ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN - POLONIA

VOL. XLIII, 3 SECTIO A

1989

Politechnika Lubelska

L. KOCZAN

On Radii of Univalence, Starlikeness and **Bounded Turning**

O promieniach jednolistności, gwiaździstości i ograniczonego obrotu

Abstract. This paper deals with a simple method which enables us to determine the largest disks on that every function from a given class is univalent, starlike or its turning is bounded.

1. Introduction. Let H be the class of all complex functions holomorphic on the open unit disk Δ . For brevity we use the notation: $\Delta_r = \{z : |z| < r\}, \ \Delta = \Delta_1$, $H_0 = \{f \in H : f(0) = f'(0) - 1 = 0\}, H_1 = \{f \in H_0 : f(z)/z \neq 0 \text{ for all } z \in \Delta\}$ and $L(A) = \{\log(f/z) : f \in A\}$ whenever $A \subset H_1$. In the last-defined set take $\log 1 = 0$. The convex hull of A and the closed convex hull of A we denote by conv A and conv A, respectively.

Let us consider any $A \subset H_0$. In this paper we shall derive a simple method which enables us in many cases to determine the largest disks $\Delta_r \subset \Delta$ on that every function from A is univalent, starlike or its turning is bounded.

Strictly speaking, for classes $A \subset H_0$ that satisfy some geometric properties the following quantities will be examined:

 $r_A = \sup\{r \in (0,1) : \text{ each } f \in A \text{ is univalent on } \Delta_r\},\$

i.e. the radius of univalence,

 $r_A^* = \sup\{r \in (0,1) : \operatorname{Re}\left[zf'/f\right] > 0 \text{ on } \Delta_r \text{ for all } f \in A\},\$

i.e. the radius of starlikeness and

 $r'_{A} = \sup\{r \in (0,1): \operatorname{Re} f' > 0 \text{ on } \Delta_{r} \text{ for all } f \in A\},\$

i.e. the radius of bounded turning.

The class A is said to be

- (i) convex if $(1-t)f + tg \in A$ whenever $f, g \in A$ and $0 \le t \le 1$,
- (ii) conjugate invariant if for any $f \in A$ the function $z \mapsto \overline{f(\overline{z})}$ belongs to A,

(iii) rotation invariant if for all $f \in A$ and $|\eta| = 1$ the functions $z \mapsto \overline{\eta} f(\eta z)$ are in A.

The general results contained in Theorems 1-2 and Corollaries 1-2 concern just such classes and are useful in applications to the classes (2)–(6) or to their closed convex hulls.

2. Basic results.

Theorem 1. If $A \subset H_0$ is nonempty convex and rotation invariant, then

(1)
$$r_A = \sup\{r \in (0,1) : f'(r) \neq 0 \text{ for all } f \in A\}.$$

In the proof we use

Lemma. Suppose that $A \subset H_0$ is nonempty, convex and rotation invariant. Then for each $\zeta \in \Delta$ there is $f \in A$ such that $f'(\zeta) = 1$. If moreover A is compact, then A contains the identity mapping.

Proof. Take any $f_0 \in A$ and fix $\zeta \in \Delta$. By the assumption the functions $z \mapsto \overline{\eta} f_0(\eta z), |\eta| = 1$, are in A and

$$1 = (2\pi)^{-1} \int_0^{2\pi} f'_0(e^{it}\zeta) dt \in \overline{\operatorname{conv}} \{ f'_0(\eta\zeta) : |\eta| = 1 \}$$

= $\operatorname{conv} \{ f'_0(\eta\zeta) : |\eta| = 1 \}$

by the Minkowski theorem, see [1]. Thus there is a function $z \mapsto t_1 \overline{\eta}_1 f_0(\eta_1 z) + \cdots + t_k \overline{\eta}_k f_0(\eta_k z), t_j \ge 0, |\eta_j| = 1, t_1 + \cdots + t_k = 1$, having the desired property. We let add that in the function we can put k = 2, see [1], p.35.

