LUBLIN-POLONIA

VOL. XLIII, 3
SECTIO A

Politechnika Lubelska

L. KOCZAN

On Radii of Univalence, Starlikeness and Bounded Turning
O promieniach jednolistności, gwiaździstości i ograniczonego obrotu

Abstract

This paper deals with a simple method which enables us to determine the largest disks on that every function from a given class is univalent, starlike or its turning is bounded.

1. Introduction. Let H be the class of all complex functions holomorphic on the open unit disk Δ. For brevity we use the notation: $\Delta_{r}=\{z:|z|<r\}, \Delta=\Delta_{1}$, $H_{0}=\left\{f \in H: f(0)=f^{\prime}(0)-i=0\right\}, H_{1}=\left\{f \in H_{0}: f(z) / z \neq 0\right.$ for all $\left.z \in \Delta\right\}$ and $L(A)=\{\log (f / z): f \in A\}$ whenever $A \subset H_{1}$. In the last-defined set take $\log 1=0$. The convex hull of A and the closed convex hull of A we denote by conv A and $\overline{c o n v} A$, respectively.

Let us consider any $A \subset H_{0}$. In this paper we shall derive a simple method which enables us in many cases to determine the largest disks $\Delta_{r} \subset \Delta$ on that every function from A is univalent, starlike or its turning is bounded.

Strictly speaking, for classes $A \subset H_{0}$ that satisfy some geometric properties the following quantities will be examined:

$$
r_{A}=\sup \left\{r \in(0,1): \text { each } f \in A \text { is univalent on } \Delta_{r}\right\}
$$

i.e. the radius of univalence,

$$
r_{A}^{*}=\sup \left\{r \in(0,1): \operatorname{Re}\left[z f^{\prime} \mid f\right]>0 \text { on } \Delta_{r} \text { for all } f \in A\right\}
$$

i.e. the radius of starlikeness and

$$
r_{A}^{\prime}=\sup \left\{r \in(0,1): \operatorname{Re} f^{\prime}>0 \text { on } \Delta_{r} \text { for all } f \in A\right\}
$$

i.e. the radius of bounded turning.

The class A is said to be
(i) convex if $(1-t) f+t g \in A$ whenever $f, g \in A$ and $0 \leq t \leq 1$,
(ii) conjugate invariant if for any $f \in A$ the function $z \mapsto \overline{f(\bar{z})}$ belongs to A,
(iii) rotation invariant if for all $f \in A$ and $|\eta|=1$ the functions $z \mapsto \bar{\eta} f(\eta z)$ are in A.

The general results contained in Theorems 1-2 and Corollaries 12 concern just such classes and are useful in applications to the classes (2) (6) or to their closed convex hulls.

2. Basic results.

Theorem 1. If $A \subset H_{0}$ is nonempty convex and rotation invariant, then

$$
\begin{equation*}
r_{A}=\sup \left\{r \in(0,1): f^{\prime}(r) \neq 0 \text { for all } f \in A\right\} \tag{1}
\end{equation*}
$$

In the proof we use
Lemma. Suppose that $A \subset H_{0}$ is nonempty, convex and rotation invariant. Then for each $\zeta \in \Delta$ there is $f \in A$ such that $f^{\prime}(\zeta)=1$. If moreover A is compact, then A contains the identity mapping.

Proof. Take any $f_{0} \in A$ and fix $\zeta \in \Delta$. By the assumption the functions $z \mapsto \bar{\eta} f_{0}(\eta z),|\eta|=1$, are in A and

$$
\begin{aligned}
1=(2 \pi)^{-1} \int_{0}^{2 \pi} f_{0}^{\prime}\left(e^{i t} \zeta\right) d t & \in \overline{\operatorname{conv}}\left\{f_{0}^{\prime}(\eta \zeta):|\eta|=1\right\} \\
& =\operatorname{conv}\left\{f_{0}^{\prime}(\eta \zeta):|\eta|=1\right\}
\end{aligned}
$$

by the Minkowski theorem, see [1]. Thus there is a function $z \mapsto t_{1} \bar{\eta}_{1} f_{0}\left(\eta_{1} z\right)+\cdots+$ $t_{k} \bar{\eta}_{k} f_{0}\left(\eta_{k} z\right), t_{j} \geq 0,\left|\eta_{j}\right|=1, t_{1}+\cdots+t_{k}=1$, having the desired property. We let add that in the function we can put $k=2$, see [1], p. 35 .

