 / 2$. From the theory of H^{p} spaces [2], there follows the existence of nontangential boundary limits $f\left(e^{i r}\right)$ a.e. on $[0, \pi]$ for all $f \in H^{r}$ with $0<p \leq \infty$. Thus

$$
\begin{equation*}
\sum_{j=1}^{\infty} a_{j}^{2}(f)=(2 / \pi) \int_{0}^{\pi} \operatorname{Im}^{2} f\left(e^{i x}\right) d x \quad \text { for } \quad f \in \mathcal{T} \cap H^{2} \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{\nu} / d . x=(2 / \pi) \operatorname{In} f\left(e^{i x}\right) \sin x \text { a.e. on }[0, \pi] \text { for } f \in \mathcal{T} \cap H^{1}, \tag{1.13}
\end{equation*}
$$

see (1), (II) and (1.6), see also the proof of [10, Th.5.10].
Observe now that the map $f \mapsto \tilde{f}$, where $\tilde{f}(z) \equiv(f(z)-f(-z)) / 2$, is н projection of \mathcal{T} onto the class $\tilde{\mathcal{T}}$ of all odd functions from \mathcal{T}. Thus the equivalence relation

$$
f \sim g \text { if and only if } \tilde{f}=\tilde{g}
$$

decomposes \mathcal{T} into equivalence classes (1.9) with g ranging over \mathcal{T}. This way

$$
\mathcal{T}=\bigcup_{g \in \tilde{T}} \mathcal{T}[g] \quad, \quad \text { c.f. }[6,7]
$$

Just as in [10], the classes (1.7), (1.8) and many of (1.9) are strongly convex, so their extreme points form dense subsets. Some applications will concern the class of all typically real functions that are bounded in modulus by a common constant.

To comply with the previous notation, let $\mathcal{E} \mathcal{A}$ (resp. $\sigma \mathcal{A}$) denote the set of all extreme (resp. support) points of \mathcal{A} Moreover, let $\nu_{A}(B)=\nu(A \cap B)$ for all $\nu \in M$ and $A, B \in B$, and let $h(x)=\pi-x$ for $0 \leq x \leq \pi$. The support of $\nu \in M$ will be denoted by supp ν.
2. Basic results. Using (I), (II), (1.6) and the notation from [8] we get

Proposition 2.1. $\mathcal{T}(L)=\left\{f_{\nu}: \nu, \mu-\nu \in M\right\}=\left\{f_{\nu}: \nu \in M^{\text {id }}([0, \pi], \mathcal{B}, \mu)\right\}$ and $\mathcal{T}(L, c)=\left\{f_{\nu}: \nu \in M^{\text {id }}([0, \pi], \mathcal{B}, \mu, c)\right\}$, where $d \mu / d t=2 L \sin t, \quad 0 \leq t \leq \pi$.

For the classes (1.9) we have
Proposition 2.2. Let $g \in \mathcal{T}$. Then $\mathcal{T}[g]=\left\{f_{v}: v \in \widehat{M}^{h}\left(\mathcal{X}, \mathcal{B}, v_{g}\right)\right\}$, where $\operatorname{orb}(x) \equiv\{x, \pi-x\}, X=[0, \pi]=X_{2}=X_{1} \cup \tilde{X}_{2}, X_{1}=\{\pi / 2\}$ and $\widetilde{X}_{2}=X \backslash\{\pi / 2\}$. see [8].

Proof. Note first that $f \in \mathcal{T}[g]$ if and only if $f \in \mathcal{T}$ and $2 \tilde{g}(z) \cong f(z)-f(-z)$. Since $h=h^{-1}$, we have $2 \nu_{g}(A)=\nu_{f}(A)+\nu_{f}(h(A))$ for all $A \in l^{2}$. nud the drsired result follows from [8, Proposition T.1].

The classes $\mathcal{T}(L)$ and $\mathcal{T}(L, c), 0<c<4 I$, are strongly convex and the following properties hold.

Theorem 2.3. Let $\psi:[0, \pi] \rightarrow R$ be a lehergue integrable function on $\mid 0$, , r| and $0<c<4 L$. Then

$$
\begin{align*}
& \max \left\{\int_{0}^{\pi} \psi d \nu_{f}: f \in \mathcal{T}(L)\right\}=I \int_{0}^{\pi}(\psi(x)+|\psi(x)|) \sin \cdot r d x \tag{i}\\
& \max \left\{\int_{0}^{\pi} \psi d \nu_{g}: f \in \mathcal{T}(L, c)\right\}=2 L \int_{A\left(\lambda_{c}\right)}\left(\psi(x)-\lambda_{c}\right) \sin x d x+\lambda_{c} c, \tag{ii}
\end{align*}
$$

where $A(\lambda)=\{x \in[0, \pi]: \psi(x) \geq \lambda\}$ and $\lambda_{c}=\sup \left\{\lambda \in R: 2 L \int_{A(\lambda)} \sin x d r \geq c\right\}$ Furthermore,
(iii) $\sigma \mathcal{T}(L)=\left\{f_{A}=2 L \int_{A} g(\cdot, \cos x) \sin x d x: A \subset[0, \pi]\right.$ is a finite union of intervals $\} \subsetneq \mathcal{E} \mathcal{T}(L)=\left\{f_{A}: A \in \mathcal{B}\right\}=\left\{2 L \int_{B} q(\cdot, t) d t: B\right.$ is a Borel subset of $\left.[-1,1]\right\}$ and
(iv) $\sigma \mathcal{T}(L, c)=\left\{f \in \sigma \mathcal{T}(L): f^{\prime}(0)=c\right\} \subset \mathcal{E} \mathcal{T}(L, c)=\left\{f \in \mathcal{E} \mathcal{T}(L): f^{\prime}(0)=c\right\}$.

Thus for $\mathcal{A}=\mathcal{T}(L)$ or $\mathcal{A}=\mathcal{T}(L, c)$ we have
(v) $\quad \overline{\sigma \mathcal{A}}=\overline{\mathcal{E A}}=\mathcal{A}$.

Moreover,
(vi) $f \in \mathcal{E} \mathcal{A}$ iff $f \in \mathcal{A}$ and $\left(\pi L-\operatorname{Im} f\left(e^{i x}\right)\right) \operatorname{Im} f\left(e^{i x}\right)=0$ a.e. on $[0, \pi]$.

Proof. In contrast to the proofs of [10, Th. 3.4, Remarks 3.6] it is sufficient to observe that for $0 \leq x_{1}<x_{2}<\cdots<x_{2 n-1}<x_{2 n} \leq \pi$ we have $A \stackrel{\text { df }}{=} \bigcup_{j=1}^{n}\left[x_{2 j-1}, x_{2 j}\right]=$ $\{x \in[0, \pi]: w(x) \geq 0\}$, where $w(x) \equiv-\prod_{j=1}^{2 n}\left(\cos x_{j}-\cos x\right)$. Moreover, if $\Phi(f)=\sum_{j=1}^{2 n+1} d_{j} a_{j}(f)$, where $w(x) \sin x \equiv \sum_{j=1}^{2 n+1} d_{j} \sin j x$, then $\Phi \in H(\Delta)^{*}$ and $\Phi(q(\cdot, \cos x)) \equiv w(x)$. Taking A such that $2 L \int_{A} \sin x d x=c$ we have $f_{A} \in \mathcal{T}(L, c)$ and $\max \Phi(\mathcal{T}(L, c))=\Phi\left(f_{A}\right)$. In the proof of (vi) we use (I), (1.11) and (1.13).