If A is compact, then the function

with any property of the time

$$\mapsto (2\pi)^{-1} \int_0^{2\pi} e^{-it} f_0(e^{it}z) dt = z$$

belongs to $\overline{\operatorname{conv}}\{z \mapsto \overline{\eta} f_0(\eta z) : |\eta| = 1\} \subset A.$

Remark. The first part of Lemma follows also from the following facts. Namely, if $f_0 \in A$, $\zeta \in \Delta$ and $r = |\zeta|$, then $f'_0(\partial \Delta_r) \subset \{f'(\zeta) : f \in A\}$ and the last set is convex. By the maximum principle

$$1 = f'_0(0) \in f'_0(\Delta_r) \subset \{f'(\zeta) : f \in A\}.$$

Proof of Theorem 1. Denote the supremum in (1) by ρ . Obviously $\rho \ge r_A$. If $\rho = 0$, then $r_A = 0 = \rho$. Assuming that $\rho > 0$ fix an arbitrary point $\zeta \in \Delta$ and consider the functional $f \mapsto \Phi_{\zeta}(f) = f'(\zeta)$. Observe first that $\Phi_{\zeta}(A)$ is convex, $\Phi_{\zeta}(A) = \Phi_{|\zeta|}(A)$ and $0 \notin \Phi_{\zeta}(A)$. It follows by Lemma that $1 \in \Phi_{\zeta}(A)$ so there exists $t = t(|\zeta|) \in (-\pi/2, \pi/2)$ such that Re $[e^{-it}\Phi_{z}(f)] > 0$ for all $f \in A$ and $|z| = |\zeta|$. By the maximum principle Re $[e^{-it}f'(z)] > 0$ for all $f \in A$ and $|z| \leq |\zeta|$ which means that each $f \in A$ is univalent on $\Delta_{|\zeta|}$. Since ζ was chosen arbitrarily, $\rho \leq r_A$. The theorem is proved.

There is a nice corollary to the proof. Namely, if we assume additionally that A is conjugate invariant, then for any $\zeta \in \Delta_{\rho}$ the set $\Phi_{\zeta}(A)$ is symmetric with respect to the real axis, i.e. there is $t(|\zeta|) = 0$ and we have

Corollary 1. If $A \subset H_0$ is convex, rotation and conjugate invariant, then $r'_A = r_A$, where r_A is determined in (1) or, more precisely,

$$r_A = \sup\{r \in (0, 1) : \operatorname{Re} f'(r) > 0 \text{ for all } f \in A\}.$$

A similar result is contained in

Theorem 2. Let $A \subset H_1$ be nonempty and rotation invariant. If L(A) is convex, then (1) holds.

Proof. Following the previous proof denote the right side of (1) by ρ . Clearly $\rho \geq r_A$. Assuming that $\rho > 0$ take $\zeta \in \Delta_{\rho}$ and consider the functionals $f \mapsto \Phi_{\zeta}(f) = f'(\zeta), \quad g \mapsto \Psi_{\zeta}(g) = \zeta g'(\zeta) + 1$. Observe first that $\Psi_{\zeta}(L(A))$ is convex, $0 \notin \Phi_{\zeta}(A) = \Phi_{|\zeta|}(A)$ and $\Psi_{\zeta}(g) = \zeta f'(\zeta)/f(\zeta)$ for $g(z) \equiv \log[f(z)/z]$. Hence $0 \notin \Psi_{\zeta}(L(A)) = \Psi_{|\zeta|}(L(A))$ and a similar argument used in the proof of Lemma shows that there is a function $g \in L(A)$ for that $g'(\zeta) = 0$. Therefore $1 \in \Psi_{\zeta}(L(A))$ and there is $t = t(|\zeta|) \in (-\pi/2, \pi/2)$ such that Re $[e^{-it}zf'(z)/f(z)] > 0$ for all $f \in A$ and $|z| = |\zeta|$. By the maximum principle each $f \in A$ is t-spirallike on $\Delta_{|\zeta|}$ and, since this is true for all $|\zeta| < \rho$, we obtain $\rho \leq r_A$. The proof is complete.

If moreover in Theorem 2 we assume that A is conjugate invariant, then for each $\zeta \in \Delta$ the set $\Psi_{\zeta}(L(A))$ is symmetric with respect to the real axis, i.e. there is $t(|\zeta|) = 0$ and Theorem 2 has the following

Corollary 2. Suppose that $A \subset H_1$ is rotation and conjugate invariant. If L(A) is convex, then $r_A = r_A$, where r_A is determined in (1).