If A is compact, then the function

$$
z \mapsto(2 \pi)^{-1} \int_{0}^{2 \pi} e^{-i t} f_{0}\left(e^{i t} z\right) d t=z
$$

belongs to $\overline{\operatorname{conv}}\left\{z \mapsto \bar{\eta} f_{0}(\eta z):|\eta|=1\right\} \subset A$.
Remark. The first part of Lemma follows also from the following facts. Namely, if $f_{0} \in A, \zeta \in \Delta$ and $r=|\zeta|$, then $f_{0}^{\prime}\left(\partial \Delta_{r}\right) \subset\left\{f^{\prime}(\zeta): f \in A\right\}$ and the last set is convex. By the maximum principle

$$
1=f_{0}^{\prime}(0) \in f_{0}^{\prime}\left(\Delta_{r}\right) \subset\left\{f^{\prime}(\zeta): f \in A\right\}
$$

Proof of Theorem 1. Denote the supremum in (1) by ρ. Obviously $\rho \geq r_{A}$. If $\rho=0$, then $r_{A}=0=\rho$. Assuming that $\rho>0$ fix an arbitrary point. $\zeta \in \Delta$ and consider the functional $f \mapsto \Phi_{\zeta}(f)=f^{\prime}(\zeta)$. Observe first that $\Phi_{\zeta}(A)$ is convex, $\Phi_{\zeta}(A)=\Phi_{|\zeta|}(A)$ and $0 \notin \Phi_{\zeta}(A)$. It follows by Lemma that $1 \in \Phi_{\zeta}(A)$ so there exists $t=t(|\zeta|) \in(-\pi / 2, \pi / 2)$ such that $\operatorname{Re}\left[e^{-i t} \Phi_{z}(f)\right]>0$ for all $f \in A$ and $|z|=|i|$. By
the maximum principle $\operatorname{Re}:\left[e^{-11} f^{\prime}(z)\right]>0$ for all $f \in A$ and $|z| \leq|\zeta|$ which means that ench $f \in A$ is mivalent on $\Delta_{i \zeta \mid}$. Since ζ was chosen arbitrarily, $\rho \leq r_{A}$. The theorem is proved.

There is a nice corollary to the proof. Namely, if we assume additionally that A is conjugate invariant, then for any $\zeta \in \Delta_{\rho}$ the set $\Phi_{\zeta}(A)$ is symmetric with respect to the real axis, i.c. there is $t(|\zeta|)=0$ and we have

Corollary 1. If $A \subset H_{0}$ is convex, rotation and conjugate invariant, then $r_{A}^{\prime}=r_{A}$, where r_{A} is determined in (1) or, more precisely,

$$
r_{A}=\sup \left\{r \in(0,1): \operatorname{Re} f^{\prime}(r)>0 \text { for all } f \in A\right\}
$$

A similar result is contained in
Theorem 2. Let $A \subset H_{1}$ be nonempty and rotation invariant. If $L(A)$ is convex, then (1) holds.

