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Abstract. This paper deals with a simple method which enables us to determine the largest
disks on that every function from a given class is univalent, starlike or its turning is bounded.

1. Introduction. Let H be the class of all complex functions holomorphic on
the open unit disk A. For brevity we use the notation: A, = {z: |z] < r}, A =A,,
Ho={feH:f(0)=f(0)-1=0}, H ={f€H: f(z)/]z#0forall z€ A} and
L(A) = {log(f/z) : f € A} whenever A C H;. In the last-defined set take log1 = 0.
The convex hull of A and the closed convex hull of A we denote by conv A and €6nv A,
respectively.

Let us consider any A C Ho. In this paper we shall derive a simple method
which enables us in many cases to determine the largest disks A, C A on that every
function from A is univalent, starlike or its turning is bounded.

Strictly speaking, for classes A C Hy that satisfy some geometric properties the
following quantities will be examined:

r4 = sup{r € (0,1) : each f € A is univalent on A,},
i.e. the radius of univalence,
r% =sup{r € (0,1): Re [zf'/f] > O on A, for all f € A},
i.e. the radius of starlikeness and
r'y =sup{r € (0,1): Re f' >0o0n A, for all f€ A},
i.e. the radius of bounded turning.

The class A is said to be
(i) convex if (1 —t)f 4+ tg € A whenever f,g€ Aand 0 <t <1,

(i) conjugate invariant if for any f € A the function z — f(7) belongs to A,
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(i11) rotation invariant if for all f € A and |n| = 1 the functions z — 77 f(1z) are in A.

The general results contained in Theoremns 1-2 and Corollaries 1 2 concern just
such classes and are useful in applications to the classes (2) (6) or to their closed
convex hulls.

2. Basic results.

Theorem 1. If A C H, is nonempty conver and rotation invariant, then

(1) ra =sup{re (0,1): f'(r) #0 for all f € A}.

In the proof we use

Lemma . Suppose that A C Hy 1s nonempty, convez and rotation invariant.
Then for each ( € A there is f € A such that f'(¢) = 1. If moreover A is compact,
then A contains the sdentity mapping.

Proof. Take any fo € A and fix ( € A. By the assumption the functions
z— ffo(nz), In] =1, are in 4 and

In
1= (27)" j: fa(e¢) dt € @rv{f3(n¢) : Inl = 1)
= conv{ f3(n¢) : Inl = 1}

by the Minkowski theorem, see [1]. Thus there is a function z — 8,5, fo(yz) +--- +
i fo(nkz), t; 20, |nj|=1, t; +---+t& =1, having the desired property. We let
add that in the function we can put k = 2, see 1], p.35.

If A is compact, then the function

2w

2z (27)7! / e M fo(e''z)dt = 2
0

belongs to €onv{z — 7 fo(nz): || =1} C A.

Remark. The first part of Lemma follows also from the following facts. Namely,
if fo € A, ¢ € A and r = |(|, then f}(3A,) C {f'(¢) : f € A} and the last set is
convex. By the maximum principle

1= £3(0) € fo(Ar) C{f'(Q): f € A}.

Proof of Theorem 1. Denote the supremum in (1) by p. Obviously p > r4.
If p=0, then rqy = 0 = p. Assuming that p > 0 fix an arbitrary point ( € A
and consider the functional f — ®¢(f) = f'(¢). Observe first that ®(A4) is convex,
Pc(A) = @1¢)(A) and 0 ¢ ®¢(A). It follows by Lemma that 1 € ®¢(A) so there exists
t =¢(|¢]) € (—=7/2,7/2) such that Re [e *'®,(f)] > 0 for all f € 4 and |z| = |(|. By
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the maximum principle Re [e™* f'(z)] > 0 for all f € A and |z| < |¢| which means
that each f € A4 is univalent on A,¢). Since ¢ was chosen arbitrarily, p < r4. The
theorem is proved.

There is a nice corollary to the proof. Namely, if we assume additionally that A
is conjugate invariant, then for any ( € A, the set $.(A) is symmetric with respect
to the real axis, i.c. there is t(|(]) = 0 and we have

Corollary 1. If A C Hy is convez, rotation and conjugate invariant, then
r's = ra, where r4 15 determined in (1) or, more precisely,

ra =sup{r € (0,1): Re f'(r) > 0 for all f € A}.

A similar result is contained in

Theorem 2. Let A C H; be nonempty and rotation snvariant. If L(A) is
convez, then (1) holds.