Let now $\tilde{\mathcal{T}}(L) \stackrel{\mathrm{df}}{=} \mathcal{T}(L) \cap \tilde{\mathcal{T}}$ for $L>0, \tilde{\mathcal{T}}(L, c) \stackrel{\mathrm{df}}{=} \mathcal{T}(L, c) \cap \tilde{\mathcal{T}}$ for $0<c<4 L$, and let ψ be a real Lebesgue integrable function on $[0, \pi]$. Clearly,

$$
\tilde{\mathcal{T}}(L)=\{\tilde{f}: f \in \mathcal{T}(L)\}=\left\{f \in \mathcal{T}(L): \nu_{f}=\nu_{f} \circ h\right\}
$$

and

$$
\tilde{\mathcal{T}}(L, c)=\{\tilde{f}: f \in \mathcal{T}(L, c)\}=\left\{f \in \mathcal{T}(L, c): \nu_{f}=\nu_{f} \circ h\right\} .
$$

Analogously to the previous theorem we deduce

Theorem 2.4.

(i) $\max \left\{\int_{0}^{\pi} \psi d \nu_{f}: f \in \tilde{T}(L)\right\}=L \int_{0}^{\pi / 2}(\psi(x)+\psi(\pi-x)+|\psi(x)+\psi(\pi-x)|) \sin x d x$, (ii) $\max \left\{\int_{0}^{\pi} \psi d \nu_{\rho}: f \in \tilde{\mathcal{T}}(L, c)\right\}=2 L \int_{/ A\left(\lambda_{c}\right)}\left(\psi(x)+\psi(\pi-x)-\lambda_{c}\right) \sin x d x+\lambda_{c} c / 2$, where.

$$
A(\lambda)=\{x \in[0, \pi / 2]: \psi(x)+\psi(\pi-x) \geq \lambda\}
$$

and.

$$
\lambda_{c}=\sup \left\{\lambda \in R: 2 L \int_{A(\lambda)} \sin x d x \geq c / 2\right\}
$$

Furthermore.
(iii) $\sigma \cdot \tilde{T}(L)=\tilde{\mathcal{T}} \cap \sigma \mathcal{T}(L) \underset{\nsucceq}{\subsetneq}\left\{2\left(\tilde{f}_{A}\right): A\right.$ is a Borel subset of $\left.[0, \pi / 2]\right\}=$
$=\left\{2 I . \int_{B}(q(\cdot, t)+q(\cdot,-t)) d t: B\right.$ is a Borel subset of $\left.[0,1]\right\}=\mathcal{E} \tilde{\mathcal{T}}(L)=\tilde{\mathcal{T}} \cap \mathcal{E} \mathcal{T}(L)$
and
(iv)

$$
\sigma \tilde{\mathcal{T}}(L, c)=\tilde{\mathcal{T}} \cap \sigma \mathcal{T}(L, c) \subsetneq \mathcal{E} \tilde{\mathcal{T}}(L, c)=\tilde{\mathcal{T}} \cap \mathcal{E} \mathcal{T}(L, c), \text { c.f Th. } 2.3
$$

Moreover, the classes $\tilde{\mathcal{T}}(L), \tilde{T}(L, c)$ are strongly convex so that (v) and (vi) of Theorem 2.3 with $\mathcal{A}=\tilde{\mathcal{T}}(L)$ or $\mathcal{A}=\tilde{\mathcal{T}}(L, c)$ holds.

The proof is very similar. Observe only that

$$
\tilde{\mathcal{T}}(L)=\left\{f_{\nu_{[0, \pi / 2]}}+\nu_{[0, \pi / 2]} \circ h: \nu \in M, d \nu / d x \leq 2 L \sin x \text { a.e. on }[1, \pi / 2]\right\}
$$

and

$$
\tilde{\mathcal{T}}(L, c)=\left\{f_{\nu} \in \tilde{\mathcal{T}}(L): \nu([0, \pi / 2])=c / 2\right\}
$$

If now $0 \leq x_{1}<x_{2}<\cdots<x_{2 n-1}<x_{2 n} \leq \pi / 2,-\sin x \prod_{j=1}^{2 n}(\cos 2 x,-\cos 2 x) \equiv$ $\sum_{j=1}^{2 n+1} d_{2 j-1} \sin (2 j-1) x, \Phi(f) \equiv \sum_{j=1}^{2 n+1} d_{2 j-1} a_{2 j-1}(f)$ and $A=\bigcup_{j=1}^{n}\left[x_{2 j-1}, x_{2 j}\right]$, then $\Phi \in H(\Delta)^{*}, \Phi(q(\cdot, t)) \equiv \Phi(q(\cdot,-t)), \quad A=\{x \in[0, \pi / 2]: \Phi(q(\cdot, \cos x)) \geq 0\}$ and $\left(\tilde{f}_{A}\right) \in \tilde{\mathcal{T}}(L)$.

Remarks 2.5,

(i) $\sigma \tilde{\mathcal{T}}(L) \nsubseteq\{\tilde{f}: f \in \sigma \mathcal{T}(L)\}, \mathcal{E} \tilde{\mathcal{T}}(L) \varsubsetneqq\{\tilde{f}: f \in \mathcal{E} \mathcal{T}(L)\}$,
(ii) $\sigma \tilde{\mathcal{T}}(L, c) \nsubseteq\{\tilde{f}: f \in \sigma \mathcal{T}(L, c)\}, \mathcal{E} \tilde{\mathcal{T}}(L, c) \varsubsetneqq\{\tilde{f}: f \in \mathcal{E} \mathcal{T}(L, c)\}$.
(iii) Let $g(z) \equiv 2 L \log ((1+z) /(1-z))$. Then $f \in \mathcal{T}(L, c)$ (resp. $f \in \tilde{\mathcal{T}}(L, c))$ if and only if $g-f \in \mathcal{T}(L, 4 L-c)$ (resp. $g-f \in \tilde{T}(L, 4 L-c)$).

Proof. (i) - (ii). Take any $A \in \mathcal{B}$ with $|A \cap h(A)|>0$ and let $d \mu / d x=2 L \sin r$ a.e. on $[0, \pi]$. Then $f_{A} \in \mathcal{E} \mathcal{T}(L)$, see Theorem 2.3 (iii). If B is a measurable subset of $A \cap[0, \pi / 2]$ or of $A \cap[\pi / 2, \pi]$ with $\mu(B)=\mu(A) / 2$, then $\left(\tilde{f}_{A}\right)=\left(f_{A}+f_{h(1)}\right) / 2=$ $\left(f_{B \cup h(B)}+f_{A \backslash B \cup h(A \backslash B)}\right) / 2 \notin \mathcal{E} \tilde{\mathcal{T}}(L)$.

