ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN-POLONIA

VOL. XLIII, 2
SECIIO A
Instytut Matematyki UMCS

Department of Mathematics
University of Petrozavodsk
Petrozavodsk, USSR

J. GODULA, V. STARKOW

Logarithmic Coefflcients of Locally Univalent Functions

Współczynniki logarytmiczne funkcji lokalnie jednolistnych

Abstract

In this paper the authors obtain upper bounds of logarithmic coefficients of functions from a linearly invariant family of the order α.

1. Introduction. Let $U_{4}^{*}, \alpha \geq 1$ be the class of functions f analytic in the unit disk \mathbf{D} such that

$$
f^{\prime}(z)=s^{\prime}(z) \exp \left[-2 \int_{0}^{2 \pi} \log \frac{1-\omega(z) e^{\mathrm{it}}}{1-\omega(0) e^{\mathrm{it}}} d \mu(t)\right]
$$

where $s(z)=z+\cdots$ is a convex and univalent function, i.e. s maps D onto convex domain; ω is analytic in \mathbf{D} and $|\omega(z)|<1, z \in \mathbf{D} ; \mu$ is a complex valued function with bounded variation on $[0,2 \pi]$ and satisfying the following conditions

$$
\int_{0}^{2 \pi} d \mu(t)=0, \quad \int_{0}^{2 \pi}|d \mu(t)| \leq \alpha-1
$$

The class U_{α}^{*} is the linearly invariant family of the order $\alpha,[2],[3]$. The class U_{2}^{*} contains the class of close-to-convex functions. Moreover, if $V_{2 \alpha}$ is the class of functions of bounded boundary rotation, [2], then $V_{2 \alpha} \subset U_{\alpha}^{*}$. As shown in [1], $f \in U_{\alpha}^{*}$ iff

$$
\begin{equation*}
f^{\prime}(z)=s^{\prime}(z) \exp \left[-2 \int_{0}^{2 \pi} \log \left(1-\omega_{0}(z) e^{i t}\right) d \mu(t)\right] \tag{1.1}
\end{equation*}
$$

where s, μ are as above, and ω_{0} is analytic in $\mathbf{D},\left|\omega_{0}(z)\right|<1, z \in \mathbf{D}, \omega_{0}(0)=0$.
For a function $f \in U_{\alpha}^{*}$ its logarithmic coefficients $\gamma_{n}, n=1,2, \ldots$ are defined by the expansion

$$
\begin{equation*}
\log f^{\prime}(z)=\sum_{n=1}^{\infty} \gamma_{n} z^{n} \tag{1.2}
\end{equation*}
$$

In this paper we obtain bounds for the coefficients γ_{n}.
2. The main result. By $\{h\}_{n}$ we will denote n-th coefficient in the series expansion of an analytic function h.

Theorem. For $f \in U_{a}^{*}$ and γ_{n} given by (1.2) we have

$$
\left|\gamma_{n}\right| \leq 2\left(\alpha-\frac{n-1}{n}\right), \quad n=1,2, \ldots
$$

Proof. Since U_{α}^{*} is rotationally invariant it suffices to consider $\operatorname{Re} \gamma_{n}$. By (1.1) we have

$$
\begin{equation*}
\log f^{\prime}(z)=\log s^{\prime}(z)-2 \int_{0}^{2 \pi} \log \left(1-\omega_{0}(z) e^{i t}\right) d \mu(t) \tag{2.1}
\end{equation*}
$$

It is known that for a convex function s there exists a function β of the total variation 1 on $[0,2 \pi]$ such that

$$
\begin{equation*}
\operatorname{Re}\left\{\log s^{\prime}(z)\right\}_{n}=-2 \operatorname{Re} \int_{0}^{2 \pi}\left\{\log \left(1-z e^{i t}\right)\right\}_{n} d \beta(t) \leq \frac{2}{n} \tag{2.2}
\end{equation*}
$$

The equality holds for

$$
\beta(t)= \begin{cases}0 & \text { for } t=0 \\ 1 & \text { for } t \in(0,2 \pi]\end{cases}
$$

Now, we estimate coefficients of the second expression in (2.1). Let us introduce a new class U_{α}^{+}of functions f such that

$$
f^{\prime}(z)=s^{\prime}(z) \exp \left[-2 \int_{0}^{2 \pi} \log (1-\omega(z, t)) d \mu(t)\right]
$$

where s, μ are as above and $\omega(z, t)$ is a function analytic with respect to $z, z \in \mathbf{D}$ and analytic with respect to t on an interval containing $[0,2 \pi]$. Moreover, $|\omega(z, t)|<1$, $\omega(0, t)=0$.

Observe that

$$
\begin{equation*}
U_{\alpha}^{*} \subset U_{\alpha}^{+} \tag{2.3}
\end{equation*}
$$

Let $f \in U_{\alpha}^{+}$and

$$
\log f^{\prime}(z)=\sum_{n=1}^{\infty} \gamma_{n} z^{n}, \quad z \in \mathbf{D}
$$

Let Φ_{α} be a class of functions φ such that

$$
\varphi(z)=-2 \int_{0}^{2 \pi} \log (1-\omega(z, t)) d \mu(t)
$$

where ω, μ are as hbove.
Let. $\hat{\omega}(z, t)$ be nu extremal function for $\left|\gamma_{n}\right|$ with corresponding $\hat{\mu}$ and let

$$
\widehat{\varphi}(z)=-2 \int_{0}^{2 \pi} \log (1-\widehat{\omega}(z, t)) d \hat{\mu}(t)=\sum_{k=1}^{\infty} A_{k} z^{k} \in \Phi_{\alpha}
$$