Proof. Following the previous proof denote the right side of (1) by p. Clearly
p 2 r4. Assuming that p > 0 take ( € A, and consider the functionals
f = ®(f) = f1(€), g+ ¥¢lg) = (d'(¢) + 1. Observe first that ¥¢(L(A)) is
convex, 0 ¢ B(4) = ®(A) and ¥c(g) = (F'(¢)/f(() for g(z) = loglf(2)/2]. Hence
0¢ ¥ (L(A)) = ¥|¢(L(A)) and a similar argument used in the proof of Lemma shows
that there is a function g € L(A) for that ¢'(¢) = 0. Therefore 1 € ¥¢(L(A)) and
there is t = t(|(|) € (—7/2,7/2) such that Re [e~**zf'(z)/f(z)] > 0 for all f € A and
|z| = |¢|. By the maximum principle each f € A is t-spirallike on A¢ and, since this
is true for all || < p, we obtain p < ra. The proof is complete.

If moreover in Theorem 2 we assume that A is conjugate invariant, then for each
¢ € A the set ¥ (L(A)) is symmetric with respect to the real axis, i.e. there is
t(|¢]) = 0 and Theorem 2 has the following

Corollary 2. Suppose that A C H) is rotation and conjugate invariant. If L(A)
is convez, then r% =r,, where r4 is determined in (1).

3. Applications. For0<a <1llet P, ={p€ H:Rep > aon A, p(0) =1}
and P = Py. We shall solve some radius problems for the following classes or for their
closed convex hulls:

(2) A(a,\) = {zp*:p€ Py}, 0<a<l, LeR,

(3) B(M)={f€eH, :|f|[<MondA}, M>1,

(4) S* = {f € Ho : Re(zf'/f) > 0on A},

(5) K(B) = {f € Hy : Re[e"’2f'/g] > 0 on A for some g € S*} ,

-m/2<PB<x/2,
(6) S = {f € Ho : f is univalent on A} .
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As a first application we get

Theorem 3.
()) I"A(n',\) =TA(a,)) if -1 LR
(1) r:‘(oll\) =T A(a.\) if 0<a<1 VeR,
(ii1) 7 4(a,r) 13 the unique positive solution r of the equation 2a—1+2(1—a)d(A,r) =0,
where d(A,r) = min{Re[(1 — A)/(1 —z) + A/(1 — 2)?] : |z| = r}.

Proof. (i). All the classes A(a,A) with 0 < a <1, —1 < XA < 1 are compact
convex. Indeed, fix 0 < a < 1, =1 < XA < 1, and consider the function h(z) =
={[1+(1-2a)z]/(1—2)}” that is holomorphic and univalent on A. Since zh'/h'(0) €
S*, the set h(A) is convex and we have the identity

A(a,A) = {f € H(A): f/z < hon A}

which means the convexity of A(a, ). Furthermore, A(a, }) is conjugate and rotation
invariant so we may use Corollary 1.

(i1). Fix 0 < a < 1, A € R and consider the function ¢ = logh, where h has
been defined in the proof of (i). The function g is univalent on A and the set g(A) is
convex since zg'/¢'(0) € S*. Thus

L(A(a, X)) = {f € H(A): f <gon A},

whence the convexity of L(4(a, \)) follows. By Corollary 2 we get the desired con-
clusion.

(ii). For all 0 < a < 1, A € R the class A(a,)) satisfies the hypotheses of
Corollary 2. Therefore r4(q,0) = sup{r € (0,1) : f'(r) # 0 for all f € A(a,))} =
=sup{r € (0,1) : p(r) + Arp'(r) # O for all p € P,} = sup{r € (0,1) : Re [p(r) +
+Arp'(r)] > 0 for all p € P,}. Since the set of all extreme points of the class P,
consists of the following functions z +— (1 + (1 — 2a)(z)/(1 — ¢z), |¢| = 1, we have
hence

TA(an) =sup{r € (0,1): 2a — 1+ 2(1 — @) d(\,r) > 0}.

Corollary 3.

l' V2(1-a)/(1-2a)—-1 for 0 < a < 1/10,
1"' = 7‘" =TA(a =
Ala) = AlD THAEOD T afle + Va—a?)  for1/10Sa<],

see [2], v.II, pp.96, 98,

(i)