In proving (iii) observe that for all $f \in \mathcal{T}(L, c)$ we haver $q^{\prime}(0)-f^{\prime}(0)=4 I-r$ and $d\left(\nu_{g}-v_{j}\right)=2\left(L-\operatorname{Im} f\left(e^{i x}\right) / \pi\right) \sin x d x$ a.c. on $[0, \pi]$.

By [9, Remark 3.2, Theorems 4.1, 4.2] we get
Theoreni 2.6. Let $0<c<4 L$ and let \mathcal{A} be one of the follonving set. : $\mathcal{T}(L)$, $\mathcal{T}(L, c), \tilde{\mathcal{T}}(L)$ or $\tilde{\mathcal{T}}(L, c)$. If \mathcal{A}_{0} consists of all $f_{0} \in \mathcal{A}$ for which there is a complex functional J weakly differentiable relative to \mathcal{A} such that $\operatorname{Re} J\left(f_{0}\right)=\max (\operatorname{Re} J)(\mathcal{A})$ and $\operatorname{Re} J_{f_{0}}^{\prime} \mid \mathcal{A} \neq$ const, then $\mathcal{A}_{0}=\sigma \mathcal{A}$.

Using [8. Theorems 8.1, 9.1, 11.2] and Proposition 2.2 we oldtain

Theorem 2.7. Let $y \in T$ and $\mu=\nu_{g}$. Then
$\mathcal{E} \mathcal{T}[\Omega]=\left\{f_{\nu}: \nu=\mu_{\{\pi / 2\}}+2 \mu_{D}\right.$ and the sets $D, h(D),\{\pi / 2\} f_{\text {form }}$ a Borcl decomposition of the internal $[0, \pi]\}$,
(ii)

$$
\begin{aligned}
& \max \left\{\int_{0}^{\pi} \psi d \nu_{f}: f \in \mathcal{T}[g \mid\}=\int_{0}^{\pi} \max \{\psi(x), \psi(\pi-x)\} d \nu_{F}(x)\right. \\
& =\int_{0}^{\pi} \psi d \mu+(1 / 2) \int_{0}^{\pi}|\psi(x)-\psi(\pi-x)| d \mu(x)
\end{aligned}
$$

for all bounded Borel functions $\psi:[0, \pi] \rightarrow R$ and all $F \in \mathcal{T}[g]$, see [6-7]. Moreover, f realizes the maximum if and only if $f \in \mathcal{T}[g]$ and $\nu_{f}(\{x \in[0, \pi]: \psi(\pi-x)>$ $\psi(x)\})=0$.

Corollary 2.8. [6,7]. $\mathcal{T}(g)=\{g\}$ if and only if $g(z) \equiv \lambda z /\left(1+z^{2}\right)=f_{\lambda \delta_{z / 2}}$ for some nonnegative number λ.

Proof. The original proof has been found by means of 2.7(ii) (consider all continuous functions $\psi:[0, \pi] \rightarrow R)$. An alternative proof of the theorem depends on 2.7(i). If $\mathcal{T}[g]=\{g\}$, then $g=\tilde{g}$ and $\nu_{g}=\left(\nu_{g}\right)_{\{\pi / 2\}}$.

Conversely, putting $\nu=\lambda \delta_{\pi / 2}, \quad \lambda \geq 0, g=f_{\nu}$, we obtain that $\mathcal{E} \mathcal{T}[g]=\{g\}$, that is $\mathcal{T}[g]=\{g\}$.

The class $\mathcal{T}[g]$ can be strongly convex. Namely,
Theorem 2.9. Let $g \in \mathcal{T}$ and $\mu=\nu_{\tilde{g}}$. The class $\mathcal{T}[g]$ is strongly convex if and only if either
$1^{\circ} \mu-\mu_{\{\pi / 2\}}$ is nonzero and nonatomic
or
$2^{\circ} \operatorname{supp} \mu \backslash\{\pi / 2\}$ consists of 2 elements.
In the case 1° we have
(i) $\overline{\sigma \mathcal{T}[g]}=\overline{\mathcal{E} \mathcal{T}[g]}=\mathcal{T}[g]$
and
(ii) $\sigma \mathcal{T}[g]=\left\{f_{\nu} \in \mathcal{E} \mathcal{T}[g]: \operatorname{supp} \nu\right.$ is the finite union of subintervals of $\left.[0, \pi]\right\}$.

Proof. Let $\alpha=\mu-\mu_{\{\pi / 2\}}$.
"if". If 1° holds, the proof is similar to that found in [10, Th. 3.9]. Namely, without loss of generality we can assume that μ is nonzero and nonatomic. The truth is that $\mathcal{T}[g]=\mu(\{\pi / 2\}) q(\cdot, \pi / 2)+\mathcal{T}\left[f_{\alpha}\right]$. Next replace $n, \mathcal{P}(n ; g), g_{(n)}, \partial \Delta$ and $h(x) \equiv \varepsilon x$ by $2, \mathcal{T}[g], \tilde{g},[0, \pi]$ and $h(x) \equiv \pi-x$, respectively. In the case 2° the class $\mathcal{T}[g]$ is a segment in $H(\Delta)$ and, hence, it is strongly convex.
"only if". Suppose that $\mathcal{T}[g]$ is a strongly convex set different from a segment. Obviously, the measure α is nonzero, and if b is an atom of α, then also $\pi-b$ is an atom of α. We can assume that $0 \leq b<\pi / 2$. Consider now the functional $\Phi(f) \equiv 2 a_{2}(f) \cos 2 b-a_{4}(f)$. By 2.7 (ii) we get $\max \Phi(\mathcal{T}[g])=\int_{0}^{\pi}|\psi(x)| d \mu(x)=$ $2 \int_{0}^{\pi / 2}|\psi(x)| d \mu(x)=\Phi\left(f_{1}\right)=\Phi\left(f_{2}\right)$, where $\psi(x) \equiv 4 \cos x(\cos 2 b-\cos 2 x), v_{f_{1}}=$ $\mu_{\{\pi / 2\}}+2 \mu_{[b, \pi / 2) \cup(\pi-b, \pi]}$ and $\nu_{f_{2}}=\mu_{\{\pi / 2\}}+2 \mu_{(b, \pi / 2) \cup(\pi-b, \pi]}$. Clearly. $f_{1}, f_{2} \in \mathcal{E} \mathcal{T}[g]$
and $f_{1} \neq f_{2}$, see (I). Since $\mathcal{T}[g]$ is not a segment, there is $A \in \mathcal{B}, A \subset[0, \pi / 2) \backslash\{b\}$ with $\mu(A)>0$, and then $\Phi\left(f_{1}\right) \geq 2 \int_{A}|\psi(x)| d \mu(x)>0=\Phi(\tilde{g})$. Finally, $\left(f_{1}+f_{2}\right) / 2 \epsilon$ $\sigma \mathcal{T}[g] \backslash \mathcal{E} \mathcal{T}[g]$, from which it follows that α has to be nonatomic.