Proof. Following the previous proof denote the right side of (1) by ρ. Clearly $\rho \geq r_{A}$. Assuming that $\rho>0$ take $\zeta \in \Delta_{\rho}$ and consider the functionals $f \mapsto \Phi_{\zeta}(f)=f^{\prime}(\zeta), \quad g \mapsto \Psi_{\zeta}(g)=\zeta g^{\prime}(\zeta)+1$. Observe first that $\Psi_{\zeta}(L(A))$ is convex, $0 \notin \Phi_{\zeta}(A)=\Phi_{|\zeta|}(A)$ and $\Psi_{\zeta}(g)=\zeta f^{\prime}(\zeta) / f(\zeta)$ for $g(z) \equiv \log [f(z) / z]$. Hence $0 \notin \Psi_{\zeta}(L(A))=\Psi_{|\zeta|}(L(A))$ and a similar argument used in the proof of Lemma shows that there is a function $g \in L(A)$ for that $g^{\prime}(\zeta)=0$. Therefore $1 \in \Psi_{\zeta}(L(A))$ and there is $t=t(|\zeta|) \in(-\pi / 2, \pi / 2)$ such that $\operatorname{Re}\left[e^{-i t} z f^{\prime}(z) / f(z)\right]>0$ for all $f \in A$ and $|z|=|\zeta|$. By the maximum principle each $f \in A$ is t-spirallike on $\Delta_{|\zeta|}$ and, since this is true for all $|\zeta|<\rho$, we obtain $\rho \leq r_{A}$. The proof is complete.

If moreover in Theorem 2 we assume that A is conjugate invariant, then for each $\zeta \in \Delta$ the set $\Psi_{\zeta}(L(A))$ is symmetric with respect to the real axis, i.e. there is $t(|\zeta|)=0$ and Theorem 2 has the following

Corollary 2. Suppose that $A \subset H_{1}$ is rotation and conjugate invariant. If $L(A)$ is convex, then $r_{A}^{*}=r_{A}$, where r_{A} is determined in (1).
3. Applications. For $0 \leq \alpha \leq 1$ let $P_{\alpha}=\{p \in H: \operatorname{Re} p>\alpha$ on $\Delta, p(0)=1\}$ and $P=P_{0}$. We shall solve some radius problems for the following classes or for their closed convex hulls:

$$
\begin{align*}
& A(\alpha, \lambda)=\left\{z p^{\lambda}: p \in P_{\alpha}\right\}, \quad 0 \leq \alpha \leq 1, \quad \lambda \in \mathbf{R}, \tag{2}\\
& B(M)=\left\{f \in H_{1}:|f|<M \text { on } \Delta\right\}, \quad M>1, \tag{3}\\
& S^{*}=\left\{f \in H_{0}: \operatorname{Re}\left(z f^{\prime} / f\right)>0 \text { on } \Delta\right\}, \tag{4}\\
& K(\beta)=\left\{f \in H_{0}: \operatorname{Re}\left[e^{i \beta} z f^{\prime} / g\right]>0 \text { on } \Delta \text { for some } g \in S^{\bullet}\right\}, \tag{5}\\
& -\pi / 2<\beta<\pi / 2, \\
& S=\left\{f \in H_{0}: f \text { is univalent on } \Delta\right\} . \tag{6}
\end{align*}
$$

As a first application we got

Theorem 3.

(i) $r_{A(\Omega, \lambda)}^{\prime}=r_{A(n, \lambda)}$ if $-1 \leq 1 \leq 1$.
(ii) $r_{A(\alpha, \lambda)}^{*}=r_{A(0, \lambda)}$ if $0 \leq 1 \leq 1, l \in \mathbf{R}$.
(iii) $r_{A(\alpha, \lambda)}$ is the unique positive solution r of the equation $2 \alpha-1+2(1-\alpha) d(\lambda, r)=0$, where $d(\lambda, r)=\min \left\{\operatorname{Re}\left[(1-\lambda) /(1-z)+\lambda /(1-z)^{2}\right]:|z|=r\right\}$.