(i1) a0 = Tan = VAT +1—|A|,

see the case A = 1in (2], v.I, p.129 (19) and v.II, p.98,

VI+2VA =21+ VX) if0< <4,

(iii) A2 =T -
A(1/2,)) A(1/2.2) { /(A= 1) if A >4,
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(iv) MA@ =A@ =(A=1+a+/(1-2)? +2a))/a
for 0 < & < 1, A €0, where a = (1 — 2a)/(1 - a).
Proof. A quite elementary calculation shows us that

d(A,r)(1 - r*)? = min{Re[(1 — A)(1 = r)w + Aw?]: jw — 1| =r}
=min{2Ar? +r{l -2 $ M1+ )t +1-r2:-1<t <1},

whence it follows
1° d(A,r) =[—(1=A)r! +2(1 - 42— A2 — A2 4 6 —1]/[8A(1 = r?)?] if A > 0 and
(A+1)/(2X + V3N +1)<r< 1,
2° d(Ar)=[14+(1=A)r}/(1+r)ifA>0and0<r < (A+1)/(2A+V3X7 ¥ 1) or
else if A <0 and r? < (1+ X)/(1-)),
3° dA\r)=[1-(1-Mr)/Q-r)ifA<0and(1+A2)/(1=-A)<r2 <1
The next step is to examine the equation stated in Theorem 3(iii) for suitable
values of @ and A.

For bounded functions with the only zero at the origin we have the following
Noshiro result.

Theorem 4.

rBM) =TB(M) =1 +logM — V(2 + logM)log M,
see (2], v.1I, pp.95, 107.

Proof. Since L(B(M)) = logM — (log M)P, the class B(M) satisfies the as-
sumptions of Corollary 2. Thus

rBiM) = TB(M) = sup{r € (0,1): 1= rp'(r)log M # 0 for all p € P}
= sup{r € (0,1) : Re[l — rp'(r) log M] > 0 for all p € P}.

Restricting our linear extremal problem to the extreme points of P we get
r‘;,(M) = rgm) = max{r € (0,1): Re[2z/(1 - 2)?] < 1/log M for |z| = r},
i.e. Tg(p) satisfies the equation
2r/(1 —r)? =1/log M.
This completes the proof.
The authors of [3] determined the radius of univalence for the class nv S* and

proved that the same number is the radius of starlikeness. We shall find the radius of
univalence in a different manner. Namely we have
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Theorem 5. 1l . = regip g« = p, where p = 0.403. .. 13 the unique positive
solution of the equation: p® + 5p" + 79p% — 13 = 0.

Proof. The class conv S* satisfies the assumptions of Corollary 1, so the racdius
of univalence and hounded turning is equal to sup{r € (0,1) : Re f'(r) > 0 for all
f € @onv S*} = sup{r € (0,1) : Re[(1 + 2)/(1 — 2)}] > O for |z| = r} because
the Kocbe functions compose the set of all extreme points for €&nv S*. Thus the
both radii are equal to max{r € (0,1) : p(r,t) > 0 for all —1 < t < 1}, where
p(r,t) =1 —6r2 44 4 (6r> — 2r)t + (6r% — 2r*)t?2 — 4r3#3. For 0 < r < (V33 — 5)/4
and —1 <t <1 we have p(r,t) > 0, since Op/dt is negative at t = —1, ¢ = 1, and
a, > 1, where 8*p(r,a,)/8t? = 0. If (VI3 -5)/4 < r < 1, then p(r,t) 2 p(r,t,),
where Op(r,t,)/0t = 0 with —1 < t, < 1. The desired equation follows from the
equation p(p,t,) = 0 after removing all the irrationalities.

Theorem 8. The radius rgps () 18 the least positive solution r of the equation

4r® 4+ 8r'cos28 + 52 -1 =0.

Proof. By Theorem 1 the considered radius is identical with sup{r € (0,1) :
fi(r) # 0 for f € Tnv K(B)} = max{r € (0,1) : |Im log[f'(z)/f'(¢)]| < = for all
f € K(B), |z| = |{| = r}. The connection between K(f) and the classes S* and P
gives

Teswv K(p) = max{r € (0,1) : 2arctan[2r cos 3/(1 - r?)] + 4arcsinr < 7}

= max{r € (0, 1) : arctan[2r cos 8/(1-r?)] < arctan[(1-2r?)/(2rV1-r?)]}
= max{r € (0,1) : 4r® + 8r* cos 28 + 5 — 1 < 0}.

Theorem 7. 1y s =Tamp s = V2 -V2/2=0382...

Proof. By Corollary 1 we get that the both radii are equal to sup{r € (0,1) :
Re f'(r) > 0 for all f € S} = max{r € (0,1) : |arg f'(r)| < /2 for all f € S} =
max{r € (0,1) : arcsinr < 7/8} = V/2 — v/2/2 because of the rotation theorem for
the class S (see e.g. [2], v.I, p.66).
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STRESZCZENIE

W pracy przedstawiono prosta metodq, ktora pozwala wyznaczyé najwigksze kola, na ktérych
kazda funkcja z danej klasy jest jednolistna, gwiazdzista lub jej obrit jest ograniczony.