3. Functions with range in a strip.

Theorem 3.1. For any real numbers r, s and positive integers m, n we have

$$
\begin{align*}
& \max \left\{r a_{m}(f)+s a_{n}(f): f \in \mathcal{T}(L)\right\}= \tag{i}\\
& =L\left[\int_{0}^{\pi}|r \sin (m x)+s \sin (n x)| d x+r\left(1-(-1)^{m}\right) / m+s\left(1-(-1)^{n}\right) / n\right]
\end{align*}
$$

In particular, for $f \in \mathcal{T}(L)$ we obtain the following sharp inequalities :
(ii)

$$
\begin{array}{ll}
\text { (ii) } & \left|a_{n}(f)-L\left(1-(-1)^{n}\right) / n\right| \leq 2 L, n=1,2, \ldots, \\
\text { (iii) } & \left|a_{m}(f) \pm a_{n}(f)-L\left(1-(-1)^{m}\right) / m \mp L\left(1-(-1)^{n}\right) / n\right| \leq \\
& \leq \begin{cases}8 L(A \cot (\pi / A)-B \cot (\pi / B)) /\left(A^{2}-B^{2}\right) & \text { if } A / 2 \text { is even, } \\
8 L(A / \sin (\pi / A)-B / \sin (\pi / B)) /\left(A^{2}-B^{2}\right) & \text { if } A / 2 \text { is odd, }\end{cases}
\end{array}
$$

where $A=2|m \pm n| / d, B=2|m \mp n| / d, \quad m \neq n$, and d is the greatest common divisor of $m+n$ and $|m-n|$.

Proof. Apply 2.3(i) to $\psi(x) \equiv r \sin (m x)+s \sin (n x)$. To calculate the integrals in (i) for $r, s= \pm 1$ use [10, the formula (4.1), Lemmas 4.2-4.4 and the proof of Th. 5.1(iv)]. Then

$$
\int_{0}^{\pi}|\sin m x \pm \sin n x| d x=\int_{0}^{\pi}|\sin 2 m x \pm \sin 2 n x| d x=2 J(|m \pm n| .|m \mp n| \cdot \pi / 2) .
$$

Corollary 3.2. Suppose that $f \in \mathcal{T}, f(z) \equiv z+a_{2} z^{2}+\cdots+\|_{n}+\quad$ und $|\operatorname{lm} f(z)| \leq \pi / 2$ for $z \in \Delta$. Then we have.

$$
\left.\mid a_{n}-\left(1-(-1)^{n}\right)\right) /(2 u) \mid \leq 1 \text { for } \prime=1.2 .
$$

This result is sharp.
 $\mathcal{T}(L, 2 L)$. Indeed, each of such functions belongs to $\mathcal{T}(L, \cdot)$ witl। $c=2 L \int_{\{x \in[0, \pi]: \sin n x \geq 0\}} \sin x d x=2 L$. For $L=1 / 2 \mathrm{we}$ git the contillars

Theorem 3.3. For all $0 \leq c \leq 4 L, \max \left\{\sum_{j=1}^{\infty} a_{j}^{2}(f): f \in I(1.1)\right\}$ $4 \pi L^{2} \arccos (1-c /(4 L))$.

Proof. The classical arguments on subordination [3-5] lead to the inequalities :
$\sum_{j=1}^{n} a_{j}^{2}(f) \leq 16 L^{2} \sum_{1 \leq j \leq(n+1) / 2}(2 j-1)^{-2}<2 \pi^{2} L^{2} \quad$ for $\quad f \in \mathcal{T}(L) \quad, \quad n=1,2, \ldots$.
str 9 koniec that are sharp only in the class $\mathcal{T}(L, 4 L)=\{z \mapsto 2 L \log ((1+z) /(1-z))\}$. For the remainder we shall use the Krein-Milman theorem and Theorem 2.3(iv). Since for any $0<r<1$ the real functional (1.10) is convex continuous on $\mathcal{T}(L, c)$, we get that

$$
\begin{aligned}
& \max \left\{\sum_{j=1}^{\infty} a_{j}^{2}(f) r^{2 J}: f \in \mathcal{T}(L, c)\right\}=\max \left\{\sum_{j=1}^{\infty} a_{j}^{2}(f) r^{2 j}: f \in \mathcal{E} \mathcal{T}(L, c)\right\} \\
& <\sup \left\{\sum_{j=1}^{\infty} a_{j}^{2}(f): f \in \mathcal{E} \mathcal{T}(L, c)\right\}=\sup \left\{(2 / \pi) \int_{0}^{\pi} \operatorname{Im}^{2} f\left(e^{i x}\right) d x: f \in \mathcal{E} \mathcal{T}(L, c)\right\},
\end{aligned}
$$

see (1.12). By Theorem 2.3 (iii) and by formula (1.13) we obtain that

$$
\sup \left\{\sum_{j=1}^{\infty} a_{j}^{2}(f): f \in \mathcal{E} \mathcal{T}(L, c)\right\}=\sup \left\{2 \pi L^{2}|A|: A \in \mathcal{B}, 2 L \int_{J_{A}} \sin d x=c\right\}
$$

Consider now the set $D=\{x \in\{0, \pi]: \sin x \leq \lambda\}$, where $\lambda=\sqrt{c} \sqrt{8 L-c} /(4 L)$. It is trivial to check that $|D|=2 \arcsin \lambda$ and $2 L \int_{D} \sin x d x=c$. If $A \in \mathcal{B}$ satisfies equality $2 L \int_{A} \sin x d x=c$, then $|A|=|A \backslash D|+|A \cap D| \leq \lambda^{-1} \int_{A \backslash D} \sin x d x+|A \cap D|=$ $\lambda^{-1} \int_{D \backslash A} \sin x d x+|A \cap D| \leq|D \backslash A|+|A \cap D|=|D|$. Thus

$$
\begin{aligned}
& \max \left\{\sum_{j=1}^{\infty} a_{j}^{2}(f): f \in \mathcal{E} \mathcal{T}(L, c)\right\}=2 \pi L^{2}|D| \leq \sup \left\{\sum_{j=1}^{\infty} a_{j}^{2}(f): f \in \mathcal{T}(L, c)\right\} \\
& \leq 2 \pi L^{2}|D|=4 \pi L^{2} \arccos (1-c /(4 L))
\end{aligned}
$$

the desired result.
Remark 3.4. Since the extremal function giving equality in the last theorem is odd, we obtain also that

$$
\max \left\{\sum_{j=1}^{\infty} a_{2 j-1}^{2}(f): f \in \mathcal{T}(L, c)\right\}=4 \pi L^{2} \arccos (1-c /(4 L)) \quad \text { for all } 0 \leq c \leq 4 L
$$

Theorem 3.5. Let $f \in \mathcal{T}(L, c), n \geq 5$ and $\varphi(n, x, y) \equiv(4 x / n) \sin ^{2}(n \arcsin \sqrt{y /(4 x)})$. Then the following sharp inequalities hold :
(i) $\left|a_{n}(f)\right| \leq \varphi(n, L, c)$ if $c \leq 4 L \sin ^{2}(3 \pi /(8 n))$ and n is even,
(ii) $\left|a_{n}(f)\right| \leq \varphi(n, L, 4 L-c)$ if $c \geq 4 L \cos ^{2}(3 \pi /(8 n))$ and n is even,
(iii) $a_{n}(f) \leq \varphi(n, 2 L, c)$ if $c \leq 8 L \sin ^{2}(3 \pi /(8 n))$ and n is add,
(iv) $a_{n}(f) \geq 4 L / n-\varphi(n, 2 L, 4 L-c)$ if $c \geq 4 L \cos (3 \pi /(4 n))$ and n is odd.