Proof. (i). All the classes $A(\alpha, \lambda)$ with $0 \leq \alpha \leq 1,-1 \leq \lambda \leq 1$ are compact convex. Indeed, fix $0 \leq \alpha<1,-1 \leq \lambda \leq 1$, and consider the function $h(z)=$ $=\{[1+(1-2 \alpha) z] /(1-z)\}^{\lambda}$ that is holomorphic and univalent on Δ. Since $z h^{\prime} / h^{\prime}(0) \in$ S^{*}, the set $h(\Delta)$ is convex and we have the identity

$$
A(\alpha, \lambda)=\{f \in H(\Delta): f / z \prec h \text { on } \Delta\}
$$

which means the convexity of $A(\alpha, \lambda)$. Furthermore, $A(\alpha, \lambda)$ is conjugate and rotation invariant so we may use Corollary 1.
(ii). Fix $0 \leq \alpha<1, \lambda \in \mathbf{R}$ and consider the function $g=\log h$, where h has been defined in the proof of (i). The function g is univalent on Δ and the set $g(\Delta)$ is convex since $z g^{\prime} / g^{\prime}(0) \in S^{*}$. Thus

$$
L(A(\alpha, \lambda))=\{f \in H(\Delta): f \prec g \text { on } \Delta\}
$$

whence the convexity of $L(A(\alpha, \lambda))$ follows. By Corollary 2 we get the desired conclusion.
(iii). For all $0 \leq \alpha \leq 1, \lambda \in \mathbf{R}$ the class $A(\alpha, \lambda)$ satisfies the hypotheses of Corollary 2. Therefore $r_{A(\alpha, \lambda)}=\sup \left\{r \in(0,1): f^{\prime}(r) \neq 0\right.$ for all $\left.f \in A(\alpha, \lambda)\right\}=$ $=\sup \left\{r \in(0,1): p(r)+\lambda r p^{\prime}(r) \neq 0\right.$ for all $\left.p \in P_{\alpha}\right\}=\sup \{r \in(0,1): \operatorname{Re}[p(r)+$ $\left.+\lambda r p^{\prime}(r)\right]>0$ for all $\left.p \in P_{a}\right\}$. Since the set of all extreme points of the class P_{α} consists of the following functions $z \mapsto(1+(1-2 \alpha) \zeta z) /(1-\zeta z),|\zeta|=1$, we have hence

$$
r_{A(\alpha, \lambda)}=\sup \{r \in(0,1): 2 \alpha-1+2(1-\alpha) d(\lambda, r) \geq 0\} .
$$

Corollary 3.

(i) $r_{A(\alpha, 1)}^{\prime}=r_{A(\alpha, 1)}^{*}=r_{A(\alpha, 1)}= \begin{cases}\sqrt{2(1-\alpha) /(1-2 \alpha)}-1 & \text { for } 0 \leq \alpha \leq 1 / 10, \\ \sqrt{\alpha /\left(\alpha+\sqrt{\alpha-\alpha^{2}}\right)} & \text { for } 1 / 10 \leq \alpha \leq 1,\end{cases}$
see [2], v.II, pp.96, 98,

$$
\begin{equation*}
r_{A(0, \lambda)}^{*}=r_{A(0, \lambda)}=\sqrt{\lambda^{2}+1}-|\lambda| \tag{ii}
\end{equation*}
$$

see the case $\lambda=1$ in [2], v.I, p. 129 (19) and v.II, p.98,

$$
r_{A(1 / 2, \lambda)}^{*}=r_{\lambda(1 / 2, \lambda)}= \begin{cases}\sqrt{1+2 \sqrt{\lambda}-\lambda /(1}+\sqrt{\lambda}) & \text { if } 0 \leq \lambda \leq 4, \tag{iii}\\ 1 /(\lambda-1) & \text { if } \lambda \geq 4\end{cases}
$$