3. Applications. For $0 \le \alpha \le 1$ let $P_{\alpha} = \{p \in H : \text{Re } p > \alpha \text{ on } \Delta, p(0) = 1\}$ and $P = P_0$. We shall solve some radius problems for the following classes or for their closed convex hulls:

- (2) $A(\alpha, \lambda) = \{ zp^{\lambda} : p \in P_{\alpha} \}, \quad 0 \le \alpha \le 1, \quad \lambda \in \mathbf{R} ,$
- (3) $B(M) = \{f \in H_1 : |f| < M \text{ on } \Delta\}, M > 1,$
- (4) $S^* = \{ f \in H_0 : \operatorname{Re}(zf'/f) > 0 \text{ on } \Delta \},$

(5)
$$K(\beta) = \{ f \in H_0 : \operatorname{Re}[e^{i\beta} z f'/g] > 0 \text{ on } \Delta \text{ for some } g \in S^* \},$$

$$-\pi/2 < eta < \pi/2$$

(6) $S = \{f \in H_0 : f \text{ is univalent on } \Delta\}$.

As a first application we get

Theorem 3.

(i)
$$r'_{A(\alpha,\lambda)} = r_{A(\alpha,\lambda)}$$
 if $-1 \le \lambda \le 1$.

- (ii) $r^{\bullet}_{A(\alpha,\lambda)} = r_{A(\alpha,\lambda)}$ if $0 \le \alpha \le 1, \lambda \in \mathbf{R}$,
- (iii) $r_{A(\alpha,\lambda)}$ is the unique positive solution r of the equation $2\alpha 1 + 2(1-\alpha)d(\lambda,r) = 0$, where $d(\lambda,r) = \min\{\operatorname{Re}[(1-\lambda)/(1-z) + \lambda/(1-z)^2] : |z| = r\}.$

Proof. (i). All the classes $A(\alpha, \lambda)$ with $0 \le \alpha \le 1, -1 \le \lambda \le 1$ are compact convex. Indeed, fix $0 \le \alpha < 1, -1 \le \lambda \le 1$, and consider the function $h(z) = = \{[1+(1-2\alpha)z]/(1-z)\}^{\lambda}$ that is holomorphic and univalent on Δ . Since $zh'/h'(0) \in S^*$, the set $h(\Delta)$ is convex and we have the identity

$$A(\alpha, \lambda) = \{ f \in H(\Delta) : f/z \prec h \text{ on } \Delta \}$$

which means the convexity of $A(\alpha, \lambda)$. Furthermore, $A(\alpha, \lambda)$ is conjugate and rotation invariant so we may use Corollary 1.

(ii). Fix $0 \leq \alpha < 1$, $\lambda \in \mathbf{R}$ and consider the function $g = \log h$, where h has been defined in the proof of (i). The function g is univalent on Δ and the set $g(\Delta)$ is convex since $zg'/g'(0) \in S^*$. Thus

$$L(A(\alpha, \lambda)) = \{ f \in H(\Delta) : f \prec g \text{ on } \Delta \},\$$

whence the convexity of $L(A(\alpha, \lambda))$ follows. By Corollary 2 we get the desired conclusion.

(iii). For all $0 \le \alpha \le 1$, $\lambda \in \mathbb{R}$ the class $A(\alpha, \lambda)$ satisfies the hypotheses of Corollary 2. Therefore $r_{A(\alpha,\lambda)} = \sup\{r \in (0,1) : f'(r) \ne 0 \text{ for all } f \in A(\alpha,\lambda)\} = \sup\{r \in (0,1) : p(r) + \lambda r p'(r) \ne 0 \text{ for all } p \in P_{\alpha}\} = \sup\{r \in (0,1) : \operatorname{Re} [p(r) + \lambda r p'(r)] > 0 \text{ for all } p \in P_{\alpha}\}$. Since the set of all extreme points of the class P_{α} consists of the following functions $z \mapsto (1 + (1 - 2\alpha)\zeta z)/(1 - \zeta z), |\zeta| = 1$, we have hence

$$r_{A(\alpha,\lambda)} = \sup\{r \in (0,1) : 2\alpha - 1 + 2(1-\alpha) \ d(\lambda,r) \ge 0\}.$$

Corollary 3.