The extremal functions for (i), (ii), (iv) are univalent.
Proof. Consider $w(x)=\sin (n x) / \sin x$ for $0 \leq x \leq \pi, n \geq 5$, and put $p(t) \equiv$ w(arcens t). Since $p(t)=2^{n-1}\left[\prod_{j=1}^{n-1}(t-\cos (j \pi / n))\right.$ for $-1 \leq t \leq 1$, we obtain that \boldsymbol{w} strictly dectoases on $\left[0, x_{0}\right]$ and strictly increases on $\left[x_{0}, 2 \pi / n\right]$, where x_{0} is the unique
solution of the equation : $w^{\prime}(x)=0,5 \pi /(4 n)<x<3 \pi /(2 n)$. To this end observe that $u^{\prime}(5 \pi /(4 n))<0$ and $u^{\prime}(3 \pi /(2 n))>0$. Moreover, $u(\pi-x) \equiv(-1)^{n-1} w(x)$ and

$$
u(x) \leq \begin{cases}1 / \sin (5 \pi /(4 n)) & \text { if } 5 \pi /(4 n) \leq x \leq \pi-5 \pi /(4 n) \\ w(3 \pi /(4 n)) & \text { if } 3 \pi /(4 n) \leq x \leq 5 \pi /(4 n) \\ & \text { or } \pi-5 \pi /(4 n) \leq x \leq \pi-3 \pi /(4 n)\end{cases}
$$

Thus $w(x) \leq w(3 \pi /(4 n))$ for $3 \pi /(4 n) \leq x \leq \pi-3 \pi /(4 n)$. But Theorem 2.3(ii) implies that $\max a_{n}(\mathcal{T}(L, c))=2 L \int_{A} \sin (n x) d x$, where $A=\{x \in[0, \pi]: w(x) \geq \lambda\}$ and $2 L \int_{A} \sin x d x=c$, and sometimes A looks very simply.

If n is even and $w(3 \pi /(4 n)) \leq w(\alpha)$, then $A=[0, \alpha], c=4 L \sin ^{2}(\alpha / 2) \leq$ $4 L \sin ^{2}(3 \pi /(8 n))$ and $2 L \int_{A} \sin (n x) d x=\varphi(n, L, c)$.

If now n is odd and $w(3 \pi /(4 n)) \leq \lambda \leq n$, then $w^{-1}(\lambda)=\{\alpha, \pi-\alpha\}$ with $0<\alpha \leq 3 \pi /(4 n), A=[0, \alpha] \cup[\pi-\alpha, \pi], c=8 L \sin ^{2}(\alpha / 2) \leq 8 L \sin ^{2}(3 \pi /(8 n))$ and $2 L \int_{A} \sin (n x) d x=\varphi(n, 2 L, c)$.

This is what the theorem asserts. Since $f \in \mathcal{T}(L, c)$ iff $\{z \mapsto-f(-z)\} \subset \mathcal{T}(L, c)$, and by Remarks 2.5(iii), the proof is complete. In the cases (i), (ii), (iv) all the extremal functions are close-to-convex. For (iii) all of them are not locally univalent.

Remark 3.6.. Applying 2.3(ii) we obtain easily the sharp bounds for the initial coefficients in the class $\mathcal{T}(L, c): \max \left\{\left|a_{2}(f)\right|: f \in \mathcal{T}(L, c)\right\}=c(4 L-c) /(2 L)$, $\min a_{3}(\mathcal{T}(L, c))=c\left(c^{2} /\left(12 L^{2}\right)-1, \max a_{3}(\mathcal{T}(L, c))=c(6 L-c)^{2} /\left(12 L^{2}\right)\right.$ and $\max \left\{\left|a_{4}(f)\right|: f \in \mathcal{T}(L, c)\right\}=\left\{\begin{array}{l}c(4 L-c)(c-2 L)^{2} /\left(4 L^{3}\right) \text { if } c \geq 0 \text { and }|c-2 L| \geq 2 L \sqrt{6} / 3, \\ c(4 L-c) /(2 L)+(c-2 L)^{4} /\left(32 L^{3}\right) \text { if }|c-2 L| \leq 2 L \sqrt{6} / 3,\end{array}\right.$
see [12] for another proof. Now we find a global bound for the even coefficients in the class $\mathcal{T}(L, c)$.

Theorem 3.7. $\max \left\{\left|a_{2 n}(f)\right|: f \in \mathcal{T}(L, c)\right\} \leq \sqrt{c(4 L-c)} \leq 2 L$, cf. Th. 3.1(ii), and strict inequality holds for $0<c<2 L$ and $2 L<c<4 L$.

Before passing to the proof, let us verify the following
Lemma 3.8. Assume that $0<\lambda \leq 1, E=\{x \in[0, \pi]: \sin 2 n x \geq 0\}$ and let $S=\sup \left\{|A|: A \in \mathcal{B}, A \subset E, \int_{A} \sin x d x=\lambda\right\}$. Then $S=\arccos (1-\lambda)$.

Proof. Take any $A \in \mathcal{B}, A \subset E$. Then $A_{1} \stackrel{d f}{=} A \cap[0, \pi / 2] \cup h(A \cap[\pi / 2, \pi]) \in$ $\mathcal{B}, A_{1} \subset[0, \pi / 2],\left|A_{1}\right|=|A \cap[0, \pi / 2]|+|h(A \cap[\pi / 2, \pi])|=|A \cap[0, \pi / 2]|+\mid A \cap$ $[\pi / 2, \pi]\left|=|A|\right.$ and $\int_{A_{1}} \sin x d x=\int_{A} \sin x d x$. Thus $S=\sup \{|A|: A \in \mathcal{B}, A \subset$ $\left.[0, \pi / 2], \int_{A} \sin x d x=\lambda\right\}$. Next apply the argument used in the proof of Theorem 3.3.

