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Logarithmic Coefficients of Locally Univalent Functions

Wspdlezynniki logarytmiczne funkcji lokalnie jednolistnych

Abstract. In this paper the authors obtain upper bounds of logarithmic coefficients of func-
tions from a linearly invariant family of the order ar.

1. Introduction. Let U’ a > 1 be the class of functions f analytic in the unit
disk D such that

1 —w(z)e*

f'(z) = s'(z) exp [—2 /;7" log T 0(0)et d#(t)] y

where s(z) = z + -+ is a convex and univalent function, i.e. s maps D onto convex
domain; w is analytic in D and |w(z)| < 1, z € D; u is a complex valued function
with bounded variation on [0, 27] and satisfying the following conditions

/; o du(t)

The class U} is the linearly invariant family of the order a, [2], [3]. The class U; con-
tains the class of close-to-convex functions. Moreover, if V;, is the class of functions
of bounded boundary rotation, [2], then V2o C U;. As shown in [1), f € U2 iff

2x

0, / ldu(t)| <a—1.

2r
(1.1) f(2) = o'(s) exp -2 ,[ log(1 - wo(2)e™) du(t)] ,
where s, u are as above, and wy is analytic in D, |wo(2)] < 1, z € D, we(0) = 0.

For a function f € U its logarithmic coefficients v,, n = 1,2, ... are defined by
the expansion

1.2) xR T2
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In this paper we obtain bounds for the coefficients «,,.

2. The main result. By {h}, we will denote n-th coefficient in the series
expansioh of an analytic function h.

Theorem. For f € U and v, given by (1.2) we have

|7n|$2(a—--n—;—l) , n=12,....

Proof. Since U} is rotationally invariant it suffices to consider Re v,. By (1.1)
we have

2x
(2.1) log f'(z) = log s'(z) — 2 j£ log(1 — wo(z)e') du(t) .

It is known that for a convex function s there exists a function 8 of the total variation
1 on [0, 27] such that

(2.2) Re {logs'(z)}a = —2 Re j["{log(l —z2eM)}a dB(t) < 4 :
o n

The equality holds for
(0 fort=0

i 1 for t € (0,2x].

Now, we estimate coefficients of the second expression in (2.1). Let us introduce a
new class U} of functions f such that

A(t) =

fi(z) = 3'(z)exp[—2 ‘éh log(1 - w(z,t)) dp(t)] .

where s, 1 are as above and w(z,t) is a function analytic with respect to z, z € D and
analytic with respect to ¢ on an interval containing [0,27]. Moreover, |w(z,t)|] < 1,
w(0,t) = 0.

Observe that

(2.3) vicut.
Let f € U} and
log f'(z) = Z'y,.z" , z€D.
n=1

Let ®, be a class of functions ¢ such that

2

o)=2 " log(1 — wlz,1) du(t) ,



Logarithmic Coeflicients of Locally Univalent Functions 11

where w, j1 are as above.
Let w(z,t) be an extremal function for |y, | with corresponding ji and let

2w oo
3(z) = —2/ log(1 — &(z, ) dji(t) = S Ag2* € &,
0 ::‘:

Then for €, = e2™/™ we have
p4(z) = 1 "2-5 P(ze¥) = -2 fh L E log(1 — &(zek, 1)) dii(t) = i Agnzt"
e : o S Al k=1 ’ ‘
Now, we give
Lemma. Let Ay >0, S"h20 Ay = 1 and let wy(7,t), k=0,1,...,n—1 be as in

the definition of U}. Then there ezists the function w4 (z,t) such as in the definition
of U} and such that

n—1

Z Ak log(1 — wi(z,t)) = log(1 —wy(z,t)) , z€D.
k=0

The Lemma follows from the fact that the function log(1 + () is convex in D and
from properties of the functions wi. Thus from the Lemnma we obtain that

2r
p4(z)= -2 ][ log(l —w+(z,t)) dii(t) = Ap2z" + Agn2®" + -+,
o

where w4 (z,t) = 1oy 61z™'. We have that the function wy(z,t) = wy(2'/",t) is
such as in the definition of U} and therefore

2w
pu(zM") = -2 / log(1 — wi(z,1)) dA(t) = Anz + Agaz® + -+ € & .
0

Thus an estimation of the n-th coefficient in ®, reduces to an estimation of the first
one.
Therefore, if ¢ € &, then

Re (¢} = Re| [" 2u(z,hdu(t)] <2 ['lj—zL:o ol )| u®)] < 2a - 1)
Hence, by the inclusion (2.3) we obtain
Re[{—2 [' log(1 — w(Z)e“)dﬂ(t)}"] < 2a-1.
-1 1-a

The equality holds for w(z) = 2" and for p with jumps : g 3 for t = 0 and 2
for t = . Evidently the equality occurs for another p.
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Now, we deduce from this and (2.1), (2.2) that
1
Re 1n S2(a—1+;)

and this proves our Theorem.

3. Additional results. From our Theorem we have that for n = 1,2,.

[{log £(z)}al < | {2 - )12 - 210801 - )} |.

Hence

|{f'(,=)},,|g|{(l_1$)1l .,xpz(u-:)z}“ -

1-z2
={(1+2: 43224+ - ) 14 Byz+ Byz* +-- )}, =

=Y (k+1)Bay, Bo=1, n=12,....

k=0

Observe that

z* —h n—1)! n—
(gm0 = et = (0 22)

Therefore

n £ k(1)
(" 1)2_9’——1)— n=1,2,...
=1

Bo=1.

Thus we have

(F'}n |<ij"z_j("‘ ‘“2""“”"‘“), nmt,2

1
k=0 j=1 J:

From this we can obtain that

n—ln k-1

GEEES3DY ("*" NF@-PB i

= 1)
k—O j=1 J 1 7 Ji

where 2‘1":1 by definition equals to By = 1.
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STRESZCZENI

W pracy autorzy otrzymali oszacowanie wspolezynnikow logarytnmeznyveh Tunkeji 2 pewney

liniowo niezmicnnicze) rodziny rzedu «v.