(i)
$$r'_{A(\alpha,1)} = r^*_{A(\alpha,1)} = r_{A(\alpha,1)} = \begin{cases} \sqrt{2(1-\alpha)/(1-2\alpha)} - 1 & \text{for } 0 \le \alpha \le 1/10, \\ \sqrt{\alpha/(\alpha+\sqrt{\alpha-\alpha^2})} & \text{for } 1/10 \le \alpha \le 1, \end{cases}$$

see [2], v.II, pp.96, 98,

(ii)
$$r_{A(0,\lambda)}^* = r_{A(0,\lambda)} = \sqrt{\lambda^2 + 1} - |\lambda|,$$

see the case $\lambda = 1$ in [2], v.I, p.129 (19) and v.II, p.98,

(iii)
$$r_{A(1/2,\lambda)}^{*} = r_{A(1/2,\lambda)} = \begin{cases} \sqrt{1 + 2\sqrt{\lambda} - \lambda}/(1 + \sqrt{\lambda}) & \text{if } 0 \le \lambda \le 4, \\ 1/(\lambda - 1) & \text{if } \lambda \ge 4, \end{cases}$$

(iv)
$$r_{A(\alpha,\lambda)} = r_{A(\alpha,\lambda)} = (\lambda - 1 + a + \sqrt{(1-\lambda)^2 + 2a\lambda})/a$$

for $0 \le \alpha < 1$, $\lambda \le 0$, where $a = (1 - 2\alpha)/(1 - \alpha)$.

Proof. A quite elementary calculation shows us that

$$\begin{aligned} d(\lambda,r)(1-r^2)^2 &= \min\{\operatorname{Re}[(1-\lambda)(1-r^2)w+\lambda w^2]: |w-1|=r\} \\ &= \min\{2\lambda r^2 t^2 + r[1-r^2+\lambda(1+r^2)]t+1-r^2: -1\leq t\leq 1\}, \end{aligned}$$

whence it follows

1° $d(\lambda, r) = [-(1-\lambda)^2 r^4 + 2(1-4\lambda-\lambda^2 r^2 - \lambda^2 + 6\lambda - 1]/[8\lambda(1-r^2)^2]$ if $\lambda > 0$ and $(\lambda + 1)/(2\lambda + \sqrt{3\lambda^2 + 1}) \le r < 1$,

2° $d(\lambda, r) = \frac{[1 + (1 - \lambda)r]}{(1 + r)^2}$ if $\lambda \ge 0$ and $0 \le r \le (\lambda + 1)/(2\lambda + \sqrt{3\lambda^2 + 1})$ or else if $\lambda \le 0$ and $r^2 \le (1 + \lambda)/(1 - \lambda)$,

3° $d(\lambda, r) = [1 - (1 - \lambda)r]/(1 - r)^2$ if $\lambda < 0$ and $(1 + \lambda)/(1 - \lambda) \le r^2 < 1$.

The next step is to examine the equation stated in Theorem 3(iii) for suitable values of α and λ .

For bounded functions with the only zero at the origin we have the following Noshiro result.

Theorem 4.

$$r_{B(M)}^* = r_{B(M)} = 1 + \log M - \sqrt{(2 + \log M) \log M}$$

see [2], v.II, pp.95, 107.

Proof. Since $L(B(M)) = \log M - (\log M)P$, the class B(M) satisfies the assumptions of Corollary 2. Thus

$$r_{B(M)}^* = r_{B(M)} = \sup\{r \in (0,1) : 1 - rp'(r) \log M \neq 0 \text{ for all } p \in P\}$$

= sup{r \in (0,1) : Re[1 - rp'(r) log M] > 0 for all p \in P}.

Restricting our linear extremal problem to the extreme points of P we get

$$r_{B(M)}^* = r_{B(M)} = \max\{r \in (0, 1) : \operatorname{Re}[2z/(1-z)^2] \le 1/\log M \text{ for } |z| = r\},\$$

i.e. $r_{B(M)}$ satisfies the equation

$$2r/(1-r)^2 = 1/\log M.$$

This completes the proof.