Proof of theorem 3.7. Because of 2.5 (iii) it is sufficient to consider the case $0<c \leq 2 L$. By 2.3 (iii) there is $B \in B$ with $2 L \int_{B} \sin x d x=c$ such that $\max a_{2 n}(\mathcal{T}(L, c))=2 L \int_{B} \sin 2 n x d x$. Since $2 L \int_{E} \sin x d x=2 L=2 L \int_{0}^{\pi / 2} \sin x d x \geq$
 21 limbui $\sin 2 \mu x d x \geq 2 L \int_{A \cap E} \sin 2\|x d x \geq \max \|_{2 n}(T(L, C))$, that is $|C|=$ $|B \backslash E|=0$. Hence and by 2.3 (iii) we ohtain that max $\pi_{2 n}(\mathcal{T}(L, c))=$ max $\left\{2 L \int_{A} \sin 2 n x d x: A \in \mathcal{B}, A \subset E, 2 L \int_{A} \sin x d x=1\right\}$. Finally, it is less than or '(fual to sup $\left\{2 L \int_{A} \sin 2 n x d x: A \in \mathcal{B}, A \subset E,|A| \leq S\right\}=2 n L \int_{(\pi-2 S) /(4 n)}^{(\pi+2 S) /(4 n)} \sin 2 n x d x=$ $? L$ in $S=2 L \sqrt{\lambda(2-\lambda)}$, see Lemmana 3.8 with $\lambda=c /(2 L)$. Also. $\min a_{2 n}(\mathcal{T}(L, c))=$ $-\operatorname{sncsi}\left(t_{2 n}(T(L, c)) \geq-\sqrt{c(4 \bar{L}-c)}\right.$, and the proof is complete.
A. Bonnded functions. Let us consider the following classes

$$
\begin{aligned}
& \mathcal{T}_{L}=\{f \in \mathcal{T}:|f(z)| \leq L \text { for } z \in \Delta\}, \\
& \mathcal{T}_{\text {l. }}(c)=\left\{f \in \mathcal{T}_{L}: f^{\prime}(0)=c\right\}, \text { where } 0 \leq c \leq L \\
& R=\left\{f \in \mathcal{P}_{R}: f(0)=1, \operatorname{Irn} f(z) \operatorname{Im} z \geq 0 \text { for } z \in \Delta\right\},
\end{aligned}
$$

and ha P_{y} denote the set of all probability measures on X. Clearly,
(4.1) $f \in I ;$ if mal only if $(1 / 2) \log ((L+f) /(L-f)) \in \mathcal{T}(1 / 4)$,
(42) $\quad f \in T_{1}(c)$ if and only if $(1 / 2) \log ((L+f) /(L-f)) \in \mathcal{T}(1 / 4, c / L)$, and

$$
\begin{equation*}
f \in \mathcal{R} \text { if and only if }(1 / 2) \log f \in \mathcal{T}(1 / 4) . \tag{4.3}
\end{equation*}
$$

In [12], as the hasic result, it was established that the both classes $\left\{f^{2}: f \in \mathcal{R}\right\}$ and $\left\{f / k: f \in \mathcal{T}, f^{\prime}(0)=1\right\}$, where $k(z) \equiv z /(1+z)^{2}$, are identical. In particular, putting $Q(z, f) \equiv(1+z)^{2} /\left(1-2 t z+z^{2}\right)$ we have
$\mathcal{T}(L)=\left\{L \log \int_{-1}^{1} Q(\cdot, t) d \nu(t): \nu \in P_{[-1,1]}\right\}$ and $\mathcal{T}_{L}=\{L(f-1) /(f+1): f \in \mathcal{R}\}$.
Also, in [12] it has been proved that.

$$
\left\{f^{2}: f \in \mathcal{R}, f^{\prime}(0)=2 \tau\right\}=\left\{\int_{A(r)} \frac{Q(\cdot, x) Q(\cdot, y)}{Q(\cdot, x+y+1-2 \tau)} d \nu(x, y): \nu \in P_{A(r)}\right\}
$$

where $A(\tau)$ is the rectangle $\left\{(x, y) \in R^{2}:-1 \leq x \leq 2 \tau-1 \leq y \leq 1\right\}, 0 \leq \tau \leq 1$. Thus

$$
\mathcal{T}(L, c)=\left\{L \log f^{2}: f \in \mathcal{R}, f^{\prime}(0)=c /(2 L)\right\} \quad, \quad 0 \leq c \leq 4 L .
$$

and

$$
\mathcal{T}_{L}(c)=\left\{L(f-1) /(f+1): f \in \mathcal{R}, f^{\prime}(0)=2 c / L\right\} \quad, \quad 0 \leq c \leq L
$$

By Remark 2.5(iii) we have another interesting property :

$$
f \in \mathcal{T}_{L}(c) \text { if and only if } L(L z-f) /(L-z f) \in \mathcal{T}_{l}(L-c)
$$

Applications given in [12] concern mainly the variablity regions of the initial four con-Hicients in the mentioned classes. By means of the method described in Theorems 2.32 .4 we (an find easily the sharp) estimations for the initial five coefficients of bomuded igpically real functions.

Theorem 4.1. Let $f \in \mathcal{T}_{1}(c)$. Then we have
(i) $\left|a_{2}(f)\right| \leq 2 c(1-c)$,
(ii) $\left|a_{3}(f)-c(1-c)^{2}\right| \leq 2 c(1-c)$,
(iii) $\left|a_{4}(f)\right| \leq 2 c(1-c)\left(2-8 c+7 c^{2}\right)$ if $0 \leq c \leq 1 / 11$,
(iv) $\left|a_{4}(f)\right| \leq(1-c)(1+3 c)\left(1+6 c-3 c^{2}\right) / 8$ if $1 / 11 \leq c \leq 1$,
see [12],
(v) $a_{5}(f) \leq w(c) \equiv c(1-c)\left(5-15 c+10 c^{2}-2 c^{3}\right)$ if $0 \leq c \leq(4-\sqrt{13}) / 3$,
(vi) $a_{5}(f) \leq w(c)+(1-c)\left(1-8 c+3 c^{2}\right)^{2} / 4$ if $(4-\sqrt{13}) / 3 \leq c \leq 1$,
and
(vii) $a_{5}(f) \geq-c\left(1-c^{2}\right)\left(5-c^{2}\right) / 4$.

Proof. Let $g=(1 / 2) \log ((1+f) /(1-f))$ and $f \in T_{1}(c)$. By (4.2) we obtain that $g \in \mathcal{T}(1 / 4, c), a_{2}(f)=a_{2}(g), a_{3}(f)=a_{3}(g)-c^{3} / 3, a_{4}(f)=a_{4}(g)-c^{2} a_{2}(g)$ and $a_{5}(f)=a_{5}(g)-c^{2} a_{3}(g)-c a_{2}^{2}(g)+2 c^{5} / 15$. Because of [12] we shall show only (v), (vi) and (vii). Since $\widetilde{\mathcal{T}}(1 / 4, c)=\widetilde{\mathcal{T}} \cap \mathcal{T}(1 / 4, c)$, we can assume that

$$
g \in \tilde{T}(1 / 4, c) \text { and } a_{5}(f)=a_{5}(g)-c^{2} a_{3}(g)+2 c^{5} / 15
$$

In view of Theorem 2.4 we have
$\max (\min) a_{5}\left(\mathcal{T}_{1}(c)\right)=\int_{A}\left(\sin 5 x-c^{2} \sin 3 x+\left(2 c^{5} / 15\right) \sin x\right) d x$, where $\int_{A} \sin x d x=$ c and $A=\left\{x \in[0, \pi / 2]:\left(\sin 5 x-c^{2} \sin 3 x\right) / \sin x \geq \lambda(\leq \lambda)\right\}$. Notice that $\left(\sin 5 x-c^{2} \sin 3 x\right) / \sin x \equiv w(\cos x)$, where $w(t) \equiv 16 t^{4}-4\left(3+c^{2}\right) t^{2}+1+c^{2}$, and that $\max (\min) a_{5}\left(\mathcal{T}_{1}(c)\right)=\int_{B} w(t) d t$, where $B=\{t \in[0,1]: w(t) \geq \lambda(\leq \lambda)$ and $|B|=c$.