Then for $\varepsilon_{n}=e^{2 \pi i / n}$ we have

$$
\varphi_{+}(z):=\frac{1}{n} \sum_{k=1}^{n-1} \widehat{\varphi}\left(z \varepsilon_{n}^{k}\right)=-2 \int_{0}^{2 \pi} \frac{1}{n} \sum_{k=0}^{n-1} \log \left(1-\widehat{\omega}\left(z \varepsilon_{n}^{k}, t\right)\right) d \widehat{\mu}(t)=\sum_{k=1}^{\infty} A_{k n} z^{k n} .
$$

Now, we give
Lemma. Let $\lambda_{k} \geq 0, \sum_{k=0}^{n-1} \lambda_{k}=1$ and let $\omega_{k}(z, t), k=0,1, \ldots, n-1$ be as in the definition of U_{α}^{+}. Then there exists the function $\omega_{+}(z, t)$ such as in the definition of U_{α}^{+}and such that

$$
\sum_{k=0}^{n-1} \lambda_{k} \log \left(1-\omega_{k}(z, t)\right)=\log \left(1-\omega_{+}(z, t)\right), \quad z \in \mathbb{D}
$$

The Lemma follows from the fact that the function $\log (1+\zeta)$ is convex in \mathbf{D} and from properties of the functions ω_{k}. Thus from the Lemma we obtain that

$$
\varphi_{+}(z)=-2 \int_{0}^{2 \pi} \log \left(1-\omega_{+}(z, t)\right) d \widehat{\mu}(t)=A_{n} z^{n}+A_{2 n} z^{2 n}+\cdots
$$

where $\omega_{+}(z, t)=\sum_{l=1}^{\infty} \delta_{l} z^{n l}$. We have that the function $\omega_{\#}(z, t)=\omega_{+}\left(z^{1 / n}, t\right)$ is such as in the definition of U_{α}^{+}and therefore

$$
\varphi_{+}\left(z^{1 / n}\right)=-2 \int_{0}^{2 \pi} \log \left(1-\omega_{\#}(z, t)\right) d \widehat{\mu}(t)=A_{n} z+A_{2 n} z^{2}+\cdots \in \Phi_{a}
$$

Thus an estimation of the n-th coefficient in Φ_{α} reduces to an estimation of the first one.

Therefore, if $\varphi \in \Phi_{\alpha}$ then

$$
\left.\operatorname{Re}\{\varphi\}_{1}=\operatorname{Re}\left[\int_{0}^{2 \pi} 2\{\omega(z, t)\}_{1} d \mu(t)\right] \leq 2 \int_{0}^{2 \pi}\left|\frac{d}{d z}\right|_{z=0} \omega(z, t)| | d \mu(t) \right\rvert\, \leq 2(\alpha-1)
$$

Hence, by the inclusion (2.3) we obtain

$$
\operatorname{Re}\left[\left\{-2 \int_{0}^{2 \pi} \log \left(1-\omega(z) e^{i \ell}\right) d \mu(t)\right\}_{n}\right] \leq 2(\alpha-1
$$

The equality holds for $\omega(z)=z^{n}$ and for μ with jumps : $\frac{\alpha-1}{2}$ for $t=0$ and $\frac{1-\alpha}{2}$ for $t=\pi$. Evidently the equality occurs for another μ.

Now, we deduce from this and (2.1), (2.2) that

$$
\operatorname{Re} \gamma_{n} \leq 2\left(\alpha-1+\frac{1}{n}\right)
$$

and this proves our Theorem.
3. Additional results. From our Theorem we have that for $n=1,2, \ldots$

$$
\left|\left\{\log f^{\prime}(z)\right\}_{n}\right| \leq\left|\left\{2(\alpha-1) \frac{z}{1-z}-2 \log (1-z)\right\}_{n}\right|
$$

Hence

$$
\begin{aligned}
\left|\left\{f^{\prime}(z)\right\}_{n}\right| & \leq\left|\left\{\frac{1}{(1-z)^{2}} \exp \frac{2(\alpha-1) z}{1-z}\right\}_{n}\right|= \\
& =\left|\left\{\left(1+2 z+3 z^{2}+\cdots\right)\left(1+B_{1} z+B_{2} z^{2}+\cdots\right)\right\}_{n}\right|= \\
& =\sum_{k=0}^{n}(k+1) B_{n-k}, \quad B_{0}=1, \quad n=1,2, \ldots
\end{aligned}
$$

Observe that

$$
\left\{\frac{z^{k}}{(1-z)^{k}}\right\}_{n}=\left\{(1-z)^{-k}\right\}_{n-k}=\frac{(n-1)!}{(k-1)!(n-k)!}:=\binom{n-1}{k-1} .
$$

Therefore

$$
\begin{aligned}
& B_{n}=\sum_{k=1}^{n}\binom{n-1}{k-1} \frac{2^{k}(\alpha-1)^{k}}{k!}, n=1,2, \ldots \\
& B_{0}=1
\end{aligned}
$$

Thus we have

$$
\left|\left\{f^{\prime}\right\}_{n}\right| \leq \sum_{k=0}^{n} \sum_{j=1}^{n-k}\binom{n-k-1}{j-1} \frac{2^{j}(\alpha-1)^{j}(k+1)}{j!}, n=1,2, \ldots
$$

From this we can obtain that

$$
\left|\{f\}_{n}\right| \leq \frac{1}{n} \sum_{k=0}^{n-1} \sum_{j=1}^{n-k-1}\binom{n-k-2}{j-1} \frac{2^{j}(\alpha-1)^{j}(k+1)}{j!}, \quad n=2,3, \ldots
$$

where $\sum_{j=1}^{0}$ by definition equals to $B_{0}=1$.

AMER REFERENCES

 155 (19061). 108154

STHESZCてENIた

 liniown niezmionniczej rokziny rzędı or.