(iv)

$$
r_{A(\alpha, \lambda)}^{*}=r_{A(\alpha, \lambda)}=\left(\lambda-1+a+\sqrt{(1-\lambda)^{2}+2 a \lambda}\right) / a
$$

for $0 \leq \alpha<1, \lambda \leq 0$, where $a=(1-2 \alpha) /(1-\alpha)$.
Proof. A quite elementary calculation shows us that

$$
\begin{aligned}
d(\lambda, r)\left(1-r^{2}\right)^{2} & =\min \left\{\operatorname{Re}\left[(1-\lambda)\left(1-r^{2}\right) w+\lambda w^{2}\right]:|w-1|=r\right\} \\
& =\min \left\{2 \lambda r^{2} t^{2}+r\left[1-r^{2}+\lambda\left(1+r^{2}\right)\right] t+1-r^{2}:-1 \leq t \leq 1\right\}
\end{aligned}
$$

whence it follows

$$
\begin{aligned}
& 1^{\circ} \quad d(\lambda, r)=\left[-(1-\lambda)^{2} r^{4}+2\left(1-4 \lambda-\lambda^{2} r^{2}-\lambda^{2}+6 \lambda-1\right] /\left[8 \lambda\left(1-r^{2}\right)^{2}\right] \text { if } \lambda>0\right. \text { and } \\
& \\
& (\lambda+1) /\left(2 \lambda+\sqrt{3 \lambda^{2}+1}\right) \leq r<1,
\end{aligned}
$$

$$
2^{\circ} d(\lambda, r)=[1+(1-\lambda) r] /(1+r)^{2} \text { if } \lambda \geq 0 \text { and } 0 \leq r \leq(\lambda+1) /\left(2 \lambda+\sqrt{3 \lambda^{2}+1}\right) \text { or }
$$

$$
\text { else if } \lambda \leq 0 \text { and } r^{2} \leq(1+\lambda) /(1-\lambda)
$$

$$
3^{\circ} d(\lambda, r)=[1-(1-\lambda) r] /(1-r)^{2} \text { if } \lambda<0 \text { and }(1+\lambda) /(1-\lambda) \leq r^{2}<1
$$

The next step is to examine the equation stated in Theorem 3 (iii) for suitable values of α and λ.

For bounded functions with the only zero at the origin we have the following Noshiro result.

Theorem 4.

$$
r_{B(M)}^{*}=r_{B(M)}=1+\log M-\sqrt{(2+\log M) \log M}
$$

see [2], v.II, pp.95, 107.
Proof. Since $L(B(M))=\log M-(\log M) P$, the class $B(M)$ satisfies the assumptions of Corollary 2. Thus

$$
\begin{aligned}
r_{B(M)}^{*}=r_{B(M)} & =\sup \left\{r \in(0,1): 1-r p^{\prime}(r) \log M \neq 0 \text { for all } p \in P\right\} \\
& =\sup \left\{r \in(0,1): \operatorname{Re}\left[1-r p^{\prime}(r) \log M\right]>0 \text { for all } p \in P\right\}
\end{aligned}
$$

Restricting our linear extremal problem to the extreme points of P we get

$$
r_{B(M)}^{*}=r_{B(M)}=\max \left\{r \in(0,1): \operatorname{Re}\left[2 z /(1-z)^{2}\right] \leq 1 / \log M \text { for }|z|=r\right\},
$$

i.e. $r_{B(M)}$ satisfies the equation

$$
2 r /(1-r)^{2}=1 / \log M
$$

This completes the proof.
The authors of [3] determined the radius of univalence for the class conv S^{*} and proved that the same number is the radius of starlikeness. We shall find the radius of univalence in a different manner. Namely we have

Theorem 5. $r_{\text {conv }}^{\prime} S^{*}=r_{\text {conv }} S^{\bullet}=\rho$, whrre $\rho=0.403 \ldots$ is the unique positive solution of the equation: $\rho^{6}+5 \rho^{4}+79 \rho^{2}-13=0$.