Since w strictly decreases on $\left[0, \sqrt{\left(3+c^{2}\right) / 8}\right]$ and strictly increases on
$\left[\sqrt{\left(3+c^{2}\right) / 8}, 1\right]$, and because of $w\left(\sqrt{3+c^{2}} / 2\right)=w(0)$, we have
$1^{\circ} \max a_{5}\left(\mathcal{T}_{1}(c)\right)=\int_{1-c}^{1} w(t) d t+2 c^{5} / 15$ if $1-c \geq \sqrt{3+c^{2}} / 2$,
$2^{\circ} \max a_{5}\left(\mathcal{T}_{1}(c)\right)=\int_{6}^{t_{1}} w(t) d t+\int_{t_{2}}^{1} w(t) d t+2 c^{5} / 15$ if $(4-\sqrt{13}) / 5 \leq c \leq 1$; where $0 \leq t_{1}<t_{2}, t_{1}+\left(1-t_{2}\right)=c$ and $w\left(t_{1}\right)=w\left(t_{2}\right)$,
$3^{\circ} \min a_{5}\left(\mathcal{T}_{1}(c)\right)=\int_{t_{1}}^{t_{2}} w(t) d t+2 c^{5} / 15$, where $0 \leq t_{1}<t_{2}, t_{2}-t_{1}=c$ and $w\left(t_{1}\right)=w\left(t_{2}\right)$ (observe that $\sqrt{3+c^{2}} / 2 \geq c$ for $0 \leq c \leq 1$).

Corollaries 4.2.

(i) $\left.\max \left\{\mid a_{2} f\right) \mid: f \in \mathcal{T}_{1}\right\}=1 / 2$,
(ii) $\min a_{3}\left(\mathcal{T}_{1}\right)=\min a_{3}\left(\mathcal{T}_{1}(1 / \sqrt{3})\right)=-2 \sqrt{3} / 9$,
(iii) $\max a_{3}\left(\mathcal{T}_{1}\right)=\max a_{3}\left(\mathcal{T}_{1}((4-\sqrt{7}) / 3)\right)=(14 \sqrt{7}-20) / 27$,
(iv) $\max \left\{\left|a_{4}(f)\right|: f \in \mathcal{T}_{1}\right\}=\max \left\{\left|a_{4}(f)\right|: f \in \mathcal{T}_{1}\left(c_{0}\right)\right\}=0.508 \ldots$, where $c_{0}=$ $0.515 \ldots$ is the only zero of the polynomial $c \mapsto 2+3 c-18 c^{2}+9 c^{3}$ in $[0,1]$, see [12],
(v) $\min a_{5}\left(\mathcal{T}_{1}\right)=\min a_{5}\left(\mathcal{T}_{1}(\sqrt{7 / 5}-\sqrt{2 / 5})\right)=(14 \sqrt{35}-44 \sqrt{10}) / 125$, and
(vi) $\max a_{5}\left(\mathcal{T}_{1}\right)=\max a_{5}\left(\mathcal{T}_{1}\left(c_{1}\right)\right)=0.571 \ldots$, where $c_{1}=0.4819 \ldots$ is the only zero of the polynomial $c \mapsto 3+12 c-54 c^{2}+36 c^{3}-5 c^{4}$ in $[0,1]$.

Remarks 4.3.

(i) Each extremal function f in 4.1, 4.2 satisfies the equation :

$$
\begin{equation*}
\log ((1+f) /(1-f))=\int_{B} q(\cdot, t) d t \tag{4.4}
\end{equation*}
$$

where the set B is one of the following: $[1-2 c, 1],[-1,-1+2 c],[-1,-1+c] \cup[1-c, 1]$, $[-c, c],\left[t_{1}, c-1 / 2\right] \cup\left[t_{2}, 1\right],\left[-1,-t_{2}\right] \cup\left[1 / 2-c,-t_{1}\right],\left[-1,-\tau_{2}\right] \cup\left[-\tau_{1}, \tau_{1}\right] \cup\left[\tau_{2}, 1\right]$ and $\left[-s_{2},-s_{1}\right] \cup\left[s_{1}, s_{2}\right]$ with

$$
\begin{aligned}
t_{1}+t_{2}=1 / 2-c, t_{1} t_{2} & =\left(-1-4 c+3 c^{2}\right) / 4, t_{1}<t_{2}, \tau_{2}-\tau_{1}=1-c \\
\tau_{1} \tau_{2} & =\left(-1+8 c-3 c^{2}\right) / 8, s_{2}-s_{1}=c, s_{1} s_{2}=3\left(1-c^{2}\right) / 8
\end{aligned}
$$

(ii) The function f satisfying (4.4) is univalent if and only if B is a subinterval of $[-1,1]$ (up to a set of measure zero).
5. Functions having a given part of their Taylor's expansions. As an application of Theorem 2.7(ii) we obtain

Theorem $5.1[6,7]$. For any positive integer n and $f \in \mathcal{T}$ we have

$$
\begin{equation*}
\left|a_{2 n}(f)\right| \leq \sum_{j=1}^{\infty} b_{j} a_{2 j-1}(f) \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2 n+2}(f)-a_{2 n}(f)\right| \leq \sum_{j=0}^{\infty} c_{j}\left(a_{2 j(2 n+1)+1}(f)-a_{2 j(2 n+1)-1}(f)\right) \tag{5.2}
\end{equation*}
$$

where $b_{j}=8 \pi^{-1} n\left(4 n^{2}-(2 j-1)^{2}\right)^{-1} \cot ((2 j-1) \pi /(4 n))$,
$c_{j}=4 \pi^{-1}(-1)^{j+1}\left(4 j^{2}-1\right)^{-1}$ and $a_{-1}(f)=0$.
These inequalities are sharp in any class $\mathcal{T}[g]$, i.e. for each $g \in \mathcal{T}$ there is $f \in \mathcal{T}$ uith equality in (5.1) or in (5.2) such that $f(z)-f(-z) \equiv g(z)-g(-z)$.