The authors of [3] determined the radius of univalence for the class $\overline{\text{conv}} S^*$ and proved that the same number is the radius of starlikeness. We shall find the radius of univalence in a different manner. Namely we have

Theorem 5. $r'_{\text{conv } S^*} = r_{\text{conv } S^*} = \rho$, where $\rho = 0.403...$ is the unique positive solution of the equation: $\rho^6 + 5\rho^4 + 79\rho^2 - 13 = 0$.

Proof. The class $\overline{\operatorname{conv}} S^*$ satisfies the assumptions of Corollary 1, so the radius of univalence and bounded turning is equal to $\sup\{r \in (0,1) : \operatorname{Re} f'(r) > 0$ for all $f \in \overline{\operatorname{conv}} S^*\} = \sup\{r \in (0,1) : \operatorname{Re}[(1+z)/(1-z)^3] > 0$ for $|z| = r\}$ because the Koebe functions compose the set of all extreme points for $\overline{\operatorname{conv}} S^*$. Thus the both radii are equal to $\max\{r \in (0,1) : p(r,t) \ge 0 \text{ for all } -1 \le t \le 1\}$, where $p(r,t) \equiv 1 - 6r^2 + r^4 + (6r^3 - 2r)t + (6r^2 - 2r^4)t^2 - 4r^3t^3$. For $0 < r < (\sqrt{33} - 5)/4$ and $-1 \le t \le 1$ we have p(r,t) > 0, since $\partial p/\partial t$ is negative at t = -1, t = 1, and $a_r > 1$, where $\partial^2 p(r, a_r)/\partial t^2 = 0$. If $(\sqrt{33} - 5)/4 \le r < 1$, then $p(r,t) \ge p(r,t_r)$, where $\partial p(r,t_r)/\partial t = 0$ with $-1 \le t_r \le 1$. The desired equation follows from the equation $p(\rho, t_\rho) = 0$ after removing all the irrationalities.

Theorem 6. The radius $r_{max} K(A)$ is the least positive solution r of the equation

$$4r^6 + 8r^4 \cos 2\beta + 5r^2 - 1 = 0.$$

Proof. By Theorem 1 the considered radius is identical with $\sup\{r \in (0,1) : f'(r) \neq 0 \text{ for } f \in \overline{\operatorname{conv}} K(\beta)\} = \max\{r \in (0,1) : |\operatorname{Im} \log[f'(z)/f'(\zeta)]| < \pi \text{ for all } f \in K(\beta), |z| = |\zeta| = r\}.$ The connection between $K(\beta)$ and the classes S^* and P gives

$$r_{\overline{\operatorname{conv}} \ K(\beta)} = \max\{r \in (0,1) : 2 \arctan[2r \cos\beta/(1-r^2)] + 4 \arcsin r \le \pi\}$$

= $\max\{r \in (0,1) : \arctan[2r \cos\beta/(1-r^2)] \le \arctan[(1-2r^2)/(2r\sqrt{1-r^2})]\}$
= $\max\{r \in (0,1) : 4r^6 + 8r^4 \cos 2\beta + 5r^2 - 1 \le 0\}$

Theorem 7. $r'_{\text{conv} S} = r_{\overline{\text{conv}} S} = \sqrt{2 - \sqrt{2}/2} = 0.382...$

Proof. By Corollary 1 we get that the both radii are equal to $\sup\{r \in (0,1) :$ Re f'(r) > 0 for all $f \in S\} = \max\{r \in (0,1) : |\arg f'(r)| < \pi/2 \text{ for all } f \in S\} = \max\{r \in (0,1) : \arcsin r \le \pi/8\} = \sqrt{2 - \sqrt{2}}/2$ because of the rotation theorem for the class S (see e.g. [2], v.I, p.66).

REFERENCES

- [1] Eggleston, H.G., Convezity, Cambridge University Press 1969.
- [2] Goodman, A.W., Univalent functions, v.I-II, Mariner Pub. Co. Tampa, Florida 1983.
- [3] Hamilton, D. H., Tuan, P. D., Radius of starlikeness of convex combinations of univalent starlike functions, Proc. Amer. Mat. Soc. 78 (1980), 56-58.

STRESZCZENIE

W pracy przedstawiono prostą metodę, która pozwala wyznaczyć największe kola, na których każda funkcja z danej klasy jest jednolistna, gwiaździsta lub jej obrót jest ograniczony.