Proof. The class $\overline{\text { conv }} S^{*}$ satisfies the assumptions of Corollary 1, so the radius of univalence and bounded turning is equal to $\sup \left\{r \in(0,1): \operatorname{Re} f^{\prime}(r)>0\right.$ for all $\left.f \in \overline{\mathrm{Conv}} S^{*}\right\}=\sup \left\{r \in(0,1): \operatorname{Re}\left[(1+z) /(1-z)^{3}\right]>0\right.$ for $\left.|z|=r\right\}$ because the Kocbe functions compose the set of all extreme points for conv S^{*}. Thus the both radii are equal to $\max \{r \in(0,1): p(r, t) \geq 0$ for all $-1 \leq t \leq 1\}$, where $p(r, t) \equiv 1-6 r^{2}+r^{4}+\left(6 r^{3}-2 r\right) t+\left(6 r^{2}-2 r^{4}\right) t^{2}-4 r^{3} t^{3}$. For $0<r<(\sqrt{33}-5) / 4$ and $-1 \leq t \leq 1$ we have $p(r, t)>0$, since $\partial p / \partial t$ is negative at $t=-1, t=1$, and $a_{r}>1$, where $\partial^{2} p\left(r, a_{r}\right) / \partial t^{2}=0$. If $(\sqrt{33}-5) / 4 \leq r<1$, then $p(r, t) \geq p\left(r, t_{r}\right)$, where $\partial p\left(r, t_{r}\right) / \partial t=0$ with $-1 \leq t_{r} \leq 1$. The desired equation follows from the equation $p\left(\rho, t_{\rho}\right)=0$ after removing all the irrationalities.

Theorem 6. The radius $r_{\overline{c o n v}} K(\beta)$ is the least positive solution r of the equation

$$
4 r^{6}+8 r^{4} \cos 2 \beta+5 r^{2}-1=0
$$

Proof. By Theorem 1 the considered radius is identical with $\sup \{r \in(0,1)$: $f^{\prime}(r) \neq 0$ for $\left.f \in \overline{\operatorname{conv}} K(\beta)\right\}=\max \left\{r \in(0,1): \mid \operatorname{Im} \log \left[f^{\prime}(z) / f^{\prime}(\zeta)| |<\pi\right.\right.$ for all $\left.f \in K^{\prime}(\beta),|z|=|\zeta|=r\right\}$. The connection between $K(\beta)$ and the classes S^{\bullet} and P gives

$$
\begin{aligned}
r_{\text {сопv }} K(\beta) & =\max \left\{r \in(0,1): 2 \arctan \left[2 r \cos \beta /\left(1-r^{2}\right)\right]+4 \arcsin r \leq \pi\right\} \\
& =\max \left\{r \in(0,1): \arctan \left[2 r \cos \beta /\left(1-r^{2}\right)\right] \leq \arctan \left[\left(1-2 r^{2}\right) /\left(2 r \sqrt{1-r^{2}}\right)\right]\right\} \\
& =\max \left\{r \in(0,1): 4 r^{8}+8 r^{4} \cos 2 \beta+5 r^{2}-1 \leq 0\right\} .
\end{aligned}
$$

Theorem 7. $r_{\text {conv }}^{\prime} S=r_{\text {conv }} S=\sqrt{2-\sqrt{2}} / 2=0.382 \ldots$
Proof. By Corollary 1 we get that the both radii are equal to $\sup \{r \in(0,1)$: $\operatorname{Re} f^{\prime}(r)>0$ for all $\left.f \in S\right\}=\max \left\{r \in(0,1):\left|\arg f^{\prime}(r)\right|<\pi / 2\right.$ for all $\left.f \in S\right\}=$ $\max \{r \in(0,1): \arcsin r \leq \pi / 8\}=\sqrt{2-\sqrt{2}} / 2$ because of the rotation theorcm for the class S (see e.g. [2], v.I, p.66).

REFERENCES

[1] Eggleston, H. G. , Convexity, Cambridge University Press 1969.
[2] Goodman, A.W. , Univalent functions, v.I-II, Mariner Pub. Co. Tampa, Florida 1983.
[3] Hamilton, D. H. , Tuan, P. D. , Radius of starlikeness of convex combinations of univalent starlike functions, Proc. Amer. Mat. Soc. 78 (1980), 56-58.

STRESZCZENIE

W pracy przedstawiono prostą metode, która pozwala wyznaczyć najwį̣ksze kola, na których kaida funkcja z danej klasy jest jednolistna, gwiaździsta lub jej obrót jest ograniczony.