Let us add that the proof needs the following Fourier's expansions:

$$
|\sin 2 n t|=\sum_{j=1}^{\infty} b j \sin (2 j-1) t \text { for } 0 \leq t \leq \pi
$$

and

$$
|\cos (2 n+1) t|=c_{0} / 2+\sum_{j=1}^{\infty} c_{j} \cos 2(2 n+1) j t \text { for } t \in R .
$$

Theorem 5.2 [7]. For $f \in \mathcal{T}$ we have

$$
\begin{align*}
& \sum_{j=0}^{\infty}\left(a_{j+2}(f)+a_{j}(f)\right)^{2} \leq 2 \sum_{j=1}^{\infty}\left(a_{2 j+1}(f)+a_{2 j-1}(f)\right)^{2} \tag{5.3}\\
& \sum_{j=0}^{\infty}\left(a_{j+2}(f)-a_{j}(f)\right)^{2} \leq 2 \sum_{j=0}^{\infty}\left(a_{2 j+1}(f)-a_{2 j-1}(f)\right)^{2}, \quad a_{-1}(f)=0 \tag{5.4}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{\infty} a_{j}^{2}(f) \leq 2 \sum_{j=1}^{\infty} a_{2 j-1}^{2}(f) \tag{5.5}
\end{equation*}
$$

These estimations are sharp in any class $\mathcal{T}[g]$, see the previous theorem. Moreover, if $f \in \mathcal{T} \cap H^{2}$, then each one of equalities holding in (5.3)-(5.5) is equivalent to the following condition : $f \in \mathcal{E} \mathcal{T}[\tilde{f}]$.

Let us add that the following facts were used in the proof :

$$
\operatorname{Im}^{2}(f(z)+f(-z)) \leq \operatorname{Im}^{2}(f(z)-f(-z)) \text { for } f \in \mathcal{T}, z \in \Delta
$$

if $g \in \mathcal{T} \cap H^{2}$, then $f \in \mathcal{E} \mathcal{T}[g]$ if and only if $f \in \mathcal{T}[g]$ and $\operatorname{Im} f(\zeta) \operatorname{lm} f(-\zeta)=0$ a.e. on $\partial \Delta$.

Corollary 5.3. Let $f(z) \equiv z+\sum_{j=1}^{\infty} a_{2 j} z^{2 j}$ be univalent in Δ and real on the real segment $(-1,1)$. Then

$$
\left|a_{2}\right| \leq 8 /(3 \pi)
$$

with equality only for the univalent functions : $\widehat{f}, z \mapsto-\widehat{f}(-z)$, where
$\widehat{f}(z)=z+2 \pi^{-1}-\pi^{-1}\left(i z+(i z)^{-1}\right) \log ((1+i z) /(1-i z))=z-(8 / \pi) \sum_{j=1}^{\infty} \frac{(-1)^{j} j}{4 j^{2}-1} z^{2 j}$.
Moreover,

$$
a_{2}^{2}+\sum_{j=1}^{\infty}\left(a_{2 j+2}+a_{2 j}\right)^{2} \leq 1, \quad a_{2}^{2}+\sum_{j=1}^{\infty}\left(a_{2 j+2}-a_{2 j}\right)^{2} \leq 3, \quad \sum_{j=1}^{\infty} a_{2 j}^{2} \leq 1
$$

with equality for \widehat{f} and $z \mapsto-\widehat{f}(-z)$.
Proof. By (5.1) we have $\left|a_{2}(f)\right| \leq 8 /(3 \pi)$ for all $f \in \mathcal{T}[g]$, where $g(z) \equiv z$. Consider the set $\mathcal{A}=\left\{f \in \mathcal{T}[g]: a_{2}(f)=8 /(3 \pi)\right\}$. Since $d \nu_{g}=(2 / \pi) \sin ^{2} x d x$, then by Theorem 2.7 (ii) or by Theorem 2.9 we obtain that $\mathcal{A}=\left\{f_{\nu}\right\}$, where $\nu=2\left(\nu_{g}\right)_{[0, \pi / 2]}$. Thus it is enough to show that the function $f_{\nu}=\widehat{f}$ is univalent in Δ. Integration by parts leads to the identity $z \hat{f}^{\prime}(z) \equiv f_{1}(z) f_{2}(z)$, where $f_{1}(z) \equiv z /\left(1+z^{2}\right), f_{2}(z) \equiv$ $(4 / \pi) \int_{0}^{\pi / 2}\left(1-z^{2}\right)\left(1-2 z \cos t+z^{2}\right)^{-1} \cos ^{2} t d t$. Because f_{1} is univalent starlike in Δ and $f_{2} \in \mathcal{P}_{R}$, we get that f is close-to-convex and so f is univalent.

REFERENCES

[1.] Brickman, L. , Mac(iregor, T.IH., Wilken, I). R. Conver hulls of some classical famalics of univalent functions, Trans. Amer. Math. Soc. 156 (1971), 91-107.
[2.] Duren, P. I.. , Theory of H^{P} Spaces, Academic Press, New York 1970.
[3.] Duren, P.L. , Univalent Functions, Springer Verlag, New York 1983.
[4.] Goodnan, A.W. , Univalent Functions, vol. 1-II, Mariner Pub. Co., Tampa, Florida 1983.
[5.] Hallenbeck, D.J. , MacGregor, T. H. , Linear Problems and Convexity Techniques in Geometric Function Theory, Pitman Pub. Inc., Boston-Melbourne 1984.
[6.] Koczan, L. , Szapiel, W., Sur certaines sous-classes de fonctions typiquement réelles, Bull. Acad. Polon. Sci., Sér. Sci. Math. 22 (1974), 115-120.
[7.] Koczan, L., Szapiel, W., Sur certaines classes de fonctions holomorphes définies par une intégrale de Stjeltjes, Ann. Univ. Mariae Curie-Sklodowska Sect. A. 28 (1971), 39-51.
[8.] Koczan, L. ,Szapiel, W. , Extremal Problems in Some Classen of Measures (I), Complex Variables 1 (1983), 347-374.
[9.] Koczan, L. , Szapiel, W. , Extremal Problems in Some Classes of Measures (II), Complex Variables 1 (1983), 375-387.
[10.] Koczan, L. Szapiel, W. Extremal Problems in Some Classes of Measures (III). Functions of Positive Real Parl., in this volume, 31-53
[11.] Schober, G. , Univalent Functions - Selected Topics, Springer Verlag, Berlin 1975.
[12.] Szapiel, M. , Szapiel, W. Extreme Points of Convex Sets (IV). Bounded Typically Real Functions, Bull. Acad. Polon. Sci., Sér. Sci. Math. 30 (1982), 49-57.

STRESZCZENIE

Praca jest zakończeniem cyklu [8-10] i dotyczy zwartych wypuklych klas funkcji typowo rzeczywistych, których wartości leżą w zadanym pasie poziomym, lub których wszystkie nieparzyste wspólczynniki sa ustalone. Podobnie jak w [10] punkty ekstremalne i podpierajace inoga tworzyć geste podzbiory, wiẹc każdy ciagly problem ekstremalny nad taką klasę redukuje siẹ do problemu nad jej ekstremalnymi (podpierającymi) punktami. Niektóre zastosowania dotyczaz klasy wszystkich funkcji typowo rzeczywistych ograniczonych przez wspólną stala.

